
Journal of Computer Science 2 (4): 337-346, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: R. B. Patel, Department of Computer Engineering, M. M. Engineering College, Mullana-133203,
Haryana, India

337

Load Balancing on Open Networks: A Mobile Agent Approach

R. B. Patel and Neetu Aggarwal

Department of Computer Engineering, M. M. Engineering College, Mullana-133203, Haryana, India

Abstract: In order to disperse the load on a Web server, generally the server cluster is configured to
distribute access requests, or mirror servers are distributed geographically on different networks. Use
of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile
agent technology has proliferated at an equally rapid rate to evenly distribute the requests to web
servers through load balancing. There are various loads balancing policies came into picture. Primitive
one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive
choice, however the communication requirements are sometimes inconventior and inefficient when
implementing the primitives provided by MPI. Mobile agent (MA) based approach have the merits of
high flexibility, efficiency, low network traffic, less communication latency as well as highly
asynchronous. In this study we present dynamic load balancing using mobile agent technology in
which when a node is overloaded, task migrates to less utilized nodes so as to share the workload.
However, the decision of which nodes receive migrating task is made in real-time by design and
implementation of a framework called Platform for Load balancing (PLB). It is implemented on
PMADE (A Platform for Mobile Agent Distribution and Execution). PLB integrated web servers can
dispatch MAs to retrieve load information and accomplish load redistribution on all servers. The
performance evaluation demonstrates that the PLB framework provides a foundation to develop
efficient load balancing schemes on wide range of web server systems from cluster to open network
and the results of a comparison of PLB, with some existing ones, is also reported.

Key words: Mobile Agents, Agent host, Agent Submitter, PLB, Load balancing.

INTRODUCTION

Today, web services have been widely involved in
all aspects of daily life for more than six hundred
millions users over the Internet. The proliferation of
web services and users appeals for high scalability,
availability and reliability of web servers to provide
rapid response and high throughput for the client
requests occurring at any time. Distributed web servers
(DWSs) provide an effective solution for improving the
quality of web services. A collection of web servers is
used as a pool of replicated resources to provide
concurrent services to the clients. The incoming
requests can be distributed into the servers according to
specific load distribution strategies and thus the
requests are processed quickly. The DWSs can be
organized in different scopes. They can be integrated
into a cluster of web servers linked via local-area
network to act as a powerful web server. They can also
be deployed at different sites over open network
(Internet). The DWSs can present high scalability by
incorporating additional servers in response to the
growing demands for web services as well as
supporting fault tolerant service. When any server
encounters failure, other servers can sustain the service.

Load balancing[24, 25] is a active technology that
provides the art of shaping, transforming and filtering
the network traffic and then routing and load balancing
it to the optimal server node. If we take into an account
the simple server granting services then at the time of
peak traffic it can be vulnerable to failure but by adding
the concept of load balancer we can distribute the
traffic for preventing from failure in any case by having
capabilities such as- scalability, availability, easy to
use, fault tolerant, quick response time.

Mobile agent technology offers a new computing
paradigm in which an autonomous program can migrate
under its own or host control from one node to another
in a heterogeneous network. In other words, the
program running at a host can suspend its execution at
an arbitrary point, transfer itself to another host (or
request the host to transfer it to its next destination) and
resume execution from the point of suspension is called
mobile agent (MA)[2]. MA supports a variety of web-
based distributed applications namely: systems and
distributed information management[3] and information
retrieval [4]. Other areas where MAs are seen as offering
potential advantages- wireless or mobile computing[5,6]
dynamic deployment of code, thin clients or resource-

J. Computer Sci., 2 (4): 337-346, 2006

 338

limited devices, personal assistants, and MA-based
parallel processing[7, 8].

Traditional load balancing approaches on
distributed web servers are implemented based on
message passing paradigm[1,24]. MA technology
provides a new solution to support load balancing on
distributed web servers. They can separate the
functionalities in the design of a web service system. In
traditional message-passing based load balancing
approaches, the server service module mixes the main
functionalities of web service with the maintenance
functions such as load balancing. Whenever a new load
balancing policy is introduced, the server module has to
be rewritten. Using MAs, on the other hand, the
maintenance functions can be separated from the
service module and be implemented separately in the
MAs. Therefore, a mobile agent based approach is
flexible to incorporate new load balancing polices for
various web server systems. MAs produce low network
traffic. In message-passing based approaches, the web
servers have to exchange messages of load information
periodically in order to make decisions on load
balancing. The mod_backhand[9] is such a load-
balancing module for the Apache web server[9,27]. The
message exchanges result in high communication
latency and thus deteriorate the performance of a web
service system. Differently, a MA can migrate to a
target server and interact to specified objects on the site.
The on-site interaction eliminates the direct message
exchanges between the servers. The network traffic and
communication latency can be largely reduced. MAs
support asynchronous and autonomous operations. The
servers can dispatch MAs individually that travel
independently between the servers to perform various
operations. A MA can encapsulate load balancing
policies and travel to other servers where it can make
decision on load distribution according to the up-to-date
states of the servers. Due to the merits of low network
traffic and quick response time, MAs can strengthen the
scalability of a web server system. They can also
improve the reliability of web servers by bringing client
requests from a faulty server to an active one.

In this study we present a dynamic load-balancing

framework called Platform for Load balancing (PLB). It
uses MAs to implement reliable and scalable load
balancing on distributed web servers. PLB is
implemented on PMADE (A Platform for Mobile
Agent Distribution and Execution)[2,11]. The load
balancing schemes based on the PLB can achieve better
performance than the message passing based
approaches. The performance evaluation demonstrates
that the PLB framework provides a foundation to
develop efficient load balancing schemes on wide range
of web server systems from cluster to the open network
(Internet) and the results of a comparison of PLB, with
some existing ones, is also reported.

OVERVIEW OF PMADE

Figure 1 shows the basic block diagram of
PMADE. Each node of the network has an Agent Host
(AH), which is responsible for accepting and executing
incoming autonomous Java agents and an Agent
Submitter (AS)[10], which submits the MA on behalf of
the user to the AH.

A user, who wants to perform a task, submits the
MA designed to perform that task, to the AS on the user
system. The AS then tries to establish a connection with
the specified AH, where the user already holds an
account. If the connection is established, the AS
submits the MA to it and then goes offline. The AH
examines the nature of the received agent and executes
it. The execution of the agent depends on its nature and
state. The agent can be transferred from one AH to
another whenever required. On completion of
execution, the agent submits its results to the AH,
which in turn stores the results until the remote AS
retrieves them for the user.

The AH is the key component of PMADE. It
consists of the manager modules and the Host Driver.
The Host Driver lies at the base of the PMADE
architecture and the manager modules reside above it.
It is the basic utility module responsible for driving the
AH by ensuring proper co-ordination between various
managers and making them work in tandem. Details of
the managers and their functions are provided in[11].
PMADE provides weak mobility to its agents and
allows one-hop, two-hop and multi-hop agents[12].
PMADE has focused on Flexibility, Persistence,
Security, Collaboration and Reliability[2].

Mobile Agent’s Result

Mobile Agent with Task

User Agent
Submitter

Manager Modules
Host Driver

Agent Host

Fig. 1: Block Architecture of PMADE

ARCHITECTURE OF PLATFORM
FOR LOAD BALANCING

Load balancing provides up to date information

about the load on servers, which result in high network
traffic in web servers. For providing reliable solution
we have developed a MA based framework called
Platform for Load Balancing (PLB) as shown in Fig. 2.
PLB architecture is divided into four sections- interface,
agents, policy and database. The interface is used for

J. Computer Sci., 2 (4): 337-346, 2006

 339

the communication with external world via PMADE. It
maintains a buffer. The buffer is used for storing the
messages temporarily whenever communication
delayed arises. It also helps to provide fault tolerance to
the message on system failure. For providing the
security to messages it uses PMADE security[12]. We
have considered few assumptions and identified some
policies & agents in the development of the PLB which
are discussed next.

ASSUMPTIONS

We have considered the following assumptions in
the development of the PLB:

• Servers taken into an account are heterogeneous in

nature. They can have different hardware
configuration, operating system and processing
power.

• Each sever is capable of processing the client
request and cooperate with each other in order to
share the workload.

• To provide dynamic capability to the server
capacity can be changed due to the variation of
workload.

• A MA can be proprietary to a server where it is
created and perform dedicated operations for the
owner.

• A MA can be shared among a group of servers to
act on behalf of these servers. MAs can interact
with each other by direct data exchange.

• A MA can interact using the stigmergy technique
in which the MAs can collect the information from
the traces left in the environment by one another. A
MA can gather the information placed on a server
by other MAs who have previously visited there.
The stigmergy is an indirect method for the
interaction between MAs, which can reduce the
network traffic and achieve quick decision-making.

POLICY

We have defined four policies according to the

need of agents we have founded. These policies are
governed by system administrator and updated
according to the load balancing schemes.

Information Gathering Policy (IGP) specifies the
strategy for the collection of load information including
the frequency and method of information gathering.
The frequency is determined based on a tradeoff
between the accuracy of load information and the
overhead of information collection.

Initiation Policy (PI) determines who starts the load
balancing process. The process can be initiated by an
overloaded server (called sender-initiated) or by an
under-loaded server (called receiver-initiated).

Server Selection Policy (SSP) selects an
appropriate server based on the load information to
which the workload on an overloaded server can be
reallocated. Different strategies can be applied to the
selection. For example, the find-best strategy selects the
least loaded server among all servers and this strategy
selects the first server whose load is below a threshold.
The least loaded server has been taken into best
category as it has very less load and can be selected as
an appropriate server for handling the request and
responding. In find-first, we don’t take into account less
or overloaded factor but threshold value results in
providing the appropriate selection of the server. The
very first server who is having the less threshold value
will be taken into consideration.

Job Movement Policy (JMP) determines when job
reallocation should be performed and which job(s) (i.e.,
client requests) should be reallocated. Job reallocation
is activated by a threshold-based strategy. In a sender-
initiated method, the job movement is invoked when
the workload on a server exceeds a threshold. In a
receiver-initiated method, a server starts the process to
fetch jobs from other servers when its workload is
below a threshold. The threshold can be a pre-defined
static value or a dynamic value that is assessed at
runtime based on the load distribution among the
servers. When job reallocation is required, the
appropriate job(s) will be selected from the job queue
on a server and moved to another server. Adequate
administration is required for implementing this policy
as threshold value is being determined statically and
dynamically.

AGENTS

We have founded three agents, out of which two
are mobile agents and one is stationary. A brief look of
these agents is as follows:

Server Management Agent (SMA) is a stationary
agent and sits at a server, responsible for monitoring the
workload on local server and executing JMP if
required. In sender-initiated policy, when the server is
overloaded, SMA initiates the job reallocation process.
It selects the jobs from the local job queue and
dispatches them to the other servers. It works like a
policy manager.

Load Managing Agent (LMA) is a MA responsible
for information gathering. It travels around the servers,
collects the load information, and meanwhile
propagates the load information to the servers. It can be
either a proprietary or a shared agent. A proprietary
agent works for a single server and hence collect load
information regarding one server only whereas shared
server is associated to all. Its responsibility is to collect
the load information about all the servers.

Job Managing Agent (JMA) activated by the SMA
whenever an overload situation arises on web server. A

J. Computer Sci., 2 (4): 337-346, 2006

 340

JMA executes the SSP to select another server to
receive the reallocated job. In a message-passing based
approach, such a negotiation involves multiple rounds
of message exchange between the source and
destination servers that result in high network traffic
and job movement latency. On contrary, the job
redirection on the fly conducted by MAs can efficiently

accomplish job redirection. Then, the JMA carries the
reallocated job to that server and negotiates with it for
the acceptance of the job. JMA is an optional
component in the PLB. In a load-balancing scheme
without the JMA, the SMA is responsible for selecting
the destination server and the job reallocation is
fulfilled by direct interaction between the SMAs.

Fig. 2: Architecture of PLB

IMPLEMENTATION

We have assumed that the open network
environment is divided into network domains, regions
(sub networks) and agent hosts (local sites of the
clients) as shown in Fig. 3. There is a domain
management server (DMS) in each network domain,
which has information about all other DMSs in the
global network. It also has information about all the
regions in the network domain. DMS is responsible for
maintaining uniqueness of names of regions, which are
part of that network and helps to identify the region in
which an agent is present. Each DMS maintains a
Domain Agent Database (DAD), for information about
the current location of all agents which were created in
that domain or transited though it. Each entry of DAD
of the form ()rFDA ,, represents that agent A (LMA
or JMA) can be found in region r of the foreign
network domain FD , or it has transited from that
network domain or region. For DAD and RAD, the
primary key is the agent name A (LMA or JMA). With
the help of these naming schemes we check the fault
tolerance by maintaining the status report of MA which
keep the updated information of all the agents[26]. Agent
migration from one network domain to another is
always accomplished through the DMS. During inter
domain migration the agent has to update location
information in the DAD of the present domain and
register in the DAD of the target network domain.
Every region maintains information about all AHs that
are part of that region. An AH can be a member of an
existing region or can start in a new region. In each
region, a Region Agent Database (RAD) is present at an
AH which runs at the gateway of a sub network. It

contains location information about each agent that was
created in that region or transited through it. This host
acts, as the Agent Name Server (ANS)[29], which
manages the RAD. ANS, is responsible for maintaining
uniqueness of names of all MAs, created in that region.
When a new agent is created, the user assigns a name to
it by registering in the RAD of its birth region. Each
entry of RAD of the form ()NilrA ,, represents the
region r where agent A (LMA or JMA) was found or
transited through it. Similarly ()AHNilA ,, represents
an agent A (LMA or JMA), which exists in that region
at AH . For intra region migration, it has to update its
location information in the RAD of that region. This is
an Intra Region Location Update. During inter region
migration, the agent has to update the location
information in the RAD of present region and register
in the RAD of the target region, specifying the host in
that region to which it is migrating.

Architecture of the PLB based load-balancing
scheme, which we need to install at the gateways for
cluster use of two types of the agents specified in PLB,
i.e., SMA and LMA. The scheme does not use JMA.
Job reallocation is accomplished by the SMAs. In this
scheme, every server within region runs an SMA and an
LMA. The LMA is proprietary to a home server. In a
cluster, an LMA can traverse all servers in short time
latency. The SMA executes the IGP, PI, and JMP. It
monitors local workload and dispatches the LMA to
collect load information when required. The SMA
maintains a log of global load information on local
server. Each entry in the log records the load
information of a server at a certain time. The load-
balancing scheme adopts a sender PI. Once the load
exceeds a threshold, the SMA activates the LMA to

PMADE

I
N
T
E
R
F
A
C
E

Job Managing
Agent (JMA)

Policy

Agents

Load Managing
Agent (LMA)

Server Managing
Agent (SMA)

Job Movement Policy

Server Selection Policy

Initiation Policy

Information Gathering Policy

Database

J. Computer Sci., 2 (4): 337-346, 2006

 341

collect the load information. A dynamic threshold is
specified, that is the average load on all servers
calculated based on the log of global load information.
The LMA traverses in the cluster to retrieve the updated
values of loadcpu _ , connectno _ and memfreee _
on each server and calculate the load metrics.
Meanwhile, the LMA selects an appropriate server
(called best server) to accept the job reallocation from
the home server. The PLB SSP adopts two strategies:

Best-fit: The LMA visits every server and selects the

server who has the lowest load as the best
server as well as the server who is fastest in
processing the request than the slower one.
When it returns to its home server, the LMA
updates the log of global load information

and reports the best server to the home
server.

First-fit: The LMA pauses at the first server whose
load is below a threshold. The LMA selects
this server as the best server and reports this
selection and the up-to-date load
information to the home server. The LMA
remains at the best server, not proceeding to
successive servers. Later, the LMA will
restart its travel from this server when the
home server activates it again. This strategy
allows the LMA to perform round-robin
traversal in the cluster so that the workload
can be fairly distributed to the servers.

Network Domain 1

DMS

Web Server
(Gateway)

Client (Site)

Subnetwork/
Region

AH

DAD

RAD

Network
domain

Region

LMA

SMA

ma

JMA

ma

PI

IGP

JMP

SSP

SMA

ma

LMA

JMA

ma

PI

IGP

SSP

JMP

Internet

Fig. 3: Load Balancing of Cluster & Open Network

In the open network, the web servers are
geographically distributed at different sites as shown in
Fig. 3. If the load balancing scheme for such a system
uses the same strategy as for a cluster, the proprietary
LMA needs to spend high time latency to traverse all
servers and the load information may become obsolete
when the LMA reports to the home server. Thus, the
log of global load information on each server cannot
precisely reflect the current states of all servers.
Consequently, the load reallocation cannot assure load
balancing in the system. When a home server transfers
a job to the best server, the latter probably has been
overloaded and has to redirect the job to another best
server. Due to the stale load information, the job
redirection may be transferred across a chain of servers
over a long distance until reaching an appropriate server
to accept it. Thus, the response time will be greatly
prolonged. To resolve these problems, a different load-
balancing scheme is designed for open network. For

balancing the load on open network, PLB utilize shared
LMA to collect and update the load information and
dispatches the JMA to deliver jobs to the best server for
this scheme. The JMA can perform job redirection on
the fly in case the target server is overloaded. Every
server within network domain runs a SMA. The SMA is
responsible for executing the PI and JMP, but the SSP
is handed over to the JMA. Each server receives and
processes client requests independently. When a server
is overloaded, the SMA initiates the load balancing
process by dispatching a JMA to transfer some job to
the best server. The SMA selects the client requests
from local job queue for reallocation.
In open network, the job selection criterion should also
take into account the latency of job transfer. A job on
server 1S will be reallocated to a remote server 2S

only when
2211 SSSS ttt +> , where

1St and
2St are the

expected waiting times of the job on 1S and 2S ;

J. Computer Sci., 2 (4): 337-346, 2006

 342

21SSt is the communication latency of delivering the job

from server 1S to server 2S . The latency is estimated
based on the distance between the servers. The JMA
executes the SSP to select a best server to receive the
job using the log of global load information. The server
selection can adopt the find-best or find-first strategy.
Then, the JMA delivers the job to the best server and
negotiates with it on the site. If the best server has also
been overloaded, the JMA can find another server to
receive the job on the fly using the up-to-date load
information that it has collected on the way. The JMA
conducts the negotiation and selection of alternate
receiver (if required) on behalf of the home server. The
homes server can proceed to process other jobs after it
has dispatched the JMA. This feature can improve the
flexibility and efficiency of the load-balancing scheme.
A shared LMA keeps on traveling around the servers to
collect and propagate the load information. When it
arrives on a server, the LMA collects the load
information of the server and updates the log of global
load information on the server using the load
information that it has collected on the way. Therefore,
the LMA can continuously propagate the load
information to distributed servers. A PLB integrated
web server system can dispatch one or more LMAs to
collect load information in the system. An LMA takes
long time to collect load information on all servers on
open network. Multiple LMAs can be used to speed up
the global information collection and updating. Each
LMA travels within a domain of the network. The load
information in different domains can be exchanged at
the intersection points between the domains. Each LMA
traverses in one of the domain. They exchange load
information on the two common servers on the border
of domains using the stigmergy technique and then
propagate the global information to all servers. The use
of multiple LMAs can accelerate the information
update and improve the accuracy of global load
information.

PERFORMANCE STUDY

To study the performance of the PLB we have
implemented it on 10/100/1000 Mbps switched LAN
that connects 850 workstations and personal computers,
and is used by about 500 hundred researchers and
students. Machines are grouped into eight different
networks with their own servers and servers of each
network are connected to the main server of the
institute. For each network there are 100 nodes which
are running clients, eight web servers running nodes
and one DMS equipped. MA enabled web server cluster
is implemented on a cluster of PCs (P-4, 3 GHz
machines) using PMADE and j2sdk1.5.1. The AS node
and agent host nodes have 256 MB main memory,
while the web server host has 512 MB, we have used
j2sdk 1.5.1 Java Virtual Machine with native thread

support. Among them, eight PCs are configured as web
servers and other PCs are assigned as clients. LOAD

BALANCING METRICS

The load balancing metrics is the parameter that

determines how to balance the client load across
servers. We can fine-tune how traffic is distributed
across multiple real servers by selecting one of the
following load balancing metrics.

Least Connections: Sends the request to a server that
currently has the fewest active connections with clients.
For sites where a number of servers have similar
performance, the least connections option smoothes
distribution if a server gets bogged down. For sites
where the capacity of various servers varies greatly, the
least connections option maintains an equal number of
connections among all servers. This results in those
servers capable of processing and terminating
connections faster receiving more connections than
slower servers over time.

Round Robin: Directs the service request to the next
server, and treats all servers equally regardless of the
number of connections or response time. For example,
in a configuration of four servers ()4321 ,,, SSSS , the
first request is sent to 1S , the second request is sent to

2S , the third is sent to 3S , and so on. After all servers
in the list have received one request, assignment begins
with 1S again. If a server fails, PLB avoids sending
connections to that server and selects the next server
instead.

Weighted: Assigns a performance weight to each
server. Weighted load balancing is similar to least
connections, except servers with a higher weight value
receive a larger percentage of connections at a time. We
can assign a weight to each server and this weight
determines the percentage of the current connections
that are given to each server. The default weight is 0.

Server Response Time: Selects the server with the
fastest response time. The SI (Server Iron), the server
that acts as an intermediate for forwarding the requests
among multiple servers unseen by end user calculates
the response time based on TCP SYN and TCP SYN
ACK packets[28].

EVALUATION

The PLB-based load-balancing scheme is evaluated

on the cluster by comparing its performance with the
mod_backhand module[9] (a load balancing approach
based on message-passing paradigm). The AS is used to
generate client requests. It is used to measure the
performance of web server software and hardware

J. Computer Sci., 2 (4): 337-346, 2006

 343

products on multiple web clients to create a load on
each web server. Performance of a load-balancing
scheme is assessed in the following criteria:

Load distribution: the load on each of the servers is
measured at different time instants. The length of its job
queue denotes the load on a server. The average
deviation of the load distribution over all servers is
calculated to show the effect of load balancing.

System throughput: the overall throughput of the web
server cluster, measured in the number of requests
processed per second.
Network traffic: the overall communication overhead
in the cluster, measured in the total number of data
(bytes) transferred in the communication.

Every server receives the client requests
independently. If a server is overloaded, it can redirect
an incoming request to another server. Table 1
compares the load distribution generated by the PLB
scheme and the mod_backhand module on eight servers
at different moment. Table 1 also includes the average
deviation of load on the eight servers. It shows that the
PLB scheme has lower load deviation than the
mod_backhand module in most of the cases. It means
PLB can distribute client requests more evenly onto the
web servers. The average of overall mean deviation in
Table 1 is the average of mean deviations at all
moments. The average of the overall mean deviation of
the PLB scheme is lower than the mod_backhand
module that verifies the better performance of the PLB
scheme in supporting load balancing.

Table 1: Load distribution on eight servers

Mod_backhand (message passing load balancing)
Mean Deviation Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7 Server 8 Time in min
25.88 81 49 56 91 93 95 64 64 5
14.12 68 93 93 67 79 68 83 88 10
24.38 79 48 89 48 82 96 66 73 15
21.88 71 54 54 74 83 56 90 56 20
16.75 92 93 69 70 95 63 74 78 25
20.62 53 78 89 75 95 99 73 65 30
11.75 99 76 94 75 85 87 95 80 35
3.25 97 92 97 98 97 98 97 98 40
13.88 79 96 71 76 79 78 99 71 45
7.62 93 97 99 91 80 85 91 95 50
15.5 92 79 97 84 70 95 92 83 55
1.38 97 98 99 97 95 97 99 99 60
Over all mean deviation =14.75083333
PLB based load balancing
Mean Deviation Server 1 Server 2 Server 3 Server 4 Server 5 Server 6 Server 7 Server 8 Time in min
13.62 90 97 89 82 90 74 77 76 5
17 71 64 66 92 91 72 88 99 10
21.62 79 76 74 72 92 87 66 57 15
5.38 85 92 97 96 92 87 90 87 20
17.88 89 76 80 88 64 83 71 98 25
12.38 74 76 76 97 78 94 80 83 30
7.38 92 81 84 84 98 96 95 95 35
9.62 97 92 88 86 98 82 91 89 40
19.38 78 96 78 81 71 59 69 89 45
21.25 63 94 63 64 57 63 56 67 50
4.12 98 96 98 98 88 88 95 90 55
6.75 85 99 92 83 85 91 90 99 60
Over all mean deviation =13.03166667

Figure 4 shows the system throughput of two

approaches. The throughput of the PLB scheme is close
to the mod_backhand in all case. As the prototype of
PLB scheme is implemented in Java, the high execution
overhead of Java program results in the lower
throughput of the PLB scheme.

Figure 5 compares the network traffic of PLB and
message based schemes. It represents load of on eight
servers, each dot for one server. PLB MAs generate
lower communication overhead than the message
passing in the mod_backhand module.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800

Number of Clients

R
eq

ue
st

s/
se

c

PLB

M od_backhand

Fig. 4: System throughput

J. Computer Sci., 2 (4): 337-346, 2006

 344

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10

Number of Servers

N
et

w
or

k
Tr

af
fic

(M

by
te

s/
5m

in
)

PLB
mod_backhand

Fig. 5: Network Traffic (Average of 1 hour)

 Figure 6 compares the system throughputs of the
PLB load-balancing scheme using one shared LMA and
the case without load balancing. The result shows that
the PLB scheme can obviously improve the system
throughput when increasing the number of servers. In
the latter case, the processing capacities of the servers
are wasted and no improvement.

0
5

10
15
20
25
30
35
40
45
50

0 10 20 30 40 50 60

Number of Servers

R
eq

ue
st

s/
se

c

Without load balancing
PLB Approach

Fig. 6: System throughputs of the PLB scheme and the
case without load balancing

0
2
4
6
8

10
12
14
16
18

0 8 16 24 32 40 48 56 64
Number of Servers

R
eq

ue
st

s/
se

c

2 LMA
4 LMA
8 LMA

Fig. 7: System throughputs with two LMA’s are
working in one network.

Figure 7 depicts the system throughputs using two
to eight LMAs the effect of which becomes apparent on
56 servers and more. It shows that the use of multiple
LMAs can enhance the throughput on larger number of
web servers. Among the three cases, eight LMAs can

achieve the highest performance and two LMA presents
the lowest performance.

ANALYSIS

The SMA maintains a log of global load
information on local server. Each entry in the log
records the load information of a server at a certain
time. Once the load exceeds a threshold, the SMA
activates the LMA to collect the load information. A
dynamic threshold is specified, that is the average load
on all servers calculated based on the log of global load
information. The LMA traverses in the cluster to
retrieve the updated values of server workload, number
of active connections and free memory space, on each
server and calculate the load metrics. Meanwhile, the
LMA selects an appropriate server (called best server)
to accept the job reallocation from the home server. The
load on a server is measured as:

memfreewT
nwloadcpuwLoad _**_* 321 ++= (1)

Where
loadcpu _ is the workload on the server, measured in

the length of job queue;
n is the number of active connections on the

server;
T is the maximum number of connections

allowed to the server;
memfree _ is the percentage of free memory space;

321 ,, www are the weights of the parameters,
1321 =++ www .

The performance can be increased if it consists of

minimum required transaction throughput and
maximum acceptable transaction latency. The minimum
throughput (transaction rate) of transaction j for
service i required to support this usage profile is given
by equation (2).

 iiijij tNnT *= (2)

 Where

ijT is the transaction rate of transaction j for

service i .

ijn is the number of transactions ()j per user

session for service i .
iN is the number of users concurrently using

service i at the peak time.

it is the user session time for service i .

From equations (1) and (2) we are able to compute

total load from all the clients connected with web server
at any time t , i.e.,

ijtL TLoadS */ = (3)

J. Computer Sci., 2 (4): 337-346, 2006

 345

By putting values of load from (1) and ijT from

(2) into (3) we get (4) which is used for finding load on
any server at any time.

()

()iiij

tL

tNn

memfreewT
nwloadcpuwS

**

*** 321/ ++=
 (4)

RELATED WORK

To improve the efficiency of web services, a group

of web servers can be deployed to provide web service
collectively to the clients. Load balancing is
indispensable for a web service system to assure even
distribution of incoming requests on the web servers.
One of the most compelling problems that arise on
distributed web server clusters is the selection of an
efficient load balancing policy. The load balancing
policy should aim for evenly utilized servers in the
cluster and a minimum response time for the processed
requests. Under standard methodology for load
balancing server selection is done randomly[1]. The
client can select one of the web server in random or
choose an appropriate one using an intelligent selection
mechanism, e.g., Netscape Navigator browser[13]. The
random selection cannot guarantee load balancing and
server availability. Intelligent server selection can be
implemented by java applets running on the client side
to detect the states of the server and the network delay.

A DNS (Domain Name Server) is the routing
mechanism for distributed web servers. It selects one of
the servers by mapping the URL to the IP address of a
web server. It leads to bottleneck and has limited
control on the request routing due to the intervention of
intermediate servers that cache the URL to IP address
mapping between the clients and the DNS, e.g., Cisco
Distributed Director[14]. Round robin is widely used
because it is easy to implement and implies only a
minimum overhead. A variation of round robin policy
is the weighted round robin policy[15]. With weighted
round robin the incoming requests are distributed
among the servers on a round robin fashion, weighted
by some measure of the load on each of the servers.
In[16] author presented Tomcat 5 server which facilitates
a rules-based load balancer application based on round
robin and random algorithms. Dispatching techniques
whether implemented by network address translation or
other methods (such as HTTP redirection), introduce
higher overhead than does network load balancing. This
limits throughput and restricts performance. Also, the
entire cluster's throughput is limited by the speed and
processing power of the dispatch server.
SUNSCALAR[17] provides load balancing by using
both approaches, i.e., Dispatcher and Round Robin.
In[18] author presented locality aware policy. This
policy improves the cluster's performance if
considering the cache content of the servers, which
does the distribution of requests. A request is served
much faster if it is fetched from the cache of a server
than from the local disk.

Other policies incorporate knowledge of the
workload variability into the load balancing policy [19,20,

21]. In [19] author presented SITA-E (Size Interval Task
Assignment with Equal Load), which assigns the
incoming requests into servers based on the request
size, assuming that the requested file sizes follow a
bounded Pareto distribution.

DC-Apache system[27] demonstrated its ability to
achieve high performance and scalability by effectively
distributing load among a group of cooperating Apache
servers and by eliminating hot spots and performance
bottleneck with replicated documents. A framework for
load balancing using MA named EALBMA (Efficient
and Adaptive Load Balancing based on MA)[28] has
been made in which a novel algorithm for updating load
information partially based on MA called ULIMA.MA
support load balancing in parallel and distributed
computing[7,8], e.g., Traveller[22] using resource broker.
It implements parallel application such as L. U.
Factorization and sorting. MESSENGERS[5] is a system
for general-purpose distributed computing based on
MAs. It supports load balancing and dynamic resource
utilization Flash [23] is a framework for the creation of
load balanced distributed application in heterogeneous
cluster system.

The load balancing approaches for distributed web
servers involve frequent message exchanges between
the request distributors and the servers or clients to
detect and exchange load information. These message
exchange leads to network traffic. But PLB presented in
this paper can resolve these problems. In PLB running
web servers whenever load on a server exceeds from a
threshold value, agents are activated dynamically
according to the topology of the network for the load
balancing on overloaded servers.

CONCLUSION AND FUTURE WORKS

In this study we have presented design and
implementation of PLB, which is implemented on
PMADE. The PLB is a flexible foundation to
implement different load balancing schemes for
scalable distributed web server systems. The
performance evaluations show that the PLB based
approach outperform in comparison to message passing
paradigm when large number of servers and client
requests are involved. The objectives of this paper is to
develop an analytical model for the stochastic dynamics
of delay-limited distributed systems and utilize it to
develop load-balancing policies that mitigate the
performance degradation (or failure) caused by
communication and load-transfer delays. In the future
we define more accurate measurements of load to
provide an accurate assessment for the load balancing
schemes and improve the performance of the PLB and
find a comparison with more existing system and
develop a benchmark. The measurements will take into
account the data size, fault tolerance, and
communication cost. We will combine the properties of
the client requests and the heterogeneous features of
web servers to determine a load distribution strategy.
For example, if a request needs memory-intensive
service, the MAs will switch to use a load measurement
that puts higher weight on memory space. Thus, a
server with large spare memory space can be selected to
process the request.

J. Computer Sci., 2 (4): 337-346, 2006

 346

REFERENCES

1. Cardellini, V. and Colajanni, M., Dynamic Load

Balancing on Web-server Systems, IEEE Internet
Computing, 3, pp. 28-39, 1999.

2. Patel, R. B., Design and Implementation of a
Secure Mobile Agent Platform for Distributed
Computing, PhD Thesis Department of Electronics
and Computer Engineering, IIT Roorkee, India, Aug. 2004.

3. Jonathan Dale, A Mobile Agent Architecture for
Distributed Information Management, Ph.D. thesis,
Univ. of Southampton, Sept. 1997.

4. Haverkamp, D. S. and Gauch, S., Intelligent
Information Agents: Review and Challenges for
Distributed Information Sources, in Journal of the
American Society for Information Science, 49(4):
304-311, 1998.

5. Chess, D., B. Grosof, Harrison, C., Levine, D.,
Parris, C. and Tsudik, G., Itinerant agents or
mobile computing, IEEE Personal Communications
Magazine, 2, pp. 34-49, Oct. 1995.

6. Imielinsky, T. and Badrinath, B. R., Wireless
Computing: Challenges in Data Management,
Communication of the ACM, 37(10): 18-28, 1994.

7. Al-Jaroodi, J., Mohamed, N., Jiang Hong and
Swanson, D., An Agent-Based Infrastructure for
Parallel Java on Heterogeneous Clusters, in
Proceedings of the IEEE International Conference
on Cluster Computing, IEEE, Nov. 2002.

8. Al-Jaroodi, J., Mohamed, N., Jiang Hong and
Swanson, D., A Middleware Infrastructure for
Parallel and Distributed Programming Models on
Heterogeneous Systems, IEEE Transactions on
Parallel and Distributed Systems, Special Issue on
Middleware, 14(11): 1100-1111, Nov. 2003.

9. Schlossnagle, T., The Backhand Project: Load
balancing and Monitoring Apache Web Clusters,
in Proceedings Apache Con Europe 2000, London,
Britain, mod_backhand,
<http://www.backhand.org/mod_backhand/>

10. Patel, R. B. and Garg, K., A New Paradigm for
Mobile Agent Computing, WSEAS Transaction on
Computers, Issue 1, Vol. 3, pp. 57-64, Jan. 2004.

11. Patel, R.B. and Garg, K., PMADE – A Platform for
mobile agent Distribution & Execution, in
Proceedings of 5th World MultiConference on
Systemics, Cybernetics and Informatics (SCI2001)
and 7th International Conference on Information
System Analysis and Synthesis (ISAS 2001),
Orlando, Florida, USA, July 22-25, 2001, Vol. IV,
pp. 287-293.

12. Patel, R.B. and Garg, K, A FLEXIBLE
SECURITY FRAMEWORK FOR MOBILE
AGENT SYSTEMS, Control and Intelligent
Systems, 33(3): 175-183, 2005.

13. MoseDale, D., Foss, W. and McCool R., Lesson
Learned Administering Netscape’s Internet Site,
IEEE Internet Computing, 1, pp. 28-35, 1997.

14. CiscoDistributedDirector,
<http://www.cisco.com/warp/public/cc/pd/cxsr/dd/i
ndex.shtml>

15. CiscoSystemsInc.LocalDirector.
<http://www.cisco.com>.

16. Clustering and Load Balancing in Tomcat 5, Part 1
by Srini Penchikala,
<http://www.onjava.com/pub/au/1418>
03/31/2004.

17. Singhai, A., Lim, S. B. and Radia S. R., The
SunSCALR Framework for Internet Servers, IEEE
FaultTolerant Computing Systems, Jun 1998.

18. Cherkasova, L., FLEX: Design and Management
Strategy for Scalable Web Hosting Service. HP
Laboratories Report No. HPL-1999-64R1, May
1999.

19. Harchol-Balter, M., Crovella, M.E. and Murta, C.
D. , On Choosing a Task Assignment Policy for a
Distributed Server System, in Proc. of Performance
Tools '98, LNCS 1469, pp. 231-242, 1998.

20. Zhu, H., Tang, H. and Yang, T., Demand-driven
Service Differentiation for Cluster-based Network
Servers, in Proc. of INFOCOMM'2001, April
Alaska.

21. Andersen, D., Yang, T. and Ibarra, O., Towards a
Scalable Distributed WWW Server on Workstation
Clusters, Journal of Parallel and Distributed
Computing, 1997.

22. C. -Z. Xu and Wims, B., Mobile Agent Based Push
Methodology for Global Parallel Computing,
Concurrency and Computation: Practice and
Experience, 14 (2000), pp. 705-726.

23. Obeloer, W., Grewe, C. and Pals, H., Load
Management with Mobile Agents, in Proc. 24th
EUROMICRO Conference (EUROMICRO 98),
Vol. 2, Vasteras, Sweden, 1998, pp. 1005-1012.

24. Dias, D., Kish, W., Mukherjee, R. and Tewari, R.,
A Scalable and Highly Available Web-Server, in
Proc.41st International Computer Conference
(COMPCON’96), IEEE Computer Society, San
Jose, CA, 1996, pp. 85-92.

25. W. Tang, M. Mutka, Load Distribution via Static
Scheduling and Client Redirection for Replicated
Web Servers, in Proc. 1st International Workshop
on Scalable Web Services (in conjunction ICPP
2000), Toronto, Canada, 2000, pp. 127-133.

26. Patel, R. B. and Mastorakis, Nikos, FAULT-
TOLERANT MOBILE AGENTS COMPUTING,
WSEAS Transactions on Computers, Issue 3, Vol.
4, March 2005, pp. 287-314.

27. Quanzhong Li, Distributed Cooperative Apache
web server, WWW10, May 1-5, 2001, Hong Kong,
ACM 1-58113-348-0/01/0005.

28. Server Iron Chassis L4-7 Software Configuration
Guide.
<http://www.foundrynet.com/services/documentati
on/sichassis/management.html>

29. Terry, D.B., Distributed Name Servers: Naming
and Caching in Large Distributed Computing
Environments, Ph.D. thesis, University of
California, Berkely, 1985. Available as UCB/CSD
Tech. Rep 85-228 and as Xerox PARC Tech. Rep.
CSL-85-1.

