
Journal of Computer Science 1(4): 495-499, 2005
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Sanjay Tanwani, School of Computer Science, Devi Ahilya University, Indore, India

495

Adaptive Update Policy for Proactive Management of

Deadline Miss Ratio and Data Freshness in Real-Time Database Models

Sanjay Tanwani and Ashwani Kumar Ramani
School of Computer Science, Devi Ahilya University, Indore, India

Abstract: Important applications, like e-commerce, online stock trading, traffic control demand
real-time data services. Conventional database perform poor at these applications. A database for
real-time data services has to support timing constraints and temporal consistency in addition to
supporting characteristics of a conventional database system. In other words, it is desirable to execute
transactions within its deadline using updated data reflecting the current world status. In order to
achieve these objectives, the Quality of Service (QoS) metrics like miss ratio, data freshness, perceived
freshness and Quality of Data (QoD) management schemes along with architectures for effective QoS
management are introduced in Literature. These architectures accommodate the unpredictable change
in user transactions and maintain QoS metrics by changing the update pattern of data items, which are
periodically updated to reflect the real world status. In this study, we present architecture with an
improved update policy and propose an algorithm to change the update pattern in such a manner that
the system is able to maintain QoS metrics even under busty traffic conditions. The simulation results
show that the proposed model can keep QoS metrics, like miss ratio and perceived freshness within
limits under busty traffic conditions [1].

Key words: Real-time database, miss ratio, perceived freshness

INTRODUCTION

A real time database is used in important

applications, like e-commerce, online stock trading and
traffic control requiring stringent timing constraints for
completion of tasks. It is difficult for the conventional
databases to support timing constraints associated with
transactions in addition to concurrency, atomicity and
consistency properties. The transaction timing
constraints can be like, completion deadlines, start
times, periodic invocations and so on. Real-time data
such as, sensor data, stock market prices and location of
moving objects are valid for a specified interval. A real-
time database system has not only to be fast, but also
has to execute transactions under specified timing
constraints maintaining the value(s) of data item(s),
reflecting the current real world state and performing
transactions within their deadlines[2].

In a fixed and predictable environment, executing
transactions within deadline and maintaining data items
in database reflecting the real-world state is feasible
with off-line scheduling. The challenge is to maintain
this correctness in unpredictable and varying load
conditions. Examples include air traffic control,
autonomous vehicles and missile control systems,
which operate in nondeterministic and fault-inducing
environments under severe time constraints. This
requires dynamic solutions and robust real-time

databases delivering real-time performance under
unpredictable and bursty traffic conditions.

The application of QoS aware approaches in
systems can improve the performance in a cost-
effective manner. Vast literature is available in QoS
related research as well as database research separately.
However, limited work is done on QoS issues in
Databases. This is a serious problem as approximately
$420 million was lost due to late non real-time e-
commerce transaction processing in 1999[3]. Work has
been done in the area of auto tuning & auto
configuration so as to improve performance of database
systems. Research at IBM is aimed to support auto
configuration at database through physical database
design[4,5]. Microsoft is working on a database self-
tuning project, aimed to reduce the cost of manual
database tuning needed to support the required database
performance for specific applications[6]. However, these
approaches do not consider QoS guarantee issues in
terms of both timeliness and freshness.

An architecture for QoS management under
varying and unpredictable load conditions is proposed
by Kang et al.[7]. The important QoS metrics, like, miss
ratio, perceived freshness and CPU utilization are
monitored at regular intervals. If the user transaction
load increases and any of the QoS metrics is not found
within acceptable limits, a feedback mechanism is used
to reduce the update load by changing the update
policy. One of the update policy changes the workload

J. Comp. Sci., 1(4): 495-499, 2005

 496

by updating few less frequently accessed data items
only on demand. The problem with this approach is that
the perceived freshness of the system may be affected.
Another update policy incrementally changes the
update period of less frequently accessed data items.
The scheme works well for regular traffic patterns.
However, the incremental change in update period fails
to reduce update workload and accommodate abrupt
change in traffic conditions in order to maintain QoS
metrics within limits. Therefore, as pointed by the
author[7], these policies fail for busty traffic conditions.

In this study, a modified architecture is proposed
for maintaining QoS metrics within limits under
unpredictable and varying load conditions, to improve
the transient performance and therefore eliminating the
problems mentioned above. Along with monitoring the
metrics, like miss ratio and perceived freshness, the
weight of transactions (summation of estimated
execution times) in queue is also monitored[8]. An
increase in queue size is indicative of load increase and
may increase the miss ratio in near future. If the weight
of transactions in queue exceeds a threshold limit,
feedback controller is activated to change the update
policy. We propose an improved update policy, where
increase in workload monitored by CPU utilization is
appropriately mapped to the required change in update
period rather than incrementally changing the update
period as proposed[7]. By calculating the required
change in update period, QoS metrics are maintained
within limits even under busty traffic resulting in
significant reduction in number of deadline misses and
freshness violations. The effectiveness of our approach
is demonstrated with the help of simulation studies.

REAL-TIME DATABASE MODEL

An array of approximately 1000 data items stored
in memory represents the real-time database model.
CPU is the main system resource. The transactions in
the model are classified as: User and Update
transactions.

User transactions: The user transactions refer to data
items in the main memory and perform some arithmetic
and logical operations over these data items. A user
transaction may perform some I/O operation in
between. A random delay is introduced during
execution of user transaction to simulate I/O operation.
However, for the current research, it is assumed that, all
the user transactions are CPU bound without waiting
for I/O operation. A deadline is associated with these
transactions. The transaction adds value to the system
only when executed within its deadline. All the
transactions are assumed to have soft deadlines. With
soft real-time transactions, it is not necessary that all the
transactions meet their deadlines all the time. The goal
is to maximize the number of transactions that meet

their deadlines. A transaction is allowed to continue,
even if, it misses its deadline. For example, a web site
tries its best to service customers as per the Service
Level Agreement (SLA). Most of the times, most of the
users experience acceptable response times. But, a
transaction is not aborted, if the service time exceeds
that acceptable limit. Solutions for meeting soft
deadlines are dealt in the literature[9-12].

Update transactions: An update transaction updates a
data item regularly as per its update interval. It is
assumed that the update transactions maintain the data
item reflecting the real-world state on a regular basis.
For example, the data coming from sensors in an
embedded system is captured and the data items are
updated periodically as per the sensor state. A validity
interval is associated with every data item. The update
transactions are generated for various data items so that
they reflect the real-world state within their validity
intervals. An update transaction adds value to the
system, only if, it is executed within the validity
interval. Else, it is aborted. A user transaction, while
referring to a data item must get a fresh copy (recently
updated and reflecting the current world state) of data
item. A transaction referring to stale data is blocked and
waits for the data item to update before continuing
further.

Data access issues: The data items are shared between
user and update transactions. Therefore, the access to
these data items is made through critical section. The
data items are classified into two categories: Cold and
Hot. Cold data items are the data items, which are
accessed less frequently as compared to update
frequency. The hot data items are the data items, which
are frequently accessed as compared to update
frequency. Hot data items are immediately updated.
The update policy of cold data items is changed from
immediate to on-demand, when the load of user
transactions is increased. A term, called Access Update
Ratio is introduced to categorize hot & cold data items.
Access Update Ratio (AUR) of a data item is defined as
the ratio of Number of References/ Number of
Updations made to the data item in one sec. In our
study, data items with AUR < 1 are termed as cold data
items.

Architecture: The QoS management architecture
proposed[7] is modified and is shown in Fig. 1. The user
and update transactions are executed concurrently in a
manner that the miss ratio (ratio of number of
transactions missing their deadlines to the total number
of transactions) is kept below the acceptable/predefined
limits. Also, whenever, the miss ratio exceeds the
acceptable limits (overshoot), it is brought back to the
acceptable limits with the help of feedback controller
within an acceptable time (settling time).

J. Comp. Sci., 1(4): 495-499, 2005

 497

Fig. 1: Architecture for QoS management

An independent thread monitors the current miss
ratio, queue size of transactions ready for execution and
perceived freshness at predefined sampling interval.
The miss ratio and current CPU utilization along with
weighted queue size compute the required CPU
utilization adjustment. Considering the current
performance error such as the miss ratio overshoot or
CPU underutilization, the QoD manager adapts the
update policy or period (according to the selected
freshness management scheme) to reduce the update
workload, if necessary. The admission controller
enforces the remaining utilization adjustment, if the
reduction in the update workload does not result in
keeping miss ratio within acceptable limits.

Feedback controller: Feedback Controller activates
when
i. The user transaction workload is increased
ii. Transactions are unable to meet their deadlines

leading to increase in miss ratio beyond the
acceptable limits or/and

iii. Transactions getting stale data due to missed
update operation. The module calculates the
required CPU utilization adjustment using a
proportional and integral controller and performs
necessary action to bring QoS metrics under
acceptable limits. The action is in the form of
activating the adaptive update policy so as to
reduce the update workload. This action permits the
user transactions to meet their deadlines.

Transaction handler: An important component of our
architecture, called transaction handler consists of a
predefined number of worker threads. Each worker
thread through a critical section picks up the next
transaction from the user transaction queue and starts
the execution. Every transaction during its execution
refers to data items. The reference to data items by the
user transactions is made in a manner that the defined

access frequency of a data item is maintained. The
shared data items are updated and referred through a
critical section. The freshness of a data item is checked
before accessing a data item using the corresponding
update interval and validity period. A user transaction is
placed in blocked queue, if a stale data item is accessed.
It waits for the updation to perform before continuing
further.

Modified architecture: The model proposed[7] is
modified with an adaptive update policy and includes
an additional parameter: weighted-queue-size. The
overload condition is detected by monitoring the CPU
utilization as well as the queue size. If the weighted
queue size exceeds its threshold, then feedback
controller is activated to reduce the update workload.
The advantage of our approach is that, we can predict
the load increase and take corrective action before the
CPU utilization, miss ratio, perceived freshness and
other QoS metrics exceed their threshold limit. It may
be late, before the feedback controller starts and brings
back QoS metrics back within their desired limits. Also,
the queue size can be easily maintained with every
insertion and deletion of transactions from the queue.
An increase in queue size is an indicator of likely
increase in CPU utilization, whereas, a decrease in
queue size is an indicator of likely decrease in CPU
utilization. The adaptive update policy reduces the
update transaction workload in such a manner that the
number of user transactions meeting their deadlines is
increased.

Miss ratio adjustment: When the miss ratio exceeds
the predefined acceptable limits, it is required to bring
back the miss ratio within limits by reducing the update
workload. Increasing the update period of few cold data
items reduces the update workload. Assume that, the
required reduction in CPU utilization is Y and deltaX is
reduction in CPU utilization because of eliminating one
update transaction. So, the required number of update
eliminations, say X is calculated by the formula given
below:

X = Y / deltaX (1)

The required reduction in the number of update
transactions is mapped to increase in update period of
few cold data item. If the feedback controller suggests
reducing CPU utilization by Y% to maintain miss ratio
and perceived freshness within limits, it is found that,
by how much factor, the update period of few cold data
items is to be increased. Given below is the equation
describing the increment factor of update period.
ΣupdateFrequency denotes the sum of update frequency
of all the cold data items.

incrementFactor=(1.00–((ΣupdateFrequency-X)/ΣupdateFrequency)
 (2)

J. Comp. Sci., 1(4): 495-499, 2005

 498

All the cold data items’ update period is then
incremented by incrementFactor. When the QoS
metrics is not found within acceptable limits even after
changing the update policy of all the cold data items,
admission control is then applied.

QoD upgrade: Freshness adjustment: When the
perceived freshness limit[7] (ratio of temporally valid
data references as compared to total number of data
references) is violated, the update period of few cold
data items is decreased so as to maintain the data items
reflecting their status closer to real-world status. Given
below is the equation describing the calculation of
decrementFactor for update period of few cold data
items based on the required increase in CPU utilization
and required increase in number of update transactions.
The data items in the order of relatively high AUR
value are selected for this purpose. However, the policy
upgrade starts only when the CPU utilization reaches
below a specified threshold value of freshness
constraints are violated. ΣupdateFrequency denotes the
sum of update frequency of all the cold data items.

decrementFactor=((ΣupdateFrequency-X)/ΣupdateFrequency) (3)

Modified update policy: We present an adaptive
update policy, which modifies the regular update
pattern of data items to reflect the real-world status in
such a manner that the system is able to maintain QoS
within limits even under unpredictable and busty traffic
conditions. Under abrupt change in workload, the cold
data item’s update interval is changed depending upon
the required workload adjustment. We estimate the
workload based on weighted queue size and existing
CPU utilization and then mapping it to appropriate
changes in update workload so as to accommodate
increased user workload and still maintaining QoS
within limits. The detailed algorithm is explained
below:

 for I = 1 to numberOfDataItems
{
{filter frequently accessed hot data items. Hot data
items update interval is kept unchanged even under
overloaded condition)
let Y = expected reduction in workload
{Y is estimated based on existing workload and the
weighted queue size}
let ∆x = reduction in workload because of eliminating
one update transaction
Total number of update eliminations required by
changing the update policy
 X = Y/∆x
let lfaDataItems = less frequently accessed data items
with updatePeriod < settlingTime
let sumUpdateFrequency represents the sum of update
frequency of all the lfaDataItems

for I = 1 TO lfaDataItems
if (updatePeriodi <= settlingTime)
{
if (X > 0)
{
 incrementFactor = (1.00 - ((sumUpdateFrequency - X)

 / sumUpdateFrequency));
updatePeriodi /= incrementFactor;
} else
{
decrementFactor = ((sumUpdateFrequency - X)

 / sumUpdateFrequency);
updatePeriodi /= decrementFactor;
}
}

Performance evaluation: The simulator is designed to
implement the proposed real-time database memory
model and demonstrate the effectiveness of the
proposed architecture. It simulates concurrent execution
of two sets of transactions. User & Update transactions
are generated through two separate streams. User
transaction arrival rate is random and follows an
exponential distribution. Update transactions are
generated as per the predefined update intervals. The
access to data items by user transactions is random, but
controlled in a manner that the predefined Access
Update Ratio is maintained.

EXPERIMENTAL RESULTS AND DISCUSSIONS

Simulator varies the application load by changing
the inter-arrival rate of user transactions. The load of
update transaction was fixed at approximately 50% of
normal load, depending upon update interval of data
items. The simulation run was carried out by varying
the load from 10-200% at an interval of 10 sec each.
Overall, simulation run was 200 sec per
experimentation. The experimentation was repeated
with identical load conditions and keeping all other
tunable parameters fixed.

As shown in the Fig. 2, it is observed that, in the
absence of adaptive update policy through feedback
control, miss ratio exceeds the acceptable/predefined
limits. However, by monitoring the queue size in
addition to CPU utilization, miss ratio, perceived
freshness, load increase can be predicted and
accordingly, feedback controller is activated. The
overall objective is to improve the transient
performance, reduce the settling time and minimize
number of transactions missing their deadlines during
the transient period.

In the second experiment, abrupt load spikes for
short duration were introduced. Load was increased to
100%-150% for a short duration of 1-5 sec. It is evident
from the Fig. 3 given below, that the total number of

J. Comp. Sci., 1(4): 495-499, 2005

 499

Fig. 2: Application load vs miss ratio

Fig. 3: Application load vs miss ratio (with bursty load

variation)

transactions missing their deadlines was notably
reduced as compared to the total number of missed
transactions without feedback controller. The results
clearly show that for abrupt load increase, the miss ratio
reduction with adaptive update policy along with queue
monitoring is considerably higher than that observed
without using it, which shows the effectiveness of the
proposed architecture.

CONCLUSIONS

Kang et al.[7] have studied the trade-off issues
between timeliness and data freshness. They have
proposed a model to provide performance guarantee in
terms of either miss ratio or data freshness. We have
extended that model and proposed a modified
update policy so as to maintain miss ratio and data
freshness even under busty traffic conditions. The QoS
management architecture proposes a modified update
policy, which adjusts the update workload as per
changes in use transactions workload and tries to bring
back QoS metrics within limits so as to reduce
overshoot and latency time. With the proposed update

policy, which maps the increased workload to required
change in update period, QoS metrics were maintained
within limits even under busty traffic. Further, by our
improved adaptive update policy, significant reduction
in number of deadline misses and freshness violations
was observed. The results obtained through simulation
show that the miss ratio can be better controlled with
proposed approach during busty load variation. The
proposed architecture is being further extended to
associate weight with every transaction based on its
CPU or I/O bound nature and compute weighted-queue-
size so as to accurately predict load increase and
accordingly change the update pattern, thereby further
improving the miss ratio.

REFERENCES

1. Bestavros, A., K-J Lin and S. Son (eds.), 1997.

Real-time database systems: Issues and
applications. Kluwer Academic, Boston.

2. Stankovic, J., S. Son and J. Hansson, 1999.
Misconceptions about real-time databases. IEEE
Comp., 32: 29-36.

3. ActivMedia Research. Real Numbers behind ’Net
Profits. http://www.activmediaresearch.com/.

4. Chaudhuri, S. and G. Weikum, 2002. Rethinking
database system architecture: Towards a self-
tuning, RISCstyle database system. In: Very Large
Databases.

5. Schiefer, B. and G. Valentin, 1999. DB2 universal
database performance tuning. IEEE Data Eng.
Bull., 22:12-19.

6. Weikum, G., A. Moenkeberg, C. Hasse and P.
Zabback, 2002. Self-tuning database technology
and information services: from wishful thinking to
viable engineering. In: VLDB Conference.

7. Kang, K.D., S.H. Son, J.A. Stankovic and T.F.
Abdelzaher, 2002. A QoS-sensitive approach for
timeliness and freshness guarantees in real-time
databases. In the 14th Euromicro Conference on
Real-Time Systems, (With modifications to appear
in July 2004, IEEE Transactions on Knowledge and
Data Engineering)

8. Tanwani, S., A.K. Ramani. 2004. Proactive
management of deadline miss ratio and data
freshness in real-time databases. CIT 2004 7th
International Conference on Information
Technology, IDRBT, Hyderabad, India Dec. 20-23.

9. Huang, J., J.A. Stankovic, K. Ramamritham and D.
Towsley, 1991. On using priority inheritance in
real-time databases. Proc. Real-Time Systems
Symposium.

10. Son, S.H., Y. Lin and R.P. Cook, 1991.
Concurrency control in real-time database systems.
In: Foundations of Real-Time Computing:
Scheduling and Resource Management. Edited by
Andre van Tilborg and Gary Koob. Kluwer
Academic Publishers, pp: 185-202.

11. Stankovic, J.A., K. Ramamritham and D. Towsley,
1991. Scheduling in real-time transaction systems.
In: Foundations of Real-Time Computing:
Scheduling and Resource Management. Edited by
Andre van Tilborg and Gary Koob. Kluwer
Academic Publishers, pp: 157-184.

12. Stankovic, J., C. Lu, S. Son and G. Tao, 1999. The
case for feedback control real-time scheduling.
EuroMicro Conference on Real-Time Systems.

