
Journal of Computer Science 1 (1): 76-82, 2005
ISSN 1549-3636
© Science Publications, 2005

76

Y: A New Component-Based Software Life Cycle Model

Luiz Fernando Capretz

Department of Electrical and Computer Engineering, University of Western Ontario
London, Ontario, N6G 1H1, Canada

Abstract: With the need to produce ever larger and more complex software systems, the use of reusable
components has become increasingly imperative. Of the many existing and proposed techniques for
software development, it seems clear that component-based software development will be at the forefront
of new approaches to the production of software systems and holds the promise of substantially
enhancing the software production and maintenance process. Attempts to rationalize component-based
development have to recognize that the construction of a software system is a complex multifaceted
activity that involves domain engineering, frame working, assembling, archiving and design of software
components. These activities, among others, are encompassed by a software life cycle, named the Y
model, put forward in this study. The Y model provides guidance for the major phases to be followed
under its umbrella.

Key words: COTS, Software Life Cycle Model, Software Process, Software Reusability, Component-

Based Software Development

INTRODUCTION

It has been claimed that the component-based software
development promotes reusability, improves software
quality and increases software engineers’ productivity.
A component is a self-contained piece of software that
provides clear functionality, has open interfaces and
offers plug-and-play services. Component-based
software development is expected to be at the forefront
of new approaches to the construction of large and
complex software systems. The idea gained its real
momentum after COM+ [1] from Microsoft, Enterprise
JavaBeans [2] from SUN, IBM Component Broker [3]
and CORBA [4] have made their way among
mainstream software technologies [5]. Additionally,
incremental delivery of software features or platforms
that comprise a software product line is expected to be
at the forefront of software development in the next few
years, therefore component-based software engineering
has broad implications for how software engineers
acquire, build and maintain software systems [6]. Thus,
we should see dramatic changes in designers’ primary
roles and required skills for software development in
the near future.
As software is growing increasingly complex, so too is
the effort required to produce it, on this account
numerous software life cycle models have been
proposed. Their main utility is to identify and arrange
the phases and stages involved in software development
and evolution, so it is appropriate to generally examine
different software life cycle models and point out their
strengths and weaknesses before an alternative one is
put forward.

The Waterfall model [7] has been long used by
software engineers and has become the most prevalent
software life cycle model. This model initially attempts
to identify phases within software development as a
linear series of actions, each of which must be
completed before the next is commenced. The Waterfall
model is marked by the apparently neat, concise and
logical ordering of the series of obvious phases, which
must be followed in order to obtain the final software
product. Refinements to this model consider that
completion is seldom and that iteration back to a
previous stage is likely to happen, but it takes no
account of bottom-up development and prototyping.
The Spiral model [8] makes software development
more flexible and has been proposed mainly to speed
up software development through prototyping.
Prototyping is the process of building an incomplete
piece of software that exhibits some of the most
relevant aspects of the final software system.
Prototyping provides constructive feedback to designers
and potential users so that the system requirements can
be clarified and refined early during software
development. Evolutionary prototypes provide
incremental software development, so that software
systems may be gradually developed and tested,
allowing major errors to be exposed and corrected
early, which means that they are often cheaper to fix,
but without effective management to control iterations,
this process can degenerate into uncontrollable hacking.
Extreme Programming [9] is a deliberate and
disciplined approach to software development, which is
aimed to solve customer requirement change problem.
The methodology is designed to deliver the software

J. Comp., Sci., 1 (1): 76-82, 2005

 77

your customer needs when it is needed. It is based on
four essential values: communication, simplicity,
feedback and courage. Unlike other traditional software
development models, such as Waterfall, which conducts
analysis, design, implementation and testing once in its
long development cycle, or Spiral model, which has
shorter, iterative development cycles, extreme
programming is blending all these activities, a little at a
time, throughout the entire software development life
process.
A growing number of companies in the software
industry – including Microsoft – are following a
process that iterates among design, building
components, testing and getting feedback from
customers as the product evolves. Many companies also
ship preliminary versions of their products,
incrementally adding features of functionality over time
in various product releases [10]. Microsoft is different
in the sense that it has introduced a structured hacker-
like approach in the development of large-scale
software products; projects remain under control
because teams of designers and testers frequently
integrate and stabilize their improvements. It is truly an
example of how to take advantage of the exploding
demand for PC software and an effective way to deliver
products to a “hungry” market. Its competitive strategy
revolves around identifying mass markets quickly,
introducing a product that is good enough to dominate
the market rather than waiting until the product is
perfect, then upgrading the product continuously.
The Twin Peaks model [11] also argues for a
concurrent, iterative development of requirements and
architecture during software development. It presents a
partial and simplified version of the Spiral model that
illustrates the distinct, yet intertwined activities of
requirements engineering and architectural design. This
model allows incremental development with the
consequent management of risks, compromises
architectural choices to accommodate existing
commercial of-the-shelf software (COTS) solutions and
because the model focuses on finer-grain development,
it is more receptive to rapid changes as they occur.
However, one of the main shortcomings of all these
models is that none of them explicitly encourages
reusability along all their phases. Therefore, a software
life cycle model that emphasizes the importance of
component reuse during software development is still in
demand.

The Y Software Life Cycle Model: The Y model,
(Fig. 1), has been proposed as a viable alternative to
address software reusability during component-based
software production. The creation of software is
characterized by change and instability, hence the
diagrammatic representation of the Y model considers
overlapping and iteration where appropriate. Although
the main phases may overlap each other and iteration is
allowed, the planned phases are: domain engineering,

frameworking, assembly, archiving, system analysis,
design, implementation, testing, deployment and
maintenance.
The main characteristic of this software life cycle
model is the emphasis on reusability during software
creation and evolution and the production of potentially
reusable components that are meant to be useful in
future software projects. Reusability implies the use of
composition techniques during software development;
this is achieved by initially selecting reusable
components and assembling them, or by adapting the
software to a point where it is possible to pick out
components from a reusable library. It is also achieved
through inheritance, which is naturally supported by an
object-oriented approach [12]. Reusability within this
life cycle is smoother and more effective than within
the traditional models because it integrates at its core
the concern for reuse and the mechanisms to achieve it.

Domain Engineering: Domain engineering is a process
of analyzing an application domain in order to identify
areas of commonality and ways to describe it using a
uniform vocabulary. Thus, domain engineering is an
activity that should be carried out at the beginning of
software specification if reuse is to be considered. As
domain engineering can yield an initial set of
vocabulary reflecting the main conceptual entities
within an application domain, essential properties of
that domain are captured and initial candidates for
reusable components emerge. To illustrate, a process
control system for a chemical plant is concerned with
vessels, pipes and valves of that plant, as well as the
flow of liquid and gases, the temperature and pressure
at various points in that plant. A payroll system is
concerned with employees, the pay they earn, the tax
they owe and the holidays they are entitled to. These
real-world entities and interrelationships are likely to
become part of the vocabulary for these application
domains.
User needs, software requirements, provided
functionality, objectives and constraints of the system
are very much of interest during the system analysis
and domain engineering phases. Thus, it is important to
understand the real-world application and an abstract
model of that application should be depicted. Therefore,
the boundary between system analysis and domain
engineering may at times seems fuzzy because
identifying key abstractions in the application domain
may be viewed as part of system analysis or domain
engineering. Nevertheless, at this level, domain
engineering is also concerned with the identification of
potentially reusable components.

Frameworking: A framework could be viewed as a
generic structure that provides a skeleton for producing
software in a certain application domain. Frameworking
attempts to identify components and establish
interrelationships perceived important within the

J. Comp., Sci., 1 (1): 76-82, 2005

 78

application domain. Such identification of components
may arise from the well-known functionality common
to that application domain, usually in the form of
semantic relationships between components. Consider,
for example, the application domain of airline
reservation systems; typical entities of these systems
are: seats, flights, crews and passengers; and
interrelationships can be: reserve a seat, assign a crew
to a flight, schedule a flight and so on. So, there are
important relationships among these entities, which can
be organized into a framework according to their
semantic meaning in that application domain.
When performing frameworking, the software engineer
might have a sketchy idea about candidate components
for reuse. On the other hand, as frameworks comprise
sets of components that express a design for a family of
related applications, it is sometimes beneficial to
change the developing software, so that an available
framework fits in, resulting in a tremendous gain in
productivity. Building and tailoring software from
frameworks is faster and easier than starting from
scratch, although frameworks will not be as generally
useful outside their application domain because they
contain domain-dependent components. Within the
proposed life cycle model, the main result of the
frameworking phase should be the reuse of software
components already developed and the classification of
components to form new frameworks. Instead of
focusing on the individual application, the goal is to
produce workbenches containing software components
and generic application frameworks that characterize
the software systems in a particular application domain.

Assembly: It focuses on selecting a collection of
reusable components or frameworks from specific
application domains. There are differences in the
mechanisms used to achieve reusability when different
kinds of reusable components are involved. The most
basic software components are often reused by
composition, which can be seen as a process of building
a piece of software from elementary self-contained
components; although reusability is naturally
accomplished by reusing classes through inheritance
during object-oriented development, in such case, it
takes place by specialization and generalization of
commonalities among classes. This phase is usually
akin to sifting through a junkyard of books rather than
visiting a library.

Archiving: Reusability not only involves reusing
existing components in a new software system but also
producing components meant for reuse. When a
software system has been developed, the software
engineer may realize that some components can be
generalized for potential reuse in the future. An
important consideration in the quest of reusability is
how to make a potentially reusable component
available to future projects. Archiving should reflect the

activities involving cataloging and storage of
components. The component must be understandable,
well written and well documented. Additionally,
extensive cross-referencing is necessary.
Not all components are created equal, they differ in
complexity, scope (i.e. GUI, service or domain-oriented
components) and levels of functionality. This
differentiation among components makes it difficult to
create a single database of software assets. Placing such
an argument into component technology it produces the
following important observation: several interconnected
reusable components are more effective than a single
universal library of components. Therefore, rather than
creating a single library as a centralized repository of
components, a better strategy is the development of
specific frameworks for certain application domains.

System Analysis: The system analysis phase
emphasizes identification of high-level components in a
real-world application and decomposition of the
software system. The system analysis phase demands
the systems analyst to:

* Study the application and its constraints.
* Understand the essential features of the system.
* Understand the requirements expected to be

satisfied by the software system.
* Create an abstract model of the application in

which these requirements are met.

The main product of the system analysis phase is a
graphical or textual description (informal or formal) of
an abstract model of the application. At this stage, the
services delivered by a software system help figure out
its subsystems and major components. However, as
compared to functional decomposition, this phase is not
concerned with the details of the components. During
this phase, the abstract model of the application
comprising high-level abstractions of software
components is better understood.

Design: Design is an exploratory process. When
designers face an application, they should not ask “how
do I work out a solution to this problem”? Instead, they
should ask, “where are the components that I can
directly or indirectly reuse to solve this problem”? At
this point, they should be able to examine a reusable
library and to select components that closely match the
entities necessary to build the software. The designer
looks for components trying out a variety of schemes in
order to discover the most natural and reasonable way
to refine the software solution.
There has been a tendency to present software design in
such a manner that it looks easy to do. Nevertheless, in
the design of large and complex software, identification
of key components is likely to take some time.
Repetitions are not unusual, since a good design usually
takes several iterations. The number of iterations also
depends on the designer's insight, experience and

J. Comp., Sci., 1 (1): 76-82, 2005

 79

knowledge about the application domain as it is
discussed in the next section. The design process should
stop when the key generic abstractions and the software
behavior are detailed enough to be translated into a
programming language. Hence, the design stage
generates the templates for the implementation phase.

Implementation: The implementation phase is
characterized by the translation of a design model into a
programming language. In this phase the major tasks
involve the implementation of components, in order to
fulfill the required software functionality. Implementing
a component requires defining the data structures and
corresponding algorithms to provide the overall
software services. The best strategy is to isolate a
component and decide whether an available match can
be reused, or if it has to be implemented from scratch.
The component must be easily configurable or
adaptable for different uses, either in original or in
modified form, which means that developing reusable
components is considerable more difficult and involves
much greater expense then producing ordinary
components, although it may still be worth the
investment over the longer term, after a sufficiently
broad reusable assets are created. Some components
picked out during the implementation phase should
undergo further refinements, e.g. treatment of
exceptional conditions and verification, until they
become generic and robust enough to be placed in a
reusable library. This surely adds an overhead to
software construction, which is more than compensated
for by the long term savings when such components are
reused in future projects.

Testing: Once software components are implemented,
it is time to test them. During the testing phase is not
the first time when faults occur, they can be carried
through from the system analysis and design phases.
But testing is focused in finding faults and there are
many ways to make testing efforts more efficient and
effective. Testing of component-based software is best
viewed as two distinct activities: the testing of the
component as a unit and the testing of the assembled
system.
In developing a large software system, testing usually
involves several stages. First, each component is tested
on its own, isolated from the other components in the
system. Such testing, known as component test or unit
test verifies that the component functions properly with
the types of input expected based on the component’s
design. There are several techniques that can be used
throughout this process such as white-box, black-box,
code inspection, walkthroughs, formal proof and so on.
Integration testing is the process of verifying that the
system components work together as described in the
design specification. After a collection of components
has been unit-tested, the next step is ensuring that the
interfaces among the components are well defined.

Once it is assured that the information is passed among
components in accordance with the design, system test
should be performed to guarantee that the desired
functionality is provided. Depending on the profile of
the system, further tests should be done, like
performance tests, acceptance tests, quality tests,
safety-critical tests and a final installation test. The final
result of this phase is a functioning system that can be
prepared for deployment.

Deployment: This is almost the end of system
development, now the system is ready to be presented
to the customer. Nevertheless, deployment involves
more than putting the system into place, it is the time
when users should be helped to understand and feel
comfortable with the software. If deployment is not
successful, users will not make the most of the system
and may be unhappy with its performance. In either
case, users will not be as productive or effective as they
could be and the care taken to build a high-quality
system is put in jeopardy.
The two key issues to successful transfer from the
developer to the user are documentation and training,
which should be integrated with the software. As the
system is developed, software engineers should plan
and come up with aids that help users learn about the
system, such as on-line help. Accompanying the system
is documentation and manuals to which users refer for
problem solving, troubleshooting or further
information. The quality and type of documentation can
be critical, not only to training, but also to the success
of the system. Training for users and operators is based
primarily on major system functionality; there is no
need to be aware of the system’s internal operation.
Therefore, system deployment should be considered
with more care and professionalism than it has been
usually dealt with.
In addition, product flexibility is the new anthem of the
software marketplace and software family fulfils the
promise of tailor-made systems that are delivered
quickly, at low costs, built specifically for the needs of
particular customers and market segment. This requires
constant improvement, upgrading and releases of new
versions of a software system that is preferably
compatible with old versions.

Maintenance: Many software engineers wrongly
assume that once a system is delivered their problems
are over. A system life does not end with deployment.
Software is normally subject to continuing changes
after it is built, when it is operational. Thus the efforts
turn now to the challenge of maintaining a continually
evolving system. During software maintenance,
changes are introduced to a software system. Such
changes are not meant only for correcting errors
occurred in the operational software; these changes may
be also for improving, updating the system to anticipate

J. Comp., Sci., 1 (1): 76-82, 2005

 80

Fig 1: he Y Model for Component-Based Software Development

Fig. 2: The Static (Generic) and Dynamic (Specific) Layers of a Software System

System
Analysis

Deployment

Frameworking

Archiving

Design

Domain
Engineering

Implementat.

Maintenance

Testing

Assembly

Catalog/
Storage

Selection/
Adaptation

Run-time
Object

Component
Template
(class)

J. Comp., Sci., 1 (1): 76-82, 2005

 81

Future errors or adapting the system in response to a
modification in the environment.
Therefore, during the maintenance phase, software
components may be accessed from, as well as new ones
may be added to a reusable library of the concerned
application domain. For instance, a change to adapt the
software to a new environment may specialize already
existing components, so that characteristics of the new
environment are taken into consideration, hence
expanding the spectrum of environments the reusable
components are able to operate in. After changes are
introduced to the system, an updated release of the
software is generated. Maintenance of software system
does not only allow the software to evolve but also the
reusable library concerning the existing systems
expands during the maintenance of a legacy system.

DISCUSSION
People hardly ever solve a new problem from scratch.
Instead, they try to figure out similarities among a new
application and previously known applications and their
solutions, by making suitable assumptions from
acquired experience, people attempt to solve the new
problem. This process is referred to as solving by
analogy and is considered to be a natural way by which
people learn. The successful use of solving by analogy
depends on recognizing similarities between problems
and recalling solutions to analogous problems.
Therefore, it can be assumed that the knowledge that
software engineers have about a certain application
domain increases the chance of reusing solutions from
that domain. Nevertheless, most of the current software
processes do not take this human characteristic into
account.
When software engineers are developing software in an
unfamiliar application domain they do not apply the
same skills as when they are constructing software in a
familiar domain. Indeed, there are differences between
the ways to produce software, depending on whether or
not they can use the knowledge obtained when they
developed equivalent software in a well-known domain.
Hence, the knowledge software engineers have about an
application domain affects the way software
development is carried out. Experts tend to rationalize
in more abstract and high-level terms following a top-
down manner. On the other hand, novices usually start
working with low-level abstractions of the software and
the development process is thus predominantly bottom-
up. The top-down and bottom-up strategies have a
significant effect on reusability because in a top-down
style reusability is mainly accomplished in terms of
generalization and specialization of abstractions,
whereas in a bottom-up manner reusability is primarily
achieved as aggregation of components.

A strictly top-down or bottom-up strategy to software
production is not quite appropriate. The Y model
preaches a top-down or bottom-up fashion for software
creation, taking into consideration the knowledge that a
software engineer has about the application domain.
This knowledge naturally determines the prevailing
strategy to software development. Thus, the
predominant strategy is determined by the software
engineer’s knowledge about the application domain. In
broad terms, it might be concluded that most things are
often built top-down, except for the first time when
knowledge is limited.

CONCLUSION

The graphical features of a CASE tool for object-
oriented design have been developed following the Y
model. The experience of using the Y model has firstly
shown that it is very difficult to follow either a strict
top-down or bottom-up approach and that it is often
necessary to switch over between them. This implies
that it is helpful to clarify high-level functionality for
the software along with the identification of some low-
level components and study their interrelationships. As
a result, when developing large software, it is important
to synthesize ideas from both top-down and bottom-up
fashions.
A software system can be seen at two different layers of
abstraction as shown in Fig. 2. There is an upper layer
that shows the component templates and a lower layer
that consists of run-time objects that depict the behavior
of a particular software system. The idea of being able
to classify parts of a software system as generic and
hence potentially reusable, is a powerful feature and
indeed for spending more time on the general aspects of
the software that might be needed for specific
application. The development of a component should
therefore be with generality and reuse in mind placing
perhaps less emphasis on satisfying the specific needs
of an application that is being developed. In contrast,
the specific parts of a design are those parts which turn
a general set of components into a specific software
system for a particular application.
The Y model supports “development with reuse”
through component assembly, as well as “development
for reuse” through component archiving. Initially, the
software engineer identifies potentially reusable
components from existing reusable libraries. The
components are then selected, adapted and reused
through composition, generalization and specialization
mechanisms. At the end of software development, there
may be many new reusable components that need to be
verified, catalogued, classified and then stored into
reusable libraries. This facility generally has a thesaurus

J. Comp., Sci., 1 (1): 76-82, 2005

 82

of synonyms to help understand the terminology used in
the cataloguing scheme. In addition, a repository should
address the problem of conceptual closeness to retrieve
components that are similar to but not exactly the same
as the desired one.
Finally, the Y model appears to cover the likely phases
of large software development and enforces software
reusability along its phases. Moreover, it takes into
account previous knowledge that software engineers
may have about the application domain, which has an
influence on the prevailing approach (top-down or
bottom-up) to be followed during the software
development, therefore the Y model addresses the
concerns of developing family of software systems,
thus it has great applicability in component-based
software development.

REFERENCES

1. Microsoft, 2004. COM+,

http://www.microsoft.com/com/tech/complus.asp.
2. SUN, 2004. Enterprise JavaBeans,

http://www.java.sun.com/products/ejb/index.html.
3. IBM, 2004. Component Broker,

http://www.software.ibm.com/ad/cb.

4. Object Management Group, 2004. The Common
Object Request Broker Architecture,
http://www.omg.org.

5. Wallnau, K. C., S.A. Hissam and R.C. Seacord,
2002. Building Systems from Commercial
Components. Addison-Wesley.

6. Clements, P. and L. Northrop, 2002. Software
Product Lines. Addison-Wesley.

7. Royce, W.W., 1987. Managing the development
of large software systems. Proceedings of 9th
IEEE International Conference on Software
Engineering, pp: 328-338.

8. Boehm, B.W., 1988. A spiral model of software
development and enhancement. IEEE Computer,
21: 61-72.

9. Bent, K., 1999. Extreme Programming
Explained. Addison-Wesley.

10. Cusumano, M.A. and R.W. Selby, 1997. How
Microsoft builds software. Communications of
the ACM, 40: 53-61.

11. Nuseibeh, B., 2001. Weaving together
requirements and architectures. IEEE Computer,
34: 115-117.

12. Capretz, L.F. and M.A.M. Capretz, 1996.
Object-Oriented Software: Design and
Maintenance. World Scientific Press.

