
Journal of Computer Science 2 (1): 33-47, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Samuel Pierre, Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079,
Station Centre-ville, Montreal, Quebec, H3C 3A7, Canada, Tel: (514) 340-4711 ext. 4685,
Fax: (514) 340-5159

33

Redundancy Schemes for High Availability Computer Clusters

Christian Kobhio Bassek, Samuel Pierre and Alejandro Quintero

Mobile Computing and Networking Research Laboratory (LARIM)
Department of Computer Engineering, École Polytechnique de Montréal, C.P. 6079

Station Centre-ville, Montreal, Quebec, H3C 3A7, Canada

Abstract: The primary goal of computer clusters is to improve computing performances by taking
advantage of the parallelism they intrinsically provide. Moreover, their use of redundant hardware
components enables them to offer high availability services. In this paper, we present an analytical
model for analyzing redundancy schemes and their impact on the cluster’s overall performance.
Furthermore, several cluster redundancy techniques are analyzed with an emphasis on hardware and
data redundancy, from which we derive an applicable redundancy scheme design. Also, our solution
provides a disaster recovery mechanism that improves the cluster’s availability. In the case of data
redundancy, we present improvements to the replication and parity data replication techniques for
which we investigate the availability of the cluster under several scenarios that take into account,
among other things, the number of replicated nodes, the number of CPUs that hold parity data and the
relation between primary and replicated data. For this purpose, we developed a simulator that analyzes
the impact of a redundancy scheme on the processing rate of the cluster. We also studied the
performance of two well-known schemes according to the usage rate of the CPUs. We found that two
important aspects influencing the performance of a transaction-oriented cluster were the cluster’s
failover and data redundancy schemes. We simulated several data redundancy schemes and found that
data replication offered higher cluster availability than the parity model.

Key words: Computer cluster, high availability, redundancy scheme, performance evaluation, fault

tolerance

INTRODUCTION

 Computer clusters can be generically described as
being composed of hundreds of heterogeneous
processors (or processing units) in which multiple
queues are used for query processing and that share a
single address space[1-3]. At first, clusters where mainly
used in high performance computing (HPC), but as
their prices declined other applications where found. As
an example, the telecommunications industry is using
computer clusters to offer high availability services. A
cluster is characterized by a single entry point, a unique
file system hierarchy, a centralized management and
control of processes, a cluster-wide shared memory, a
user interface and finally, process migration
mechanisms. Furthermore, clusters integrate a resource
management (RMS) layer that distributes the workload,
mainly applications, processes and query, over multiple
processors.
 In the particular case of data server clusters, it is of
the utmost importance that input/output (I/O) operations
be optimized. Techniques such as wide striping[4-6]
enable parallel access to an object whose data blocks
are distributed over several processors. This technique
is illustrated in Fig. 1.

Fig. 1: Wide striping principle

 The main goals of a parallel system composed of
an architecture and management algorithms are to offer
performance, scalability, high processing throughput
and high service availability at low cost. In
telecommunications, the goal is to reach 7x9s service
availability which amounts to about 30 seconds of
service interruption per year[7]. Unplanned service
interruptions are a consequence of failures caused by
hardware, operating system, applications, from errors
caused by data access, backup or human manipulations,
or from climatic disasters or terrorist attacks, among
others[8-10]. The first step in the design of a high
availability system (HAS) is to provide a reliable
environment. The system must detect and diagnose
errors rapidly and apply corrective procedures
intelligently. Such an environment can reach up to 3x9s
service availability, that is, less than 30 h of service

J. Computer Sci., 2 (1): 33-47, 2006

 34

interruption per year[10]. The critical step in failure
recovery is the failover mechanism which redistributes
the workload of the failed processor over other
processors in the cluster. To be effective, this
mechanism needs to be transparent and automatic. In
other words, it must not require human intervention.
Computer clusters lend themselves particularly well to
the concept of failover because of their intrinsically
redundant architecture.
A redundancy scheme (RS) is defined by the type of
redundancy it provides the system, which can be either
data or hardware and by the redundancy management
algorithms it implements. Adding a redundancy scheme
to a cluster introduce an overhead to query management
and processing. The literature offers a wealth of
redundancy techniques but as the same time, analysis of
these techniques rarely show how they affect
quantitatively the cluster’s performance. Furthermore,
to our knowledge, there are no quantitative studies on
the effect of redundancy schemes on system
availability.
 This paper evaluates the availability and
performance of clusters in terms of redundancy
schemes’ properties. More specifically, we designed a
cluster model that enables us to analyze a cluster’s
behavior in the case of failure of one or several of its
nodes. We also propose a general redundancy scheme
that can achieve high availability standards.

Background and related work: Here, we present
concepts and techniques pertaining to the
implementation of redundancy schemes. Also, we
introduce several redundancy schemes that will be used
in the solution proposed below.

Hardware redundancy: Failover is a failure recovery
mechanism that exploits hardware redundancy by
redistributing the failed node’s workload over other
active nodes in the cluster. There are some methods as :
N-ways failover and N+m failover.

Fig. 2: N-ways failover

N-ways failover: In N-ways failover, the computer
cluster is composed of N processing units (PU) working
jointly and processing incoming transactions. This kind
of cluster configuration is called Active/Active since
every node in the cluster and its backup are active

during the servicing period[2,10]. All N nodes are
primary (active) nodes and backup nodes at the same
time. Hence, every node in the cluster has potentially
N-1 backup nodes as illustrated in Fig. 2.

N+m failover: For a cluster composed of N processing
units, there are m backup nodes where each active node
is associated one or more backup nodes as illustrated in
Fig. 3. In this configuration, also called Active/Standby,
backup nodes are in a standby or passive mode[2,10,11].
When a node failure is detected, one or several of its
backup nodes are activated and take over its workload.
Furthermore, if there are as much active nodes as
backup ones where m = N, the model becomes 2xN
failover.

Fig. 3: Failover in an active/standby configuration

Data redundancy: The simplest solution to recover
lost data following a disaster or a failure is using
backup copies. Two well-known data backup methods
are total backup and incremental backup[12]. In the first
case, the whole data object is replicated while in the
second case, only data blocks modified since the last
backup or newly created ones are updated in the backup
object. Moreover, updates can be synchronous,
meaning they are triggered at regular time intervals or
asynchronous which means they are triggered when an
object is modified or created.
 File objects are sometimes distributed as data
blocks like in the wide striping technique. In that case,
files are linked to more than one physical memory
space. Thus, backup techniques make a distinction
between physical memory updates and file or data
block updates. Furthermore, to maintain an acceptable
throughput, all backups are performed in real-time or
while the system is online.
 Backup copies must be located somewhere
geographically distant from the backup site to prevent
loss of the copies during disaster. To facilitate such
failure or disaster recovery, restoration scripts for the
system and replicated data should be available.

J. Computer Sci., 2 (1): 33-47, 2006

 35

Data replication and chained desclustering: Data
replication simply consists of replicating the desired
data object on one or more distinct processing units[12].
One way to distribute replicated copies over the cluster,
also called declustering, is chained declustering[6].
Using this technique, if the primary copy of the object
is on processor i, the replicated copies of the object can
be distributed on processors j as follows:

]))[((NRCij += (1)

 Where, C(R) is a function that determines the
location of the rth replicated object with r=1, 2, 3, …, R,
R is the number of replicated objects and [N] is an
expression meaning modulo and N being the number of
processors in the cluster.
 In the simplest form of chained declustering, we
have a single replicated object with R = 1 and a
distribution function C(R) = 1 which indicates that the
replicated object is located on the PU next to the
processor where the original copy was located and so
on. Figure 4 illustrates the data layout for the
aforementioned case.

0 1 2 3

3 0 1 2

4 5 6 7

7 4 5 6

8 9 10 11

11 8 9 10

12 13 14 15

15 12 13 14

Fig. 4: Data layout of the replicated objects

 When the cluster detects that processor i has failed,
the responsibility fraction (the fraction of queries
requiring access to a particular object) of a primary data
block and a replicated data object for an active
processor j, noted),(jif and),(jir respectively,
are given by formulas (2) and (3)[6]:

1
])}[1({),(−

+−−=
N

NjiNjif (2)

1
])}[1({

),(
−

+−−=
N

NijN
jir (3)

Parity, an ECC type scheme: ECC-like (error
checking and correcting) schemes are based on
computing methods that add several extra bits to the

original data set. These additional bits are used in
failure situations, when some part of the data has been
lost, to restore the original data. Hence, with this
technique, the replicated data set is divided in two parts:
the original data set and the parity bits set. Most of the
techniques in this family use the exclusive-or (XOR)
operation to determine the exact number and type of
parity bits that need to be added to the data set.
 In the computing industry, this scheme is also
known as level 3 RAID (Redundant Array of
Independent Disks), in which all parity bits are
dispersed horizontally over an array of hard drives at
the bit level[4,13,14]. Level 4 RAID offers approximately
the same functionality as level 3, but bits, this time, are
dispersed by data blocks. Figure 5 illustrates one
possible data layout for this scheme, where Pi is the
parity block for stripe i.
 Data access to an object requires reading one or
several of the N-1 processing units holding the desired
data. When a transaction modifies the contents of a
block, a read/write operation is performed on both the
data block and the associated parity block. The latter is
updated using an XOR operation.
 When one of the cluster’s processing units fails, the
original data set can be restored by applying the XOR
operation on the data blocks of the remaining PUs,
including the parity processing unit. This operation is
performed for each stripe. If the failure occurs on the
processing unit holding the parity data, it can be
restored at a later time while the useful data still being
accessible to the users.

0 1 2 P1

3 4 5 P2

6 7 8 P3

9 10 11 P4

12 13 14 P5

15 16 17 P6

18 19 20 P7

21 22 23 P8

Fig. 5: Example data layout for the parity scheme

Cluster reliability: A processing unit is considered to
be in failure mode when it exhibits an abnormal
behavior, in such a way that the results returned by the
PU cannot be used either by the remaining PUs or by
the users of the cluster[15-17]. The time between the
detection of the error, leading to a failure and its first
occurrence is called the error detection delay. Error
detection can be accomplished using different
techniques such as self-testing, consisting of the
periodical execution by PUs of state validation

J. Computer Sci., 2 (1): 33-47, 2006

 36

programs, or with watchdog timers which are based on
query execution time traces and are triggered when the
processing time exceeds a certain threshold for the
same query[2].

Metrics and reliability evaluation of a cluster:
Among all the failure models available in the literature,
we chose to base our analysis on the tolerance-
requirements model[18]. This model considers that even
if the system can still process incoming query, it is in
failure if it cannot satisfy requirements. Hence, a cluster
is in failure if K of its N processing units are in failure,
with K < N.
 The event causing the failure of a PU follows a
random variable for which transitions from one state to
another are irreversible. Transition between states is
memory-less, in other words, it does not depend on past
states and to go back to a preceding state, a restoration
process needs to be performed. Furthermore, we
consider that the average failure occurrence and
variance are constant. The Poisson distribution is
appropriate to model this phenomenon[18,19]. Let X be
the random variable for the number of failures of a
processing unit, if we know that we have on average �
loss of service per time unit, then the probability to
have n failures in a time interval of t is given by:

[] ()
!

Pr
n

t n
e t

nX
λλ−

== , n=0, 1, 2,… �, t >0 (4)

Components and systems availability: In the case of
repairable systems, we have to take into account the
notion of availability. In a repairable system, all failed
components can be substituted with inactive (standby)
components and failed components can be reintroduced
within the system once they are repaired. The most
common definitions for availability include
instantaneous availability, noted a(t), availability on a
time interval T, noted a and the availability taken a the
limit when time reaches infinity, also called asymptotic
availability and noted A. These last two definitions of
availability are given by (5) and (6), respectively:

�=
T

dtta
T

a
0

)(
1 (5)

()ta
t

A lim
∞→

= (6)

 When a component cannot be repaired its
availability strictly corresponds to its reliability. The
instantaneous availability of such a component,
characterized by an average failures rate λ, can be
calculated using formula (7)[18]:

() () teta µλ

µλ
λ

µλ
µ +−

+
+

+
= (7)

 Where, τµ 1= and τ is the average time required to

repair the component, or MTTR (mean time to repair).
The asymptotic availability can then be calculated with
formula (8):

MTTRMTBF
MTBF

A
+

=
+

=
µλ

µ (8)

 Where, MTBF (Mean Time Between Failures) is
the average time between failures and corresponds to

λ
1 .

 Markov chains are an important tool in evaluating
the availability of multiple components systems.
 For the general case where there are n discrete
states, we introduce)(tPri , which means that the
system is in state i at time t. The state of the system is
calculated using formula (9), while equation (10) shows
that the system can only be in one and only one state at
time t:

PrtPri =)((9)

�
=

=
n

i
i tPr

1

1)((10)

 ρ ij is the transition rate from state i to state j,

where i,j=1, 2, 3, …, n, that form the transition matrix
P. It has been shown[18] that, under certain conditions
for P and by resolving the equation 0=Pπ , we can
obtain the probabilities π, a vector of size n, of finding
the system in a given state i at given time t. Another
way of finding a solution to the problem is resolving the
Chapman-Kolmogoroff equations, 0=Qπ , with the

constraint that the sum of all iπ be equal to 1. Q is the
rate transition matrix derived from the transition
matrix P.

THE PROPOSED REDUNDANCY MODEL

 Now, we present our model and formalize some of
the concepts introduced earlier. Furthermore, these
concepts will be used for analyzing the cluster’s
behavior under different failure scenarios.

Modeling the cluster: The cluster model used for this
paper is based on the TelOrb model[20,21] and is
composed of several processing units interconnected
through reliable 100 Base-T Ethernet switches. A front-
end node serves as an access point to the system and as
a proxy to the public network. This node accepts
incoming queries and distributes them to available PUs.

J. Computer Sci., 2 (1): 33-47, 2006

 37

 Moreover, the front-end node is equipped with a
memory used to store past cluster states (checkpointing)
and for loading applications on processing units when
the PUs are booted for the first time or rebooted after
maintenance or after a fault occurred.
 The cluster plays the role of a server in a mobile
communication network and contains user information.
Queries addressed to the system can only trigger
processes that consult or update user information. We
will only consider faults or errors that result in
permanent failure of a processing unit. Furthermore,
because it is especially difficult to model, failure
detection will not be taken into account. Hence, we
consider that the failure detection system in place is
reliable and each failure is detected and located,
covering 100% of the cluster. These constraints do not
hinder the evaluation of the cluster’s availability since
the average time taken to detect a failure is negligible
when compared to the average time required to repair
the failure.
 In short, the cluster under consideration is a system
for which read/write queries are fairly distributed over a
finite set of identical processing units (P1, P2, … , Pn)
that share a single network space and equipped with a
distributed database utilizing the wide striping
technique for data redundancy.

Failover in the Active/Active configuration: In this
configuration, all N processing units are both primary
(active) nodes and backup nodes for each other. Hence,
every node in the cluster has N-1 backup nodes. The
fact that all processing units are active at the same time
allows the cluster to carry out “hot” failover, also called
hot swapping. In this particular case, failover is
completed faster than when one or several standby or
inactive nodes have to be awaken before redistributing
the failed node’s workload. However, since all
processing units are active at the same time, they all are
subject to a failure rate λ. As a consequence, the failure
rate is N×λ for a cluster of N PUs. Under normal
operation (no failures), the cluster’s performance is
greater than in the Active/Standby configuration since
all N PUs process incoming queries which in turn
increases the processing throughput of the cluster as a
whole. Nonetheless, as we have already mentioned, this
increase in performance is not free since the overall risk
of a failure occurring on one or more PUs is also
greater. Under failure operation, this configuration
performs better than its counterpart mostly because
failover time is reduced to its minimum and thus might
also improve the overall system’s availability.
 Let’s consider a cluster designed to process R
queries per second with N processing units and with an
average response time T. If the cluster looses one
processing unit while the N-1 remaining PUs function
at full capacity, then the cluster’s overall performance
might degrade noticeably, especially if the failover
occurs from one PU to another instead of one PU to N-1

PUs. Indeed, the distribution of the failed node’s
transactions over N-1 PUs reduces the rate variation of
incoming queries and thus stabilizes each PU’s
workload.

Failover in the Active/Standby configuration: It is
possible to design a cluster with N+m processors where
m passive nodes are used as backup nodes for the N
active nodes. The challenge with this configuration is
choosing the value of m in such a way that it increases
the availability of the system without substantially
increasing the overall cost of the cluster. It is important
to note that the cluster’s original cost increases by a
factor proportional to

�
�

�
�
�

� +
N
m

1 when this configuration is

used.
 Failover delays in the Active/Standby configuration
are greater than in the Active/Active configuration
because the backup node must go through a transition
phase not required in the latter. This kind of failover
can also be called warm failover in opposition to the hot
failover where the transition phase is almost
instantaneous. Thus, if a hot failover requires a delay d
to complete, then a warm failover will require a delay
of (2-3d) to complete[22-25].
 When analyzing this scheme under the angle of
availability, we have to consider three characteristics or
rates: the average failure rate (N×λ), the average repair
time rate (�r) and the average failover rate (�s). A state
is then characterized by the number of processing units
under reparation and the number of available or active
PUs. Since the failover and repair time rates are much
greater than the failure rate, we can limit the analysis of
the present scheme to states containing two
simultaneous failures without dramatically changing the
ensuing results. Hence, if we consider this simplified
analysis model, we obtain a triangular Markov system.
 In the case where m equals N, the cluster is
composed of 2×N processors. Hence, the cost of the
cluster is twice as much as the cost of the original
cluster. This new configuration possesses two
advantages over the N×m configuration. First, it offers
the possibility to implement a decentralized control,
which means that no particular node has to perform
failure detection and second, it is possible to mimic the
hot swap or hot failover technique as with the
Active/Active configuration[10,26].

Disaster recovery: The aforementioned schemes
cannot prevent every type of system failure. Indeed, in
the event of a physical disaster like an earthquake, a
fire, or a failure of the SS7 link linking the cluster to the
network, for example, a redundancy scheme alone may
not be suitable and thus to restore the system to the
state it was in before the disaster occurred a recovery
scheme is needed. The 2×N scheme mentioned in the
presentation of the Active/Standby configuration, in
spite of its high cost, may be beneficial in such a

J. Computer Sci., 2 (1): 33-47, 2006

 38

scenario in the sense that the N primary and N backup
nodes may be geographically distant from one another
while being connected through a TCP/IP WAN (Wide
Area Network). The difficulty here is to maintain
coherence between the databases of the two sites. To
improve performance, it is of good practice to adopt an
optimistic approach and thus, to do regular non-
blocking transaction updates from site to site but also to
validate regularly (at regular time intervals or after a
given number of replications) the coherence of the data
between the two sites. In an Active/Active
configuration, each site manages half of the cluster’s
traffic and hence half of the data. One advantage of this
configuration is that it offers better transaction
throughput than its counterpart since transaction
replication requires less resources than transaction
creation[21]. It is worth noting that only transactions
modifying at least one traffic object are replicated. Each
processing unit runs the software processes required for
asynchronous, incremental and online replication of
transactions modifying traffic objects. Furthermore,
PUs are also equipped with independent TCP/IP
connections linking them to their backup node and used
to deliver IP packets in a reliable way. However, since
TCP/IP does not preserve packet order, it is possible
that transactions may not be recorded in their execution
order. In other words, a newer transaction may be
recorded at the backup site before an older one. A
simple solution to this problem is to allocate IDs to
transactions in order to preserve their execution order
and markers to created or deleted objects.

Data redundancy: We consider that replicated objects
are updated incrementally and that only records
modified by a transaction are updated. In fact, only
transactions concerning primary objects are copied and
applied to the replicated objects. Updating is performed
asynchronously since in a mobile communication
network modifications happen frequently. For
replication schemes that take into account file
continuity, like in wide striping, file restoration can be
performed relatively fast in case of system or
component failure. However, file backup operations are
slowed down because they require additional operations
to search for the adequate data blocks and result in an
overload of memory accesses and hence in a decrease
of data throughput. On the other hand, a replication
scheme based on the physical location of data blocks
increases backup performance while it complicates and
slows down file restoration. Moreover, no
asynchronous updates are possible with this scheme.

Replication scheme: The main drawback with this
scheme is the need to double the total memory capacity
of the cluster. In normal operational mode (no failures),
the read operation is performed on the two copies
(original and replicated), which should improve
performances when reading data. While performing a

read operation, the system is required to validate every
transaction on the original data as well as on the
replicated data. The exact number of replicated object
depends on the type of applications used, on access
frequency and on the probability to loose a PU. It is
possible to approximate the probability to loose data
when the object is replicated at the memory space level
and not at memory blocks level, which means that
every replicated object on processor a is replicated on
processor b. If we limit the size of the Markov chain to
a maximum of 4 states (this allows a maximum of two
failures in a given time period) and considering a
cluster of size N=8 with a failure rate of λ=500 h and a
replacement or repair time rate of µ=5 h, we get a
probability equal to 0.0008 of loosing data, which
amounts to about 7 h of downtime per year.
 When the cluster is in failure mode, queries
intended for processor a are rerouted towards processor
b which in turn, implies that the latter processor’s
workload is increased while its performance decreases,
especially if processor b’s initial workload was over
50% of its capacity. In such situation, the overall
performance of the cluster decreases since the initially
uniformly distributed workload is now more or less
randomly distributed over the available processors.
Thus, to efficiently redistribute queries to all processors
we have to decluster data on a per block basis. In this
case, we have C(R) = k [N], with k = 0 initially and
incremented one unit each time we have determine the
next location of the replicated block. An example data
layout obtained from this scheme is illustrated in Fig. 6.
 If we consider that each block is accessed with the
same frequency, each available processor’s overload
increases uniformly when one processor in the cluster
fails. Although, it improves overall performance, the
probability to loose data blocks increases up to 0.0745
which approximately equals 27 days of downtime per
year. A solution to reduce this downtime is to create
relative clusters which are mini-clusters composed of m
of the N original processors. Thus, we now have

m
N

M = relative clusters for which declustering can

be performed independently. If we consider the
aforementioned constraints and divide the original
cluster in two relative clusters of 4 processors each, it
is possible to reduce the cluster’s overall downtime to
19 h per year.

Parity, an ECC type scheme: This scheme induces an
increase in memory requirements proportional to

N
1 . At

first, we note that it does not seem suitable for
applications in which data is frequently modified.
Indeed, to restore lost data, the scheme requires an
intensive access to the Nth processor that holds the
parity blocks. This in turn overloads the parity
processor, which becomes the bottleneck of the cluster

J. Computer Sci., 2 (1): 33-47, 2006

 39

0 1 2 3

3 0 1 2

4 5 6 7

7 4 5 6

8 9 10 11

11 8 9 10

12 13 14 15

15 12 13 14

Fig. 6: Data layout for the multiply chained declustering

scheme

0 1 2 P1

3 4 P2 5

6 P3 7 8

P4 9 10 11

12 13 14 P5

15 16 P6 17

18 P7 19 20

P8 21 22 23

Fig. 7: Data layout for parity blocks distributed over all

processors

and limits its performances. To enhance the
performance of the cluster in failure mode operation,
one solution is to initially distribute parity blocks over
all processors, as illustrated in Fig. 7.
 In this configuration, all nodes hold both data and
parity blocks. The configuration only permits failure of
a single processor at a given time. We can improve this
by creating several relative or mini-clusters that form
disjoint parity sets. The new configuration, as
illustrated in Fig. 8, can tolerate the loss of a processor
in each mini-cluster and thus increases the overall
tolerance of the cluster. If we divide the N processors of
the cluster in groups of m processors, with m � N, we

now have
m
N

M = mini-clusters and the cluster as a

whole could tolerate up to M failures at the condition
they happen in M distinct groups or mini-clusters. To
give an idea of the improvement, we consider that the
failure of a processor follows an exponential law with
parameter λ = 500 h, that the time required to repair or
replace a processor is given by µ = 5 h and that there
are 8 processors divided in two mini-clusters of 4

processors each. The probability to have two processors
failing at the same time, one in each group, is 0.0745
while the probability of having two processors failing in
the same group is 0.0022. The probability to loose data,
or in other words to have three processors failing at the
same time, is 0.0003, which amounts to 2.5 h of
downtime per year. Moreover, if we include an
N+m failover scheme, we can further reduce
the downtime.

0 1 P1 2 3 P9

4 P2 5 6 P10 7

P3 8 9 P11 10 11

12 13 P4 14 15 P12

16 P5 17 18 P13 19

P6 20 21 P14 22 23

24 25 P7 26 27 P15

28 P8 29 30 P16 31

Fig. 8: Data layout of the parity scheme on two relative

clusters

ANALYTICAL AND SIMULATION RESULTS

 Now, we presents the results for the availability of
the cluster. These results where obtained from two
phases of simulation. The first phase implements a
simple model that will enable us to validate analytical
results while the second phase implements a more
realistic model allowing more precision in the results.

Availability of the cluster: Analytical results
N-ways scheme processor availability: In the case of
the N-ways failover scheme, the solution to the problem
of maximum availability can be reduced to resolving an
irreducible Markov chain consisting of a birth and death
process whose states are characterized by the number of
failed processors. An example of such a Markov chain
is given in Fig. 9. The failure or repair time rate of a
processor marks the transition between states.

Fig. 9: Analytical model of the N-ways scheme

 This model is equivalent to an M/M/1/N/N queue,
using Kendall’s notation, where N is the number of
processors in the cluster. The model is also known in
the literature as the machine-repair model[27]. The
probability to find k processors failing at the same time
in the cluster can be calculated with formula (11):

J. Computer Sci., 2 (1): 33-47, 2006

 40

�
= −−

=
N

j jN
kN

k
k

j

0)!(
1)!(ρ

ρ
π

 (11)

 We consider that the system is unavailable after
one of its processor fails, hence we have:

0π=A (12)

 Figure 10 illustrates the availability of the cluster
as a function of

µ
λρ = and for different number of

processors N in the cluster (4, 8, 16 and 32). We note
that there is a high availability value (99%) when � is in
the order of the thousandth. When � increases, the
availability of the cluster drops sharply. The degree at
which the availability drops depends on the number of
processors in the cluster. Thus, to maximize the
cluster’s availability, we have to minimize the value of
� as well as the number of processors. So, to obtain
cluster availability in the neighborhood of 99.9%, we
need a value of � less than or equal to 0.0001. In other
words, the mean time to repair (MTTR) needs to be
about 10000 times inferior to the mean time between
failures (MTBF).

Fig. 10: Availability results for N=4, 8, 16 and 32

processors as a function of �

N+m scheme processor availability: If we consider
that in general � is in the order 0.00002 at a
minimum[28], then the only logical way to achieve 7x9s
is by applying the N+m scheme to the cluster. The most
precise model describing this scheme consists of a
closed network of three queues as illustrated in Fig. 11.

Fig. 11: Closed network model with three distinct

queues of the N+m scheme

 The fist queue represents active processors or, in
other words, processors waiting to service incoming
queries. In Kendall’s notation, the queue would be
noted as M/M/N/N, where the first N is the number of
servers while the second N represents the number of
queries the system can process. It is worth noting that
the number of queries the system can process at one
time exactly matches the number of processors within
the system. Hence, we have at most one query per
processor. Service time corresponds to the time
between failures and is equal to

λ
1 . The second queue

represents a processor’s repair process and is modeled
with an M/M/1 queue with a service rate of µ. Finally,
the third queue models a processor waiting to take over
a failing processor. The queue used here is M/M/�
where the average service rate equals the average delay
required to complete a failover.
 All in all, we have a network where the first queue
has fixed capacity while the other two have infinite
capacity. Hence, we can say that the model creates a
non-homogenous network. Moreover, we have a
blocking system since, for example, a processor cannot
be processed on queue 3 before a server on queue 1 is
free. This type of blocking action is called blocking
before start (BBS)[19,29]. The number of queries L in the
system equals the number of active processors to which
we add all waiting processors so that L=N+m. We will
now reduce this network so as to obtain an analytical
solution.
 We consider that the delay induced by the failover
is negligible and is equivalent to passing a query from
the queue to the server. This simplification results in a
closed network with two queues, where queue 1
becomes an M/M/N queue with unlimited capacity
while queue 2 stays the same. By resolving the system
(the details are given in appendix A), we get the
following expression:

jNNL

j N
GA N

�
�

�
�
�

�=�
−

= µ
λ

!0

 (13)

�

�

N=4
N=8
N=16
N=32

J. Computer Sci., 2 (1): 33-47, 2006

 41

where:

()

1
1

1 1
1

!!

−+−

+−= 	
	

�

�
�

�
��
�

�
��
�

�

−
−+� −

= ρ
ρρ NLNL

NLn
n

n
L

N
N

nLN
NG (14)

 The traces In Fig. 12 show availability results
obtained for a cluster composed of 4, 8, 16 and 32
processors and a processor waiting for service
(L=N+1).

Fig. 12: Availability results for an N+1 model

 The four curves can be differentiated by the speed
at which availability drops as the value of � increases.
Furthermore, we note that the range of � values for
which availability is high augments as the value for L
increases from N. In this way, it is possible to achieve
7x9s availability with a reasonable value for � (for
L=N+2, �’s value is in the order of 0.005 which
corresponds to an average repair time 200 times
superior to the time between failures). To adequately
compare this scheme with N-ways, we suppose that
both schemes’ costs are equal and that they each use L
processors. The cluster is available as long as there are
N processors to service incoming queries. Simulation
results obtained for both schemes are based on the
assumption that the average failure rate for processors
in waiting state is null. The behavior of the N+m and N-
ways schemes for L=N+2 is depicted In Fig. 13.
 As we have seen in a precedent section, we can
have an N+m configuration for which L=2×N. It is
obvious that in that case, as Fig. 14 shows for a cluster
of N = 4 processors, the cluster’s availability is greater
than in any of the configuration seen so far. Indeed, we
observe that the minimal availability is about 72%
while the 7x9s availability can be achieved with
relatively high values of ρ. On the down side, this
configuration is costly when compared with the other
two and is not profitable unless we have a suitable
value for � (in the neighborhood of 0.2). It is important
to mention that the results just presented are valid if
partial failover (a failed processor in the first site is
relieved by its backup in the backup site) is allowed
between the two sites.

Fig. 13: Availability comparisons of the N+m and N-

ways for L=N+2

Fig. 14: Availability results for the 2×N configuration

with N = 4

Data availability: We analyze different data protection
configurations in order to better understand their
influence on the cluster’s availability in terms of data
accessibility and we determine to what measure the loss
of a processor can induce loss of data. When no
redundancy schemes are applied, the loss of a processor
automatically induces loss of data. If we assume that
when data is lost the cluster becomes unavailable, then
in this context the cluster’s availability can be
calculated using equation (9).
 There are many alternatives or models to choose
when applying a replication scheme. Two parameters
common to all replication schemes are the number r of
replicated objects and the relation established between
the processors holding primary data and those holding
backup or replicated data. Since the main drawback of
all replication schemes revolves around memory size,
we limit our analysis to schemes generating a single
replicate. These alternatives are distinguished by the
relation they create between primary and replicated
data. The first replication scheme we introduce is based
on a static relation that assigns a backup processor j to

 N=4
 N=8
 N=16
 N=32

�

�

N=4
N=8
N=16
N=32

�

J. Computer Sci., 2 (1): 33-47, 2006

 42

 each primary processor I and inversely. The second
alternative or model assigns backup processors in chain
following j=i+1 [N], where j is a backup processor, i a
primary processor and N the number of processors in
the cluster. The third considered model follows
equation j=i+k [N] where k is incremented for each
data block and hence, replication is done on a per block
basis. The principal advantage of this last model is that,
when in failure mode operation, queries addressed to
lost processor i are rerouted towards all remaining
processors, uniformly redistributing the lost processor’s
workload and preserving the cluster’s performance.
 If we assume that at a given time the cluster
operates with n < N, there are p lost processors (p = N -
n). The probability to find the cluster in such a state is
given by Sp. To determine the cluster’s availability, we
have to evaluate, for each model presented, the
probability of having all data available, noted Sp.
As for the parity scheme, the probability of having
unavailable data following the failure of p processors is
closely related to the number of mini-clusters in use.
Indeed, when at least two processors within the same
mini-cluster have failed, data becomes automatically
unavailable. Thus, by resolving the different data
redundancy models using results detailed in Appendix
B, we find that the cluster’s availability D can be
expressed by:

��
==

+++=
2/

2

1

0

)()()(
N

jj

mjRjPmjRD (15)

 Where, P depends on the redundancy scheme
applied to the cluster (parameterized replication or
parity). The variable parameters that we have to watch
for are N, L and � for all replication schemes and M for
the parity redundancy scheme.
 Figure 15 and 16 show data availability for a
cluster composed of 8 and 16 processors, respectively,
for two replication schemes and several parameters for
the parity scheme. As we can see, the first replication
model (model 1) offers the highest cluster availability.
Moreover, its availability does not become null when ρ
reaches its limit of 1. The cluster’s availability when we
apply the parity scheme with 2 mini-clusters is the
lowest of all simulated schemes and its performance is
equivalent to the second replication model (model 2).
On the other hand, when we apply the same parity
scheme with 4 mini-clusters, the resulting availability
curve closely follows the first replication scheme’s
curve and offers better performance when compared to
the second replication scheme.
 It is important to note that, when the number of
processors is sufficiently high, all schemes offer
approximately the same availability level, whatever the
number of mini-clusters in the parity scheme. In fact,
the number of processors per mini-cluster is more
important than the number of mini-clusters itself.

Fig. 15: Data availability results for a cluster composed

of 8 processors

Fig. 16: Data availability results for a cluster composed

of 16 processors

 Finally, we observe that the curves tend to move
away from one another as the value of � increases.

Performance analysis: To analyze the impact on the
cluster’s performance of the schemes presented so far,
we developed a second simulator. This simulator is
based on the cluster model presented earlier. We
calibrated the simulator so that the range of incoming
queries would be limited at a maximum to 4000 queries
per second. The first results obtained from the simulator
give the average response time for a cluster operating
without any redundancy scheme. These results are in
the order of the millisecond (as TelOrb’s traffic
manager) and will serve as a reference for comparison
with clusters running a replication or parity scheme.
The first step of the simulation is to determine the
average value of the schemes’ parameters and to
evaluate these schemes so as to choose one in each
class based on its relative performance to the baseline.
Afterwards, we analyze the impact of the schemes’
parameters on the cluster’s performance with the
aforementioned three schemes.
 We start by analyzing the impact of update
operations, given in percentage, on the cluster’s

+++ Model 1 (replication)
��� Model 2 (replication)
��� Parity 1 (M=2)
��� Parity 2 (M=4)

+++ Model 1 (replication)
. . . Model 1 (replication)
��� Parity 2 (M=4)
��� Parity 3 (M=8)

�

�

J. Computer Sci., 2 (1): 33-47, 2006

 43

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

réplication
parité
référence

Write/total 10%

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

réplication
parité
référence

Write/total 10%

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

réplication
parité
référence

Write/total 20%

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

réplication
parité
référence

Write/total 20%

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

réplication
parité
référence

8 processors

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

450

500

réplication
parité
référence

8 processors

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

réplication
parité
référence

32 processors

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

0 200 400 600 800 1000 1200
0

100

200

300

400

500

600

réplication
parité
référence

32 processors

Queries/10 per second

T
hr

ou
gh

pu
t /

10
 p

er
 s

ec
on

d

Replication
Parity
Reference

throughput. To do so, we fix the number of nodes in the
cluster to 24 and vary the update percentage from 10 to
20%. The ensuing results are scaled by 10 so we can
better observe the differences between the curves.
Figure 17 (a) and (b) show the cluster’s throughput for
update percentages of 10 and 20%, respectively.

a) Cluster throughput in percentage: 10%

b) Cluster throughput in percentage: 20%

Fig. 17: Cluster throughput in percentage

 As we can see, the curves follow similar trends.
We note that when the cluster enters its critical zone (its
maximum value for the query rate), the curves show
substantial differences in terms of throughput.
Moreover, we observe that the curves start moving
apart from one another when the incoming query rate
reaches 2500 queries per second, then the curves’ slope
decreases dramatically. The impact on the parity
scheme’s throughput is more important than for the
replication scheme. The difference in results for the two
schemes increases as the percentage itself increases.
Such discrepancies can be explained by the fact that
additional memory accesses are required by the parity

scheme. Finally we will analyze, for the two chosen
schemes, the impact of the number of nodes on the
cluster’s behavior. To do so, we fix the update
percentage to 10% and vary the number of node in the
cluster from 8 to 32 nodes. Figure 18 (a) and (b)
illustrate simulation results obtained for these two
scenarios. We observe that, as we increase the number
of nodes in the cluster, the curves move apart from one
another. Indeed, we note that the parity scheme’s
throughput moves away from the reference while the
replication scheme’s throughput closes on the baseline
throughput.

a) Cluster throughput for 8 processors

b) Cluster throughput for 32 processors

Fig. 18: Cluster throughput for different number of

processors

CONCLUSION

 In this study, we have proposed some redundancy
schemes to insure availability and quality of service of
computer clusters. The main goal as to maximize a

J. Computer Sci., 2 (1): 33-47, 2006

 44

cluster’s availability, by applying several redundancy
schemes while minimizing their impact on overall
system performance. In this context, two important
properties of the system are the cluster’s throughput
(number of queries processed by unit time) and its
response time (time required to service a query).
 We found that two important aspects influencing
the performance of a transaction-oriented cluster were
the cluster’s failover and data redundancy schemes. The
resulting schemes were analyzed in two phases. In the
first phase, we simulated an analytical model in order to
better understand the impact of these schemes’
implementation parameters on the cluster’s availability.
We observed that the N+m failover scheme with a
standby processor offered higher availability than the
N-ways scheme for values of � in the range of the
thousandth. We were able to attain 5x9s availability
with this scheme. Moreover, when m = N, we observed
that the minimum availability exceeded 72% and that
7x9s availability could be obtained with relatively high
values of �. We simulated several data redundancy
schemes and found that data replication offered higher
cluster availability than the parity model. The latter
scheme’s performance approaches replication either
when we increase the number of mini-clusters or reduce
the number of nodes in each mini-cluster. It is
interesting to note that when the number of nodes in the
cluster is sufficiently high, all schemes offer similar
availability notwithstanding the number of mini-
clusters for the parity scheme. Also, we observed that
the cluster’s throughput increased almost linearly for all
schemes in the 0 to 5000 queries per second range.
When the number of incoming queries exceeded the
rate of 5000 queries per second, we observed that the
curves moved apart from one another and that service
quality dropped significantly. This phenomenon does
not depend on the scheme applied to the cluster but
seems related to the cluster’s processing power.
 Moreover, our analysis shows that parity with the
maximum allowable number of mini-clusters and
replication with an incrementable backup processor
index offer the best performances in each scheme’s
class. The difference between those two schemes, with
a slight advantage for replication, increases as the
percentage of update operations increases. In the same
way, as the number of cluster nodes increases the
difference in performance between the two schemes
becomes more visible. A better comparison would
require comparing two architectures with equal costs or
to compare the cost of two architectures with similar
performances. Another way to solve the problem would
be to consider that parity, for a given memory size,
allows more user data to be stored than replication.
Hence, the incoming query rate can be increased by

CN
N
+

2 , which in turn implies a better throughput.

 For comparison purposes, we would have to apply
a translation to the right to the parity curve. The parity

scheme would then have a higher throughput in the
zone where the rate is positive while its maximum
throughput would still remain inferior to the replication
scheme’s and reference model maximum throughputs.
This trick is only valid when in the zone where the rate
is positive since, when the rate is negative, the parity
scheme’s throughput would be penalized. In other
words, it works in a context where the cluster is not
limited by its CPU’s performance or by memory
accesses. We came to the conclusion that in practice,
this comparison is not necessary since in general the
cluster’s acquisition budget is fixed. In these
conditions, the methodology used to choose the best
fitted redundancy scheme among the ones available is:

* To determine the number of nodes (2P) that can be

acquired with the allocated budget
* We can choose one of the following two failover

schemes:
 * N-ways configuration with 2P nodes
 * N+m configuration with N+m = 2P
* To identify the right configuration to implement,

we have to determine the cluster’s performance
threshold in terms of throughput or response time,
which will allow us to define the exact number of
active processors (PA)

* The PA parameter is determined by analyzing the
comparative performance in terms of incoming
query rate, which depends on the number of
clients, for the parity and replication schemes
under normal and failure operation mode

* We can now choose the most appropriate data
redundancy scheme according to desired cluster
performances. If the replication scheme is chosen,
we have to assert that PA < P+1 at all times

* Finally, if PA < 2P, we can apply the N+m scheme
with m = 2P - PA. If this condition does not hold,
we can always choose an N-ways scheme.

 It would be advantageous to analyze the cluster’s
behavior in the case of large size read/write operations.
Indeed, in our context, we considered that user data
corresponded to a mobile telephony client’s data and
was about 8 Kb in size. If we apply wide striping to the
PVFS file system, for example, default data blocks are
about 64 Kb in size which implies that access to an
object is equivalent to an access to a single cluster
node. For applications such as video on demand (VoD),
the average data size of a query would in the order of
megabits.

Appendix A: This network possesses a stationary state
and the solution is given as a product:

∏=
=

2

1
)()(

i
sif iGsR (1)

 Where, s is a state vector representing the number
of processors in the system (a queue and its servers
form a system). The contribution of queue i is given

J. Computer Sci., 2 (1): 33-47, 2006

 45

by)(sif i while G is a normalization constant,

necessary because it’s a closed network and the number
of processors is constant as well. According to
BCMP[19,29,30], the probability R(s) to be in a given state
s = (s1, s2) can be calculated based on formula (2):

)()()(2211 sfsfGsR = (2)
with

�
�
�

�

��
�

�

�

�
�

�
�
�

�

<�
�

�
�
�

�

=

 otherwise. ,
1

!

 if,
1

!
)(

1

11

1
1

11
sN

ss

N
N

Ns
s
N

sf

λ

λ (3)

and
s

sf
2

22

1
)(��

�

�
��
�

�
=

µ
 (4)

knowing that each query goes through both queues
which means that the visit ratio for each queue is equal
to 1. So if we substitute (3) and (4) in (2), we get:

�
�
�

�

��
�

�

�

��
�

�
��
�

�
�
�

�
�
�

�

<��
�

�
��
�

�
�
�

�
�
�

�

=

 otherwise. ,
11

!

 if,
11

!
)(

21

211

1
1

ssN

sss

N
N

G

Ns
s

N
G

sR

µλ

µλ (5)

 Since we know that the system is a closed network,
we have L = s1 + s2 at all times. Hence, we can
eliminate a variable by substituting s1 = L - s2 in
equation (5) and get a single variable equation given by
equation (6):

�
�
�

�

��
�

�

�

��
�

�
��
�

�

−

−≤��
�

�
��
�

�

=

 otherwise. ,
)!(

 if,
!

)(

1

jL

js

NjL
N

G

NLj
N

N
G

sR

µ
λ

µ
λ

 (6)

To define the constant G, we know that the sum of
probabilities for all L processors in the system must
equal 1 and thus, we get:

()

1
1

1 1
1

!!

−+−

+−= 	
	

�

�
�

�
��
�

�
��
�

�

−
−+� −

= ρ
ρρ NLNL

NLn
n

n
L

N
N

nLN
NG (7)

Now that we have the probability of having j processors
in the repair queue at the same time, we can determine
the cluster’s availability. Indeed, we consider that the
system is available as long as we have N active (in
service) processors, or in other words, as long as there
less than L-N in the repair queue. So, the system’s
availability can be calculated using expression (8):

�
−

=
��
�

�
��
�

�
=

NL

j

jN

N
N

GA
0 ! µ

λ (8)

Appendix B: If we consider that cluster operates with n
< N processors at a given time, there are p failed
processors (N = n + p). The probability to find the
cluster in that sate is given by Sp. To calculate the
cluster’s availability, we first need to determine the
probability of having all data available at a given time
for the replication and parity schemes, noted Pp. Hence,

we have Pp = 1 when p � r and Pp = 0 when p >
2
N ,

which is also valid for the parity scheme. Let’s consider
first the relation used for the third replication scheme.
In that case, all processors are linked together to
improve data protection and thus, the failure of at least
two processors automatically implies that data is
unavailable. The cluster’s availability in such situation
is equivalent to having N-2 or less active processors and
can be calculated using formula (1):

�
=

=
N

p

pSD
2

 (1)

 For the first relation it is possible to determine,
using equation (2), the probability of not having any
one pair of processors linked together among the p > 1
failed processors.

()
!)!1

2
(

)!(!
22

1
NpN

pNN
p

p

p
+−

−
= 1< p �

2
N (2)

As for the second replication relation, we cans show
that:

)2)(1(
2 1

2 −−=
NN

p
p p

p
 1< p �

2
N (3)

 It is important to note that we consider that we
have an even number of processors. We can justify this
constraint by the fact that if we need j nodes to service a
given number of clients, we will have a total of 2j nodes
after applying replication.
 As for the parity scheme, the probability of having
unavailable data following a failure of p processors
closely depends on the number of mini-clusters
implemented within the cluster. Indeed, when two or
more processors within a single mini-cluster are lost,
some of the data becomes unavailable and hence, the
cluster’s itself becomes unavailable. So for the parity
scheme, we have Pp = 1 when p > M, the number of
mini-clusters. In the case where p � M, the cluster’s
availability (all data is available) can be calculated as
follows:

)!(!
)!(!

pMN
pNM

p p −
−= p � M (4)

J. Computer Sci., 2 (1): 33-47, 2006

 46

It is worth noting that all mini-clusters must have the
same number of processors and thus, N is a multiple of
M. These considerations are both practical and
mathematical. A well balanced workload over all
processors leads to better performance of the cluster.
 Since we have now defined data availability
probabilities for all schemes, we can determine the
cluster’s overall data availability D, which is given by:

P p
N

p
S pD �

=
=

0

 (5)

When the N-ways scheme is applied, Sp is equal to �p
and when an N+m scheme is used, we can define Sp as
the probability of having m+p processors out of service.
If we take into account this assumption, we can
calculate the cluster’s availability using formula (6):

��
==

+++=
2/

2

1

0

)()()(
N

jj

mjRjPmjRD (6)

Where, P depends on the redundancy scheme applied to
the cluster (parameterized replication or parity).

REFERENCES

1. Buyya, R., 1997. Single System Image: Need,

Approaches and Supporting HPC Systems. The
1997 Intl. Conf. Parallel and Distributed
Processing, Techniques and Applications
(PDPTA’97). CSREA Publishers, Las Vegas,
USA, pp: 1106-1110.

2. Buyya, R., 1999. High Performance Cluster
Computing: Architectures and Systems. Prentice
Hall, New Jersey.

3. Pfister, G., 1998. In Search of Clusters. Prentice
Hall PTR, NJ, 2nd Edn., N.J.

4. Chen, P. and G. Gibson G., 1990. An Evaluation of
Redundant Arrays of Disks Using an Amdhal
5890. Joint Intl. Conf. Measurement and Modeling
of Computer Systems, Colorado, pp: 74-85.

5. Gordon, D., 2002. The floating column algorithm
for shaded, parallel display of function surfaces
without patches. IEEE Trans. Visualization and
Computer Graphics, 8: 76-91.

6. Hsiao, H.I. and D.J. DeWitt, 1990. Chained
Declustering: A New Availability Strategy for
Multiprocessor Database Machines. Proc. 6th Intl.
Conf. Data Engineering, Los Angeles, CA, pp:
456-465.

7. Shen, K., T. Yang and L. Chu, 2003. Clustering
support and replication management for scalable
network services. IEEE Trans. Parallel and
Distributed Systems, 14: 1168-1179.

8. Gray, J., 1986. Why do Computers Stop and What
Can be Done About It? 5th Symp. Reliability in
Distributed Software and Databse Systems, Los
Angeles, CA, USA, pp: 3-12.

9. Siweiorek D.P. and R.S. Swarz, 1983. The Theory
and Practice of Reliable System Design. Digital
Press, Digital Equipment Corporation.

10. Weygant, P.S., 1996. Clusters for High
Availability-A Primer of HP-UX Solutions.
Hewlett-Packard Company, Prentice Hall PTR,
Upper Saddle River, New Jersey 07458.

11. Copeland, G. and T. Keller, 1989. A Comparison
of High-Availability Media Recovery Techniques.
Proc. ACM-SIGMOD Intl. Conf. Management of
Data, Portland, pp: 98-109.

12. Zou, H. and F. Jahanian, 1999. A Real-Time
Primary-Backup Replication Service. IEEE Trans.
Parallel and Distributed Systems, 10: 533-548.

13. Alvarez, G., W. Burkhard and C. Flaviu, 1997.
Tolerating Multiple Failures in RAID Architectures
with Optimal Storage and Uniform Declustering,
1996. Proc. ACM/IEEE 24th Ann. Intl. Symp.
Computer Architectures, Denver, Collorado, pp:
62-72.

14. Sorin, D., M. Martin, M. Hill and D. Wood, 2002.
SafetyNet: Improving the availability of shared
memory multiprocessors with global
checkpoint/recovery. Proc. 29th Ann. Intl. Symp.
Computer Architecture, pp: 123-134.

15. Bhargava, A. and B. Bhargava, 1999.
Measurements and Quality of Service Issues in
Electronic Commerce Software. Proc. 1999 IEEE
Symp. Application Specific Systems and Software
Engineering & Technology, Richardson, Texas, pp:
26-33.

16. Deris, M., M. Rabiei, A. Noraziah and H. Suzuri,
2003. High service reliability for cluster server
systems. IEEE Intl. Conf. Cluster Computing, pp:
280-287.

17. Lopez, M. and S. Wood, 2003. Systems of multiple
cluster tools: Configuration, reliability and
performance. IEEE Trans. Semiconductor
Manufacturing, 16: 170-178.

18. Modarres, M., M. Kaminskiy, V. Krivtsov and M.
Dekker, 1998. Reliability Engineering and Risk
Analysis: A Practical Guide. New York, N.Y.

19. Balsamo, S. and V. De Nitto Personè, 1991. Closed
Queueing Networks with Finite Capacities:
Blocking Types, Product-Form solution and
Performance Indices. Performance Evaluation, 12:
85-102.

20. Hennert, L. and A. Larruy, 1999. TelOrb-The
Distributed Communications Operating System.
Ericsson Review, No. 03.

21. Hennert, L. and A. Larruy, 2000. TelOrb Network
Redundancy. Ericsson Review, No .02.

J. Computer Sci., 2 (1): 33-47, 2006

 47

22. Banchini, R. and E.V. Carrera, 2000. Analytical
and Experimental Evaluation of Cluster-Based
Networks Servers. Technical Report 718,
Department of Computer and Sciences, University
of Rochester.

23. Chang, W., 2001. A resource efficient scheme for
network service recovery in a cluster. IEEE Intl.
Conf. Systems, Man and Cybernetics, 2: 1087-
1091.

24. Cretu, A., V. Groza, A. Al-Dhaher and R.
Abielmona, 2002. Performance evaluation of a
software cluster, Proc. 19th IEEE Conf.
Instrumentation and Measurement Technology, 2:
1543-1548.

25. Gail, H.R. and E. Souza e Silva, 1992.
Performability Analysis of Computer Systems:
From Model Specification to solution. Performance
Evaluation, 14: 157-196.

26. Yong, C., L. Ni, X. Chengzhong, Y. Mingyao, J.
Kusler and Z. Pei, 2002. CoStore: A reliable and
highly available storage system using clusters.
Proc. 16th Ann. Intl. Symp. High Performance
Computing Systems and Applications, pp: 3-11.

27. Molloy, M., 1988. Fundamentals of Performance
Modeling. Macmillan Publishing Company, NY.

28. Carreira, J., H. Madeira and J. Silva, 1998.
Xception: A technique for the experimental
evaluation of dependability in modern computers.
IEEE Tran. Software Engineering, 24: 125-136.

29. Balsamo, S., V. De Nitto and R. Onvural, 2000.
Analysis of Queueing Networks with Blocking.
Kluwer Academic Publishers, Boston, Hardbourg.

30. Balsamo, S., 2000. Closed Queueing Networks
with Finite Capacity Queues: Approximate
Analysis. Proc. ESM 2000, SCS, European
Simulation Multiconference, Ghent, pp: 23-26.

