
Journal of Computer Sciences 1 (1): 47-62, 2005
ISSN 1549-3636
© Science Publications, 2005

47

The Use of Neural Networks in Real-time Face Detection

Kevin Curran, Xuelong Li and Neil Mc Caughley
Internet Technologies Research Group, University of Ulster

Magee Campus, Northland Road, Northern Ireland, BT48 7JL, UK

Abstract: As continual research is being conducted in the area of computer vision, one of the most
practical applications under vigorous development is in the construction of a robust real-time face
detection system. Successfully constructing a real-time face detection system not only implies a system
capable of analyzing video streams, but also naturally leads onto the solution to the problems of
extremely constraint testing environments. Analyzing a video sequence is the current challenge since
faces are constantly in dynamic motion, presenting many different possible rotational and illumination
conditions. While solutions to the task of face detection have been presented, detection performances of
many systems are heavily dependent upon a strictly constrained environment. The problem of detecting
faces under gross variations remains largely uncovered. This study presents a real-time face detection
system which uses an image based neural network to detect images.

Key words: Face Detection System, Real-Time, Neural Network, Images

INTRODUCTION

The face is the most distinctive and widely used key to
a person’s identity. The area of Face detection has
attracted considerable attention in the advancement of
human-machine interaction as it provides a natural and
efficient way to communicate between humans and
machines. The problem of detecting the faces and facial
parts in image sequences has become a popular area of
research due to emerging applications in intelligent
human-computer interface, surveillance systems,
content-based image retrieval, video conferencing,
financial transaction, forensic applications, pedestrian
detection, image database management system and so
on. Face detection is essentially localising and
extracting a face region from the background. This
may seem like an easy task but the human face is a
dynamic object and has a high degree of variability in
its appearance, which makes face detection a difficult
problem in computer vision. Consider the pictures in
Fig. 1 these are typical images that could be used in
face classification research. They have no background
and are all front facing. Any face detection program
should have no trouble in detecting these.
A wide variety techniques have been developed ranging
from simple edge-based algorithms to composite high
level approaches using advanced pattern recognition
methods [1, 2, 3, 4, 5]. Face detection can be
established by a feature-based method and an image-
based method.

Feature Based Method to Face Detection: This area
contains techniques that are classified as low-level
analysis. These are methods that that deal with the
segmentation of visual features using pixel properties
such as gray-scale and colour. The features that these

low-level methods detect can be ambiguous, but these
methods are easy to implement and fast. Another area
of techniques called feature analysis, where face
detection is based upon facial features using
information of face geometry. Through feature
analysis, feature ambiguities are reduced and locations
of the face and facial features are determined. The last
group involves the use of active shape models. These
have been developed for the purpose of complex and
non-rigid feature extraction such as eyes and lip
tracking.

Low-level Analysis
Edges: This is the most primitive feature in face
detection applications. The earliest of this work was
done by [6]. Most of the work was based on basic line
drawings of faces from photographs, aiming to locate
facial features. Further work was carried out by [4]
whose work led to tracing a human head outline. This
was the basis of the detection program, where the next
step was feature analysis to determine if the shape
detected was indeed a human face shape. Edge
detection essentially locates major outlines in the image
(the threshold can be set to detect predominant lines or
indeed all lines). It then assigns each pixel on the line
with a binary digit to set it out from the back ground.
Many types of edge operators exist. They all operate on
the same premise and give similar results. Fig. 3 and 4
show some of the edge routines applied to Fig. 2.
In an edge-detection based approach to face-detection,
the edges (after identification) need to be labelled and
matched to a face model in order to verify correct
detections. Features have to be located and identified
such as eyes, hairline or jaw line. If these all seem to
be in ratio and in place a face is detected. This method
is accurate in images with no complex backgrounds and

J. Comp.,Sci., 1 (1): 47-62, 2005

 48

Fig. 1: Images that could be used for Face Classification

Fig. 2: Original Image Fig. 3: Sobel Edge Filtering Fig. 4: Canny Edge Filtering

Average Lengths (Times the Reference Length) of Facial Features

 Head Height Eye Separation Eye to Nose Eye to Mouth
Average Length 1.972 0.516 0.303 0.556

Fig. 5: Table showing De Silva’s et al [17] Findings

the face needs to be in clear view facing front. These
limitations sometimes restrict edge detection
implemented as a pre-processing tool to identify face
shapes and then these figures are handed over to a
pattern based system for more accurate detection
process.

Colour Segmentation: The detection of skin colour in
colour images is a very popular and useful technique
for face detection. This section explains an approach
for determining the skin coloured parts of an image.
Many Techniques have reported locating skin colour
regions in an image [1, 2, 7, 8]. While the input colour
image is typically in the RGB format, the RGB model
is not used in the detection process. It is well known
that the RGB colour model is not a reliable model for
detecting skin colour. This is because RGB
components are subject to luminance change, this
means face detection may fail if the lighting condition
changes from image to image. The technique usually
uses colour components in the colour space, such as
HSV or YCbCr [2]. The colour model that we use is the
YIQ model, a universal colour space used for colour
television transmission.

Feature Analysis
Feature Searching: Feature searching works on the
premise that it exclusively looks for prominent facial
features in the image. After this main detection less
prominent features are searched for using standard
measurements of facial geometry. A pair of eyes is the
most commonly applied reference feature [8, 9,10].
Other features include the top of the head and the main
face axis. This method is often combined with edge
detection where the edge densities are detected from a
top-down approach starting from the top of the head.
These are measured and after distinguishing a reference
measurement. These measurements are plotted against
the average lengths of facial measurements (which is
found by measuring a set of varying face images held
on a database). Fig. 5 shows a table showing the
average measurements in respect to reference length
obtained from the modelling of 42 frontal faces in a
database.
This method does not rely on skin
colour and so manages to detect various
races. This method is also restricted to
frontal face images with a plain background
and it need a clear forehead not hidden by

J. Comp.,Sci., 1 (1): 47-62, 2005

 49

hair to ensure detection. If facial hair, earrings and
eyewear are worn on the face it fails to detect the face.

Active Shape Models
Snakes: Snakes (or Active Contours) were first
introduced by [11]. They are commonly used to locate
a head boundary. This is done by firstly initialising the
snake at the proximity around the head boundary. The
snake locks onto the nearby edges and subsequently
assumes the shape of the head. The snakes path is
determined by minimising an energy function, Esnake,
denoted as Esnake = Einternal + Eexternal Where Einternal,
Eexternal are the internal and external energy functions.
The internal energy defines the snake’s natural
evolution and external counteracts the internal energy
to enable the contours to deviate from the natural
evolution and assume the shape of nearby features –
ideally the head boundary. The appropriate energy
terms have to be considered. Elastic energy is used
commonly as internal energy – this can give the snake
the elastic-band characteristic that causes the snake’s
evolution (by shrinking and expanding). The external
energy requirement can include a skin colour function
which attracts the skin colour function to the face
region. Snakes are well equipped to detect feature
boundaries but it still has its problems. The contours
often get trapped on false image features causing the
program to crash. Snakes also try to keep to the
minimum curvature and this can lead to problems as
some face shapes may not be completely convex and
thus will return false results.

Point Distributed Models: This method takes the
statistical information of the shape given in an image
and compares it to a pre-defined training set to
determine whether the shape is a head (or indeed a head
shape) [12]. The point distributed model created by the
program is put into a set of points which are labelled.
Variations of these points are first determined by using
the training set that includes objects of different sizes
and poses. Using principal component analysis,
variations of the features in a training set are
constructed as a linear flexible model. The model
comprises the mean of all the features in the sets and
the principle modes of variation for each point where x
represents a point on the point distributed model, x is
the mean feature in the training set for that point, P =
[p1 p2 … pt] is the matrix of the t most significant
variation vectors of the covariance of deviations, and v
is the weight vector for each mode.
x = x + Pv

Face point distribution models were first developed by
Lanitis et al. as a flexible model. This model defines a
global model for a face which includes facial features
such as eye-brows, the nose and eyes. Using 152
manually planted control points (x) and 160 training
face images, the face point distribution model is

obtained. For comparison the mean shape model x is
placed on top (or near) the area being tested. The labels
of each image are then compared. During the
comparison the corresponding points are only allowed
to differ in a way that is consistent with the training set
data. The global characteristic of the model means that
all features can be detected simultaneously so this
means that the need for feature searching is removed,
cutting down pre-processing time. Another advantage
of this technique is that it can detect a face even if a
feature is missing – hidden or removed. This is because
other feature comparisons can still detect the face. This
technique needs to be further developed to detect
multiple faces in images.

Face Detection Using Colour Segmentation: Our
research uses a combination of techniques to identify a
face. This is intended to increase accuracy. We firstly
use skin colour segmentation to detect a possible face
region in an image. We then put this region through a
more complex pattern recognition program to identify a
face. The image is tested in the YIQ space to test each
pixel to determine and to classify if it’s either skin or
non-skin [1]. A lookup table is employed to classify
the “skinness” of each pixel, where each colour is tested
to see if it lies in the range of skin colour and be
associated a binary value of one if it is and zero if not.
A bounded box is needed to determine the range and
location of the values of ones. The purpose of the
colour segmentation is to reduce the search space of the
subsequent techniques, so it is important to determine
as tight a box as possible without cutting off the face.
After the colour image has been mapped into a binary
image of ones and zeros representing skin and non-skin
regions. It is common during the colour segmentation
to return values that are closely skin but non-skin, or
other skin-like coloured regions that is not part of the
face or the body. These noisy erroneous values are
generally isolated pixels or group of pixels that are
dramatically smaller than the total face regions.
Inclusion of these noisy pixels would result in a box
that is much larger than intended and defeat the purpose
of the segmentation. Further morphological refinements
are applied to the binary output in order to reduce some
of the effects of these noisy pixels. Since these spurious
errors are generally much smaller than the face region
itself, morphological techniques such as erosion,
filtering and closing are good tools to use to eliminate
these pixels.

Image Based Approach to Face Detection: The image
based approach to face detection is plagued by the
unpredictability of image environmental conditions and
unpredictable face appearances. The image based
approach is usually limited to detecting one face in a
non complex background with ideal conditions. There
is a need for techniques that can detect multiple faces
with complex backgrounds. The pattern recognition

J. Comp.,Sci., 1 (1): 47-62, 2005

 50

area of face detection was developed for these reasons.
This technique works on the idea that the face is
recognised by comparing an image to examples of face
patterns. This eliminates the use of face knowledge as
the detection technique. This means inaccurate or
uncompleted data from facial images can still be
detected as a face. The approach here is to classify an
area as either face or non-face, so a set of face and non-
face prototypes must be trained to fit these patterns.
These form a 2D intensity array (thus the name image
based) to be compared with a 2D array taken from the
input image test area. This then decides whether the
face falls into a face or non-face type. In the following
sections, we present some of the complex techniques
that use a feature based approach. These are
Eigenfaces, Neural Networks and Support Vector
Machines.

EigenFaces: In the late 1980s, [13] developed a
technique using principal component analysis to
efficiently represent human faces. Given an ensemble
of different face images, the technique first finds the
principal components of the distribution of faces,
expressed in terms of eigenvectors (taken from a 2D
image matrix). Each individual face in the face set can
then be approximated by a linear combination of the
largest eigenvectors, more commonly referred to as
eigenfaces, using appropriate weights. The eigenfaces
are determined by performing a principal component
analysis on a set of example images with central faces
of the same size. In addition the existence of a face in a
given image can be determined. By moving a window
covering a sub image over the entire image faces can be
located within the entire image. A pre compiled set of
photographs comprise the training set, and it is this
training set that the eigenfaces are extracted from. The
photographs in the training set are mapped to another
set which are the eigenfaces. As with any other
mapping in mathematics, we can now think of the data
(the photographs and the eigenfaces) as existing in two
domains. The photographs in the training set are one of
these domains, and the eigenfaces comprise the second
domain that is often referred to as the face space. Fig. 6
shows an example of eigenfaces that could be generated
to make up the face space.
The eigenfaces that comprise the face space are added
together with appropriate weights to re-compose one of
the photographs in the training set. It is through the
analysis of these weights that face detection can be
realized. A training set of 100 to 150 images is enough
to generate appropriate eigenfaces.

Neural Networks: Neural Networks have become a
popular technique for pattern recognition face detection
[14,15, 16]. They contain a stage made up of
multilayer perceptrons. Other techniques are also
applied to add to the complexity of its process.

Modular architectures, committee–ensemble
classification, complex learning algorithms, auto
associative and compression networks, and networks
evolved or pruned with genetic algorithms are all
examples of the widespread use of neural networks in
pattern recognition. The first neural approaches were
based on Multi-layer perceptrons which gave promising
results with fairly simple datasets. The first advanced
neural approach which reported results on a large,
difficult dataset was by [16]. Rowley’s system
incorporates face knowledge in a retinally connected
neural network shown in Fig. 7. The neural network is
designed to look at windows of 20 x 20 pixels (thus 400
input units). There is one hidden layer with 26 units,
where 4 units look at 10 x 10 pixel sub regions, 16 look
at 5 x 5 sub regions, and 6 look at 20 x 5 pixels
overlapping horizontal stripes. The input window is
pre-processed through lighting correction (a best fit
linear function is subtracted) and histogram
equalization. A problem that arises with window
scanning techniques is overlapping detections. [17]
deals with this problem through two heuristics:

1. Thresholding: the number of detections in a

small region surrounding the current location is
counted, and if it is above a certain threshold, a
face is present at this location.

2. Overlap elimination: when a region is classified

as a face according to thresholding, then
overlapping detections are likely to be false
positives and thus are rejected.

During training, the target for a face-image is the
reconstruction of the image itself, while for nonface
examples; the target is set to the mean of the n nearest
neighbours of face images. A training algorithm based
on the bootstrap algorithm of Sung and Poggio [7] was
employed (and also a similar pre-processing method
consisting of histogram equalization and smoothing).
The system is trained with a simple learning rule which
promotes and demotes weights in cases of
misclassification. Similar to the Eigenface method, [18]
use the bootstrap method of Sung and Poggio for
generating training samples and pre-process all images
with histogram equalization. The training set outlined
in Error! Reference source not found. can also be used
in this training circumstance.

Support Vector Machines: Support vector machine
is a patter classification algorithm developed
by V. Vapnik and his team at AT &T Bell
Labs [19, 20]. While most machine learning
based classification techniques are based
on the idea of minimising the error
in training data (empirical risk) SVM’s
operate on another induction principle , called

J. Comp.,Sci., 1 (1): 47-62, 2005

 51

Fig. 6: Possible Eigenface Images

Fig. 7: The system of Rowley [16]

structural risk minimization, which minimizes an upper
bound on the generalization error. Training is
performed with a boot-strap learning algorithm [21].
Generating a training set for the SVM is a challenging
task because of the difficulty in placing “characteristic”
non-face images in the training set. To get a
representative sample of face images is not much of a

problem; however, to choose the right combination of
non-face images from the immensely large set of such
images is a complicated task. For this purpose, after
each training session, non-faces incorrectly detected as
faces are placed in the training set for the next session.
This “bootstrap” method overcomes the problem of
using a huge set of non-face images in the training set,

J. Comp.,Sci., 1 (1): 47-62, 2005

 52

many of which may not influence the training [7]. To
test the image for faces, possible face regions detected
by another technique (say, colour segmentation) will
only be tested to avoid exhaustive scanning. In order to
explain SVM process consider data points of the form
{(xi,yi)}i=1..N. We wish to determine among the
infinite such points in an N-dimensional space which of
two classes of such points does a given point belong to.
If the two classes are linearly separable, we need to
determine a hyper-plane that separates these two classes
in space. However, if the classes are not clearly
separable, then our objective would be to minimize the
smallest generalization error. Intuitively, a good choice
is the hyper-plane that leaves the maximum margin
between the two classes (margin being defined as the
sum of the distances of the hyper-plane from the closest
points of the two classes), and minimizes the
misclassification errors. The same data used to train a
neural network can be trained here. The learning time
for SVM algorithms are significantly smaller than that
for the neural network. Back propagation of a neural
network takes more time than the required training time
of a SVM training period.

Face Detection Using Neural Networks: Along with
using skin colour segmentation to test an image for the
presence of a face, neural networks are used in the next
stage of the detection process. The Colour
segmentation will give the result of an area where there
is a possibility there is a face. There may be more than
one region in the image- be it a face or a face coloured
region. This region will be tested using the pattern
recognition technique. Testing only the regions brought
forward by the colour segmentation stage cuts down
processing time and increases accuracy. Of course this
accuracy also dependant on how good the program is
and how good the training set is. The purpose of the
system is to simulate human vision and detect a face
from an image, essentially determining which part of an
image contains a face. The system is developed in
Matlab and the system’s aim is to:

* Accept an image from the user
* Run the image through a set of processes to

detect the presence of a face through Skin Colour
Segmentation and Pattern Recognition using
Neural Networks.

* Localise and map the face area
* Output a final image showing location of face on

the image

The Colour Segmentation module needs to:

* Accept an image from the program interface
* Convert this image into the from RGB to YIQ

format

* Test the image for the presence of skin coloured
pixels

* Create a binary image of the original image
showing skin and non-skin pixels

* Clean up image to eradicate early false
detections

* Detect and locate potential face areas
* Output areas of image for Neural Network

Testing
The colour segmentation stage ensures that no
exhaustive unnecessary testing of Neural Network
processing needs to be performed. The Neural Network
Based Detection modules needs to:

* Gain a set of images (face and non-face) to be

the basis of detection.
* Normalise images to ensure uniform datasets
* Train set of normalised images (face and non-

face)
* Accept regions of images from colour

segmentation program to be tested
* Test the regions of the images
* Determine if region is face or non face
* Find centre of face and mark for output

presentation
* Output image with detected face.

A training set of images that will give acceptable and
reliable results is also necessary. This includes entering
non-face images that will classify some obvious non-
face detections. Fig. 8 shows a block diagram of the
Neural Network face detection system. It shows that
the data preparation stage takes place first. The
completion of this stage is essential for the next stage to
begin. This prepares the training data for the Neural
Network training stage. Provisional data is used for the
non-face data entered at the first stage, further on in the
development of the system a bootstrapping technique is
employed to gain non-face data and continually
increase accuracy. Once these first two stages are
complete and a sufficient data set is built up the face
detector can run stand-alone. The success of the face
detector is dependant upon the accuracies of the data
preparation and training stages.
In order to train a neural network for face detection we
need to input data that can train the network. This input
data takes three forms: Face Data, Non-face Data and
a Face Mask. The face mask is input through a function
called buildmask this createv a mask that cuts off
surrounding edges of the image rectangle to give an
oval shape to the face image. This mask is used to
apply to training images (face and non-face) and to use
in the rectangle for scanning and testing an image. This
is done as all faces are oval in shape. This helps
eliminate any false detection as a piece of scenery that
appears to the program as a face might not have an oval

J. Comp.,Sci., 1 (1): 47-62, 2005

 53

Fig. 8: System Architecture of the Face Detection System

shape and therefore should be eliminated. It also helps
in removing any piece of the background image that
obstructs the image making it look like a non-face. It
should confirm that inside the oval is a face. A
representation of the mask is shown in Fig. 9.

Fig. 9: Face Mask

The size of the rectangle where this mask is contained
is 18 x 27 pixels. With the mask applied to an image
(training or tested) this gives approximately 400 pixels.
These 400 pixels are the pixels tested in the final scan.
The image scans over the image and picks out
rectangles that contain information that tells it that it is
a face. [16] suggests 400 input units for the training and
testing of a network. A face dataset (Yale face
database) was used for training the system [5]. A
variety of 120 face images with a variety of emotions,
poses and lighting effects were used for the neural
network. Each face photo was manually edited down to
an 18x27 pixels width since the faces gained from the

database are not already in this format. A few
examples of the manually edited images are shown in
Fig. 10. These are un-normalised, unmasked images in
a raw form before they are entered into the data
preparation stage.
Training a neural network for face detection is
challenging because of the difficulty in characterising
non-face images. Unlike face recognition where the
classes to be discriminated are different faces, the two
classes to be tested are ‘images containing faces’ and
‘images not containing faces’. It is a simple task to get
a representation of faces, but it is a much harder task to
get a valid representative of images that do not. Initially
the system processed a random set of images that did
not contain face data. These allowed the network to
train and classify them as non-faces. These images
were then flipped left to right and upside down to
expand this dataset. However, in order to achieve
better accuracy, a more effective method for finding
valid non-face images was needed, not just random
grabs. The collecting of valid, effective, non-face
images can be a difficult task thus we employed a
technique which eliminated the need for a huge training
set. Inappropriate non-face images that the system
would mistake as a face were tagged as false detections
in the early stage of training and detection. These
images were fed into the neural network and it was
retrained to include these false detections as non-faces.
Random images were used initially to set up the
network and gain early results.

�������������	
��

���	��
������
���
���

�����������	�������
������	
��

����������	�

��
����������	�

�

��
������������	�

�

�������	���

��	��������

��	����

27 pixels

18 pixels

Journal of Computer Sciences 1 (1): 47-62, 2005
ISSN 1549-3636
© Science Publications, 2005

47

Fig. 10: Examples of Training Images I will use

Normalisation: The subject of lighting conditions on
an image can determine whether or not the face can be
classified as an image, or indeed a piece of scenery be
mistaken for a face. Neural nets are susceptible to pixel
magnitude values. The system can correct an image
with lighting effects to the point that it is similar to
testing the image with no lighting effects (also shown).
[7] apply a system of subtracting gradient correlation
and then equalising the histogram afterwards to
eliminate any lighting effects that may effect the image.
We employ a similar
approach where we correct some lighting effects in
order to gain improved accuracy that only a corrective
method such as this can provide. We fit a single linear
plane to each image. Once the lighting direction is
corrected for, the grayscale histogram can then be
rescaled to span the minimum and maximum grayscale
levels allowed by the representation. This returns the
image as a clean image with no illumination effects.
This should be applied to all face and non-face training
images and scanned portions of the image in order for
‘fair’ detection. The algorithm for the normalisation
routine is discussed later.

Algorithms For Data Preparation: The algorithms for
the data preparation stage of the system are:

Load Training Data
� Build a 18x27 oval image mask
� Load face training images (after manually editing
the face into 18x27 pixel rectangle)

- Flip image left and right to expand dataset
- Normalise Datasets (use Normalise Algorithm)
- Mask each image with oval image mask within

the 18x27 rectangle
- Create image vectors suitable to use for

training
� Load non-face training images (after manually
editing the face image into an 18x27 pixel rectangle).

- Flip image left, right and upside-down to
expand dataset

- Normalise Datasets (use Normalise Algorithm)
- Mask each image with oval image mask within

the 18x27 rectangle
- Create image vectors suitable to use for

training

� Aggregate data into labelled data sets and pass the
vectors to the training algorithm

Normalise Image
� Input an image
� Set up a set of shading matrices to subtract from
images
� Shade out an approximation of the shading plane to
correct single light source effects
� Rescale histogram co that every image has the same
gray level range
� Return Normalised image

Bootstrapping
� Create the initial set of non-face image by entering
images of random pixels
� * Train Neural Network
� Run the system on scenes that do not contain faces

and extract the false detections
� Enter these as non-face variables to existing data

set.
� Rerun from * to improve the accuracy of system.

Neural Network Training: Here we train a multi-layer
perceptron network to identify scanned window
patterns as faces or non-faces from their vector of
distance measurements. When trained, the multi-layer
perceptron network receives an input vector of distance
measurements. It takes these and compares it with the
trained network data. It will output a ‘0.9’ for detected
face or ‘-0.9’ otherwise. The neural network is trained
with the help of MATLAB’s Neural Network Toolbox.
Given the mask size of 18x27 pixels minus the masked
region of an image, the number of inputs to the neural
network is approximately 400. Each of these inputs is
connected directly to a corresponding pixel in the image
mask. Good training info passed from data preparation
ensures that training here classifies a face within these
400 pixels. There is 1 output unit that will either hold
the value ‘0.9’ for a successful detection of a face and
‘-0.9’ for scenery. This result comes after the scanning
stage of the system where every region of the scanned
image is given one of the appropriate values suggesting
the presence or absence of a face. There are 25 hidden
units in the network. These hidden units consist of
three types of hidden units: 4 look at 100 pixel sub-

J. Comp.,Sci., 1 (1): 47-62, 2005

 55

regions, 16 look at 25 pixel sub-regions, and 5 look at
overlapping 20x5 pixel horizontal stripes of pixels.
Rowley suggested that these three types should be used.
These hidden units allow the network to detect local
features that might be important for face detection. In
particular, the horizontal stripes allow the hidden units
to detect such features such as mouths or pairs of eyes.
The square featured receptive fields detect such areas as
single eyes, noses, or corners of a mouth. In order to
train the network a gradient decent error back-
propagation is performed on the neural network for all
of the training data. The principle of a feed-forward
neural network is to model multi-dimensional linear
dependencies in a compact, concise framework. An
input vector is presented as input to the network. An
output vector of a fixed size is calculated by summing
the contributions of all the input values multiplied by
their corresponding weights. This process is repeated
over all the layers of the neural network, feeding the
output of the upstream layer to the input of the
downstream layer. Every layer consists of a matrix of
weight values. Back-propagation relies on the delta-
rule learning equation (7) for neural nets. Essentially,
the delta learning rule corrects a neural network's
weights so the next time it is presented with a particular
example (for which the correct classification is known);
its output will be closer to that known correct output,
which is also presented with the example. It
accomplishes this by crossing the target output vector
with the input vector to obtain a matrix that would
correctly calculate the target output from the input. It
then adds these resulting ‘delta’ weights into the
network's weight matrix.

Deltaw_ji(n) == eta * delta_j * x_ji + alpha *
Deltaw_ji(n-1) (7)

In a multi-layer network case where we are dealing
with hidden layers, delta rule is not as straightforward.
In particular, it is difficult to determine what the values
of the hidden nodes should be to produce a desired
output. In fact, they could be any number of values and
the network could still feasibly learn the pattern. This
is the nature of the neural network's learning ability, to
abstract hidden details of input patterns into hidden
nodes. These details are often not perceivable by
humans, but they are nonetheless effective means of
learning how to classify inputs. For any given set of
input-output pairs, the neural net can learn the aspects
of a positive set that distinguish it from the negative set
by adjusting its weights according to error gradient -
and can do so with an entirely different set of hidden
weights every time. Back-propagation comes into play
when we want to update the weight matrices of the
network. In order to determine a reasonable expected
value for the hidden layer vector, we take the target

output vector and reverse-propagate its values through
the weight matrices of the network. Through this
process the hidden layers gradually pick up
characteristic details that should allow them to
differentiate between vector that represent a face and
those that represent scenery. The algorithm for training
the neural network is:

START
� Create Neural Network with 400 input units, 25

hidden units and 1 output unit
� While epochs <500 or there is a decrease in

performance on the validation set, perform gradient
descent error back propagation:

- Input images
- For each <x, t> in training examples do:

input instance x to the network and compute
the output o of every unit u in the network
for each network output unit k, calculate its
error term delta_k

delta_k <- o_k(i - o_k)(t_k - o_k)
for each hidden unit h, calculate its

error term delta_h
delta_h <- o_h(1 - o_h) *

Sigma(k<outputs) w_kh * delta_k
update each network weight w_ji
w_ji <- w_ji + Deltaw_ji
Deltaw_ji = eta * delta_j * x_ji

� Pass created network to scanning routine.

 END

Image Scanning and Detection: This is the stage
where a test image can be introduced and tested by the
network. After the image is scanned through and it
sub-regions are passed to the network for testing the
program should return a result containing boxed off
faces indicating successful detection over the original
image. When an image is entered to be tested face
detection the idea is that the computer will detect the
presence of the face (if any) and locate its position on
the image. The image can be of any size and in this
area the face could be any where – the program is not
told where to look. It has to scan every possible area of
the image for the presence of a face. A window 27x16
pixels in size (same size as image mask) scan each
possible region of the image overlapping each other.
Each region is taken out and is first masked with the
mask shown in Fig. 9. This region is then
normalised to remove any heavy lighting effects from
the image. If the region is a face then its vector
parameters should resemble the parameters of the
vectors detailed on the network, if this is the case a face
is detected.

J. Comp.,Sci., 1 (1): 47-62, 2005

 56

Fig. 11: The Image Scanning Procedure

Fig. 12: The Steps of Data Preparation

This procedure is illustrated in Fig. 11 (A) shows the
test image and the 18x27 window being scanned
repetitively over it. (B) shows what happens to each
sub-region that is scanned. When detecting a face in an
image the likelihood that every face in every image is

contained in an 18x27 pixel window is unlikely. To
detect faces that are larger than the window size the
image will be repeatedly reduced in size and the image
is scanned at each size. We scale down the image by
about 1.2-1.3 each time; this scale factor is suggested

�������	�����������������
��������������

�������������������	��

��	��������������������������
���������������	�� �!��

��������������������������

��������!���"�������	�#����
��	�� $���	������������	�#����

�������� ��� ���	���	�������
�������	� ��

J. Comp.,Sci., 1 (1): 47-62, 2005

 57

by [7]. These set of images are referred to as the image
pyramid. If we scale an image of 200*200 pixels in
size six times the resolution in each should be able to
cover all possibilities of faces in the image. We can
change the start level of the pyramid if we want to test
larger images which do not contain 18*27 pixel sized
faces in the images original state. This will cut down
unnecessary, exhaustive scanning routines. We can also
change the number of pyramid levels as this can be
used in turn with the start level of the pyramid to use
the face detector more efficiently on larger images. The
Algorithm for Training the neural network is:

Image Scanning and Detection
� Input image for testing
� Set Parameters for test

- Set Threshold to determine how strict the
detector is

- Set number of pyramid levels
- Set the start level (smaller number for smaller

faces) of pyramid. Must not exceed Total
number of levels.

- Set pyramid resolution scale factor
� Build a resolution pyramid of the input image, each
level of the pyramid decreasing the image resolution
starting from Start Level to No. of Levels

� For each level of the pyramid

- Extract each rectangle from the image
- Normalise it
- Pass it to neural network
- If rectangle passed contains a face i.e. NET

returns 0.9
Scale rectangle to size appropriate for original
image
Add it to face bounding set

� Present result image with rectangles drawn on face
bounding set.
� Any non-face detections forward to bootstrapping
routine.
The strictness of the detector in classifying images can
be varied. This threshold value is set to tell the
classifier to only return a 0.9 (positive detection) if the
section scanned adheres to the parameters of trained
data in the network. If this threshold is low the
likelihood of detection is great as only some of the
values of a face are met (but it still may be a face).
However, the problem here is that the number of false
detections can increase. A higher threshold will prefer
more ‘perfect’ faces with more parameters met and will
return more definite possibilities of true faces. The
problem of this is that the variety of faces and poses do
not adhere to the perfect face rules. A threshold value
between these two extremities can be used more often.

Evaluation: The quality of the training sets input into
the network determines how well the detector will

perform. An ideal scenario would be to give the
network as large a set of training examples as possible,
in order to attain a comprehensive sampling of a larger
representation of faces. Images from the Yale face
database needed to be resized and cut into 18x27 pixel
sizes. 60 face images for entry at the data preparation
stage were used to create 120 face training images by
taking the left and right compliments of the original
image. Each of these images has to be masked with an
18x27 pixel mask and normalised to give a clear face
image. Fig. 12 shows a representation of the data at
each preparation level.
A linear function is applied to each individual image
and then subtracted out. This corrects some of the
harsh lighting conditions and gives a clear
representation of the image. The mask applied to each
image clearly defines the face shape. The network
looks for faces that fit this aspect. You can see the
resultant images have approximately the same grey
level distribution. The scanning part of the program
employs these steps to each window that is scanned
from every test image. A function that attempts to
equalise the intensity values across the window is run.
Pixels outside the oval mask are ignored so the values
in this area are not considered when approximating the
lighting correction. The linear function approximates
the overall brightness of each part of the image being
considered. The result is then subtracted from the
window to compensate for the variety of lighting
conditions. This normalisation technique is very
important for the functioning of the network. An early
approach was to use random non-face images to train
the early network. These were input intending the
network to classify them as negative examples and to
give an output of -0.9 (not face). We discovered that
these do not benefit the learning process at all. The
randomness of the structure of the images we created
did nothing to boost the accuracy of the network when
early testes were run. The next step was to add a
number of all black images to the training set. This
approach proved more beneficial, and clearly provided
a benefit to the network’s ability to classify. The flat
black image provided a baseline for the network to
compare to when classifying. We then proceeded to
find a more realistic set of training non-face images.
Early tests were performed on image which contained
no faces just a typical background. If the program
detected any positive results from this image they had
to be non-faces. These detects are non-face examples
with high information value that resemble the face
vectors in the neural network. These ‘valid’ non-faces
are more useful when presented as non-face training
images. The non-face database can grow very large so
this method guarantees that the non-face values are not
redundant information for the network. Fig. 13 shows
an early test on an image with faces detected but there
is also a high rate of detections of non-face images.

J. Comp.,Sci., 1 (1): 47-62, 2005

 58

Fig. 13: An Early Test Useful for Bootstrapping

Fig. 14: Network Result - Training Error vs Epochs

Table 1: Training Results
 Number of Number successfully Percentage of
 Training images classified success
Face Detection Rate in Training 120 112 93%
Non-face Detection Rate in Training 200 193 96.5%
Overall Classification Rate 320 305 95.3%
Once the neural network had been trained, it could be used to classify faces in test images.

This test was done early in the programs development
so the size of the non-face database was small. This
can explain the high miss rate. The image does
however have a complex background, which illustrates
what the system was up against.
This method collects the mistakes the system is making.
These new training examples improved the classifiers

performance by steering it away from the mistakes it
was making. The system learnt not to classify these as
faces. You will notice pieces of scenery that are
definitely not faces but you will also notice small
partial images of faces. These images were used in the
bootstrapping algorithm in an attempt to reduce
overlapping detections.

J. Comp.,Sci., 1 (1): 47-62, 2005

 59

Implementation of Training Algorithm: The
classifiers task is to identify face test patterns from non-
face test patterns based on vectors produced by training
images. This training stage defines the network to carry
out this task. At this stage we presume that our data set,
both face and non-face has been prepared and is ready
for input to the network. The training program loads all
the required training data and starts to train the network.
We used a multi-layer perceptron network to perform
the classification task. Each of the 400 input variables
of each training image was entered in vector form. The
network has 1 output unit and 25 hidden units. Each
hidden and output unit computes a weighted sum of its
input links and performs Tan sigmoidal thresholding on
its output. The output unit returns a 0.9 if a face is
detected and -0.9 if otherwise. The Network is trained
with the back-propagation learning algorithm until the
output error stabilises (or until training reaches 500
epochs). Fig. 14 shows the training result. The sum of
squared error rate on the training set over 500 epochs
for the Validation set error (red) and Training Set error
(blue). Note that around epoch 50 the validation set
error surpasses the training set error. However the
validation set error never increases from a previous
time step and therefore the network proceeds to an
approximate convergence. This suggests that the
training set is good enough to detect a face image that is
not contained in the training set by approximating the
faces values to suit a positive detection.
After the training of the network we can determine
from the network parameters how well the training
images were classified. The current performance of the
network is shown in Table 1. Note that this is the most
recent performance of the network with the final
training set after extensive bootstrapping. The network
performs much better at detecting non-faces. This is
due to the amount of images made available in the
dataset it is therefore more bias towards detecting non-
faces. This leads to a lower false positive rate than if

the bias had been in the favour of face images instead.

Realisation of Scanning and Detecting a Face: Since
the scanning window is fixed at 18x27 pixels a means
of scaling the image had to be implemented in order to
detect faces of multiple sizes in multiple sized images.
This is implemented by scaling an image’s resolution
by a factor of 1.2. The image is scaled several times to
realise detection of an 18x27 window at different image
sizes. Fig. 15 shows an image of 200x130 in pixel size.
When it was passed through the scanning routine, its
image pyramid for six levels is shown in Fig. 16.

Fig. 15: Original Image

In Fig. 16, Level 1 is the original image with the same
parameters and picture quality but level 2 has
parameters of 108 x 166 pixels. This is a result of the
scale factor of 1.2. This scaling continues to level six
where the resolution is approx 80x50. Keep in mind
that the scanning routine will scan every 18x27 window
at every level.
The classifier should not pick up an 18x27 face in level
1 as the face present is too large. The program should
not classify any positive detects until the level has
reached a certain point where the face’s resolution lies
in a 18x27 bounding box. In fact the test image was run
through the program and returned one positive value at
level 6. This result is shown below in Fig. 17.

Fig. 16: Resolution Pyramid

J. Comp.,Sci., 1 (1): 47-62, 2005

 60

Table 2: Testing Results
Threshold No. of correct Rate False positive per Rate
 faces (from 230) image (from 100)
0.0 220 0.956 84 0.84
0.1 209 0.909 75 0.75
0.2 196 0.852 63 0.63
0.3 181 0.787 41 0.41
0.4 179 0.778 29 0.29
0.5 154 0.670 15 0.15
0.6 102 0.443 12 0.12
0.7 56 0.243 4 0.04
0.8 32 0.139 0 0
0.9 9 0.039 0 0

Fig. 17: Successful Detection at Level 6 of Pyramid

From the above result we can see that this technique is
successful. Once the pyramid is created the image is
scanned over and every rectangle of the image at each
level is passed to be normalised, masked and passed to
the neutral network for classification. The network
then outputs a result of -0.9 to 0.9. This value is then
thresholded by a threshold limit that determines the
strictness of the program. If the value is positive the
window detected as a face is bounded with a rectangle
(shown above). This is shown on the original image
not the level of the pyramid that it was detected. This
procedure is done multiple times on the image and
therefore multiple detections are possible. This
however means that the same face can and is detected
more than once in different levels of the resolution
pyramid or indeed the same level. The bounding co-
ordinates are passed back to the calling procedure and
stored. Once the scanning procedure has finished the
original image is called and the bounding boxes are
plotted over the image.
The program can accept a colour or black and white
jpeg image and return an image with bounding boxes
over detections and some parameters suggesting at what
stage the detections were realised. Some factors
governing the detection routine include the number of
pyramid levels which should be adjusted to suit the size
of the image being tested. If the image is under, for
instance 300x300 pixels in size, then the number of
levels can be set to 6 as this will cover the sizes of faces
in that image that can be classified as a face. For larger
images, it is better to set the pyramid higher to scale the
bigger image to a point that an 18x27 can detect a face

in an image of that size. In addition, the threshold
value of the classifier can be set from 0.0 to 0.9
determining if the value sent back from the classifier is
enough to classify a tested window as a face. A low
threshold will return more windows as a face and is
more likely to pick up a detection of a face. A low
threshold takes the output of the neural network and
gives it a higher margin of error than a high threshold.
It means that it is more likely to detect a face but it also
more likely to return a false positive. It is more likely
to classify a piece of scenery as a face. At a high
threshold the program accuracy of real faces will be
higher and false positives will be lower but it might not
detect the face at all. Fig. 18 shows the detector at a
low threshold that will allow uncertain detects through.

Fig. 18: Detector at Low Threshold

Fig. 19: Image Through Higher Threshold

J. Comp.,Sci., 1 (1): 47-62, 2005

 61

You can see from the image that the faces that exist in
the image are clearly defined and located by the
detector but the amount of false positives in the image
outweighs the amount of correct detects. Fig. 19 shows
the same image entered into the same network but the
threshold at which detects are accepted has been
increased. The image show that there is no false detects
but there is overlapping of bounding boxes. This means
the same face occupied a region that was scanned twice
and both times the information of face data passed to
the neural network was enough to warrant a successful
detection.

RESULTS

Fig. 20 through to Fig. 25 show a range of example test
results. Fig. 20 is an image ideally suited to the face
detection system as it has a simple background with
nothing in it to confuse as a face and the face is facing
forward (like most of the training set). Fig. 21 however
shows a face candidate amongst a complex background.
It has the likelihood to return some false positives. Use
of the training set however, resulted in restricting it to a
small number of false positives.

Fig. 20: Simple Background Image

Fig. 21: Complex Background Image

Figure 22 shows an image with more than one face – It
needed to return multiple detects. Note the background
of the image is not interfering with the image and will
not give false positives. Figure 23 shows an image with
a face which is undetected due to it position. If it had
have been frontal it may have been detected.

Fig. 22: Image with Multiple Detects

Fig. 23: No Detect

Figure 24 is a large image with dimensions of 300x400
pixels. The total number of scale levels was set to 8
and the face was detected with ease.

Fig. 24: Successful Detection 2

Fig. 25: Detection at Different Levels

J. Comp.,Sci., 1 (1): 47-62, 2005

 62

Figure 25 shows detection at different levels of the
pyramid. It has detected them at different scales and
positions demonstrating that the network can generalise
well.
The successfulness of the system depends on how well
the network was trained. The speed and accuracy of the
system is dependant on a set of parameters that can be
adjusted for different results. All training and detection
routines where carried out on a PC with a 1.6 GHz
Pentium 4 processor with 512 Mb of RAM. The
threshold factor denotes how strict the network was
when it came to classify the image.
Error! Reference source not found. shows the extent
of the testing with 100 images (230 faces) ranging from
images containing a single face with simple
backgrounds (Fig. 20) to complex background (Fig.
21) images with multiple faces (Fig. 22). Each Image
had at least one face and there were between 150x150
and 400x400 pixels in size. A total pyramid level of 6,
a start pyramid level of 1 and a scale factor of 1.2 were
used for all images.
In order to achieve high detection rates in a range of
images - it also stands to detect more false positives. A
very low threshold will detect the same amount of false
detections as correct detections. At a high threshold the
program gives less false positives but it will also
probably fail to detect faces that were just below the
threshold. Achieving better face detection rates comes
at the cost of increased false positive rates. 220 of the
230 images were detected at 0.0 the lowest threshold.
The resultant image from these detections contained a
high rate of false detections. A high volume of
overlapping bounding boxes showed a random and
undefined set of detections. As the testing progressed
up through the earlier thresholds (0.1-0.4) a definite
pattern was suggested. For each step in the test the
number of false positives greatly decreased but some
detections were sacrificed. The faces that were
sacrificed the most were usually smaller less defined
face in group pictures. However, there were also false
positives prominent in the higher threshold test areas.

CONCLUSION

The Algorithm can detect between 67% and 85% of
faces from images of varying size, background and
quality with an acceptable number of false detections.
It can detect between ‘face’ and ‘non-face’. The
normalisation routine which makes training data
uniform (especially where lighting is involved) - can
drastically affect the classifying of images. The neural
network approach is known to be highly sensitive to the
grey levels in an image but by subjecting each trained
and tested image to the routine the system sidestepped
the problem. The bootstrapping algorithm would have
beneficiated more if we had continued to update its
database. At a very high threshold, only nine faces were
detected and five of these were faces from the Yale face
database and therefore a part of the training set. Thus
with a larger dataset of faces, the program can become
more accurate. A threshold of between 0.5-0.6 gives the
best range of results out of the threshold set tested.
They give a more obvious set of results and continue to
detect large faces that produce good data vectors.
Detects that are found within this threshold reflect data
that is in the training set. This after all was the goal of
the system.

REFERENCES
1. Md. Al-Amin Bhuiyan, Shin-yo Muto and

Haruki Ueno, ------. Face Detection and Facial
Feature Localisation for Human-machine
Interface. National Institute of Informatics

2. Erik Hjelmas and Boon Kee Low, 2001. Face
Detection: A Survey Department of Informatics,
University of Oslo, Norway.

3. Harley, R.Miller and Arthur R.Weeks, -----. The
Pocket Handbook of Image processing
Algorithms. ISBN 0-13-6422403

4. Craw, H. Ellis and J. R. Lishman, 1987.
Automatic extraction of face-feature. Pattern
Recog. Lett.

5. Yale face database,
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

6. Sakai, T., M. Nagao and T. Kanade, 1972.
Computer analysis and classification of
photographs of human faces.

7. Kah-kay Sung and Tomaso Poggio, 1994.
Example –based Learning for View-based
Human face Detection.

8. Sirovich, L. and M. Kirby, 1987. Low-
dimensional procedure for the characterization of
human faces, 519-524.

9. Hjelmas, E. and J. Wroldsen, 1999. Recognizing
faces from the eyes only, in Proceedings of the
11th Scandinavian Conference on Image
Analysis.

10. Lanitis, C., J. Taylor and T. F. Cootes, 1994.
Automatic tracking, coding and reconstruction of
human faces, using flexible appearance models.
IEEE Electron. Lett.

11. Kass, M., A. Witkin and D. Terzopoulos, 1987.
Snakes: active contour models. In Proc. of 1st Int
Conf. on Computer Vision, London.

12. Cootes, T. F. and C. J. Taylor, 1992. Active
shape models—‘smart snakes’. In Proc. of
British Machine Vision Conference,pp: 266-275.

13. Sirovich, L. and M. Kirby, 1987. Low-
dimensional procedure for the characterization of
human faces. J. Opt. Soc. Amer. 4: 519-524.

14. Asim Shankar and Priyendra Singh
Deshwal, 2002. Face Detection in
images : Neural networks & Support Vector
Machines.

15. Martin, H. Hunke, 1994. Locating and Tracking
of Human Faces with Neural Networks.

16. Rowley, H. A., S. Baluja and T. Kanade, 1998.
Neural network-based face detection. IEEE
Trans. Pattern.

17. De Silva, L. C., K. Aizawa and M. Hatori, 1995.
Detection and tracking of facial features by using
a facial feature model and deformable circular
template. IEICE Trans. Inform. Systems E78–D:
1195–1207.

18. Roth, D., M.H. Yang and N. Ahuja, 2000. A
SNOW-based face detector, in Advances in
Neural Information Processing Systems 12
(NIPS 12), MIT Press, Cambridge, MA.

19. Osuna, E., R. Freund, F. Girosi, 1997. Training
support vector machines: An application to face
detection, in IEEE Proc. of Int. Conf. on
Computer Vision & Pattern Recognition.

20. Vapnik, V., 1995. The Nature of Statistical
Learning Theory. Springer-Verlag, NY.

21. Jiang, X., M. Binkert, B. Achermann and H.
Bunke, 2000. Towards detection of glasses in
facial images. Pattern Anal. Appl.

