Journal of Computer Science 1 {3}: 387-394, 2005
ISSN 1549-3636
© Science Publicaticns, 2005

Hybridization of Neural Learning Algorithms Using Evolutionary
and Discrete Gradient Approaches

Ranadhir Ghosh, John Yearwood, Moumita Ghosh and Adil Bagirov
School of Information Technology and Mathematical Sciences, University of Ballarat
P.O. Box 663, Victoria, Australia

Abstract: In this study we investigated a hybrid model based on the Discrete Gradient method and an
evelutionary strategy for determining the weights in a feed forward artificial neural network. Also we
discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary
strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient
method has the advantage of being able to jump over many local minima and find very deep local
minima. However, earlier research has shown that a good starting point for the discrete gradient
method can improve the quality of the solution peint. Evoluticnary algorithms are best suited for
global optimisation problems. Nevertheless they are cursed with longer training times and often
unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs
in real world applications the dimensicns are large and time complexity is critical. Hence the idea of a
hvbrid model can be a suitable option. In this study we propose different fusion strategies for hybrid
models combining the evolutionary strategy with the discrete gradient method to obtain an optimal
solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an
iterative hybrid medel and a restricted local search hybrid medel. Comparative results on a range of

standard datasets are provided for different fusicn hybrid moedels.

Key words: Evolutionary Algorithm, Discrete Gradient, Neural Network

INTRODUCTION

A learning algorithm is at the heart of a neural network
based system. Over the past decade, a number of
learning algorithms have been developed [1-15].
However, in most cases learning or training of a neural
network is based on a trial and error method. There are
many fundamental problems such as the length and
uncertainty of the training process, selection of network
topology and parameters that still remain unsclved.
Learning can be considered as a weight-updating rule of
the ANN.

Error Back Propagation (EBP} is probably the most
cited learning algorithm in the field of Artificial Neural
Networks {ANNs) [9]. Rumelhart ef al. [16] developed
the back propagation learning for the Multi Laver
Perceptron. Back-propagation is based on the gradient
descent minimization method. The ANN is presented
with an input pattern, for which an output pattern is
generated. Then, the error between desired and actual
cutput can be determined and passed backwards
through the ANN. Based on these errors, weight
adaptations are calculated and errors are passed to a
previous laver, continving until the first laver is
reached. The error is thus propagated back through the
ANN. Most of the calculus-based ANN algorithms
depend on the gradient informaticn of the error surface,
which may not always be available or expensive te find.

387

Also the algorithm may very easily be trapped in a local
minimum [3, 4].

One of the alternative learning techniques that attracted
research is the genetic algorithm. Genetic algorithms
are a stochastic search methed intreduced in the 1970s
in the United States by John Helland [11] and in
Germany by Ingo Rechenberg [17]. Much of the
research however has focused on the training of feed
forward networks [13, 14]. Just as neurobiology is the
inspiration for artificial neural networks, genefics and
natural selection are the inspiration of the genetic
algorithm. It is based on a Darwinian type “survival of
the fittest’ strategy. An advantage of using GAs for
training neural networks is that they may be used for
networks with arbitrary topologies. Also, GAs do not
rely on calculating the gradient of the cost function.
Cost functicns need to be calculated to determine their
fitness. Because of the stochastic nature of this
algorithm the learning process can reach an optimal
solution with much higher probability than many
standard neural based techniques, which are based on
the gradient information of the error surface.

One of the problems though, with this global search
based technique is the time complexity of the
algorithm. For a very large application size, a very
powerful computation facility is required to solve the
problem. Hence there was a further need for an
improvement of this approachin terms of the time

J. Computer Sci., 1 (3): 387-394, 2005

complexity {and to some extent the quality of solution}
by fine-tuning the search within the local
neighbourhood area of the global solution obtained
by the genetic algorithm. This suggests that a hybrid of
the GA and some other fine-tuning algorithm cculd be
advantagecus. Most of the hvbrid algorithms developed
for ANNs have used GA and scme kind of a local
search method. Amongst the local search techniques,
EBP has been used most extensively. Earlier research in
this area had shown that hybrid ftraining was
successful [18]. There were a number of researchers
who used GA and EBP hybrids and reported an
improvement of the algorithm over traditional GA or
EBP [19, 20]. Some recent work also suggested an
improvement for hybrid algorithms by running
several parallel combinations of global and local
search [19, 20].

Earlier work by Ghosh er al [19], suggested an
alternative learning methodelogy, which uses a hybrid
technique by using evelutionary learning for the hidden
layer weights and a least squares based solution
method for the output layer weights. The proposed
algorithm solved the problems of time complexity of
the evelutionary algorithm by combining a fast
searching methodology using a least squares technique.
However the memory complexity was quite high.
The order of memory complexity on average could
be 4-5 times higher than EBP. The high memory
complexity order was due to the use of extensive matrix
operations for the least squares method, which has high
memory demands for solving the linear equations
to find the output layer weights. The other problem with
the method was producing large weights for the
output layvers. Such large weight modification tends
to destroy previously acquired knowledge and thus
likely decrease the generalizing ability of the neural
network.

Derivative free methods seem to be the best option to
deal with this kind of problem with a large number of
variables (weights}. Such methods can overcome
stationary points, which are not local minima and some
shallow local minima. Two widely used derivative free
methods — the Powell method and the Nelder-Mead
Simplex method are effective when the objective
functien is smooth and the number of variables is less
than twenty. However in many problems the number of
variables is much larger than twenty and sometimes the
objective functien is non-smoeoth. Ancther popular
derivative free method is the discrete gradient method.
Bagirov er al. in 2004 have applied discrete gradient
methods in generating the neural network weights. The
discrete gradient is a finite difference estimate o a
subgradient. Unlike many other finite difference
estimates to subgradient, the discrete gradient is defined
with respect to a given direction, which allows a good
approximation for the quasidifferential. The algorithm
calculates discrete gradients step by step and after a
finite number of iterations either the descent direction is

388

calculated or it is found that the current peint is an
approximate staticnary point. [n the Discrete gradient
method Armijo’s algorithm is used for a line search.
Hence at a given approximation, the method calculates
the descent direction by calculating the discrete
gradients step by step and improving the approximation
of the Demyanov-Rubinov quasidifferential. Once the
descent direction is calculated, Armijo’s algorithm is
used for line search. The local minima is chosen as the
next approximation. Hence the Discrete Gradient
methed jumps over many lecal minima and finds very
deep local minima. However earlier research has
shown that a good starting peoint for the discrete
gradient method can improve the quality of the soluticn
point. In this study we combine an Evolutionary
algorithm with the discrete gradient method to find the
weights in the neural network. The evolutionary
algorithm generates a near optimal solution after
several generations. That near optimal solution is
passed through the discrete gradient method as a
starting point. The discrete gradient method generates
the final sclution.

The question that remains to be answered is: Can there
be a good fusion strategy that combines these (wo
searching modules and provides a satisfactory result?
The combinaticn of the Evolutionary algorithm with the
Discrete Gradient method provides many possibilities
for fusing the two different methods. The fusion
strategy not only affects the classification rate but alse
affects the time taken to converge to the optimal or near
optimal sclution. [t also affects the amount of memory
needed to solve the problem. Hence fusion strategy
plays an important role in solving these problems. In
this study we propose three different fusion strategies
for the proposed hybrid model combining the
evolutionary strategy with the Discrete Gradient
methed te obtain an optimal sclution more efficiently.
The strategies discussed are a linear hybrid model, an
iterative hybrid model and a restricted local search
hybrid model. These are described in the following
section. Comparative results on a range of standard
datasets are provided for the different hybrid models.

MATERIALS AND METHODS

Here we describe the discrete gradient methoed and the
evolutionary algorithm. Then we describe the hybrid
methed of discrete gradient and the evolutionary
algorithm. Later we describe the different fusicn
strategies we are proposing in this study.

Discrete Gradient Method: In this section we will
give a brief description of the discrete gradient
method. The full description of this method can be
found in [18]. The discrete gradient method can be
considered as a version of the bundle method [20] when
sub-gradients are replaced by their approximations-
discrete gradients.

J. Computer Sci., 1 (3): 387-394, 2005

Let fbe a locally Lipschitz continucus function defined
on R*. A function f is locally Lipschitz continuous on
R"if in any open bounded subset § < R there exists a
constant L > 0 such that

f(x)-1(y)

=L, Vx,yel
=]

()

The locally Lipschitz function fis differentiable almost
everywhere and one can define for it a set of
generalized gradients or a Clarke sub-differential [23],
by

2

Here IXf) denotes the set where fis differentiable, co
denotes the convex hull of a set and VAx} stands for a
gradient of the function f at a pointx — R".

Let

s, ={ee R, :J¢|=1) 0

G={ee R":e=(e,,e,,....e,),

e|=Lj=1..n} (4)

_ z(X):z(Aye R', z(A} >0, s
_{K>O,7L‘z(7t)—>0,7uﬁ0 } ©
I{g.a)={ie{l....n}:|g| 2 a} (6)

1
where o< [O,n 2}15 a fixed number. Here §; is the

unit sphere, G is a set of vertices of the unit cube in R
and P is a set of univariate positive infinitesimal
functicns.

We define operators Hf ‘R"—=R" fori=1,...n,]

G,...,.,n by the formula

(2,-8,.0,.-..,0) if j<i,

Hlg = o
(gl,...,gH,O,ng,...,gJ,O,...,O)lf]21

{7

‘We can see that H?g =0 eR" foralli=0,....n.Let

e(ﬁ):(ﬁe“ﬁ?ez ,,,,,,,,,, ﬁ“en], pe(01]. For xeR" we
will consider vectors
xi(g)=x/(ge,z,AB)=x+Ag —z(A)Hle(B) (8)

389

where g S,, ee G, i [{g,a), ze P, A >0, B (0,1],
i=0,.n, j#i

Definition 1: The discrete gradient of the function f at
the peint x € R” is the vector

I'(g.e.z0p) =
(T, T e e, (9)
ge§,, ie{ga)
with the following coordinates:
—1 .
z{h f{x/ (g
F‘J={ ()] (() cj=1 e, j#i (10)
() | £ (x'(e) @
£{x (g))=f(x)-
i -1
I =(g) = (11

> T(rg,-z(r)e (B))

JoL, jee

From the definition of the discrete gradient we can see
that it is defined with respect to a given direction g € §;
and in order to calculate the discrete gradient we use
step A > 0 along this direction. The n - 1 coordinates of
the discrete gradient are defined as finite difference
estimates to a gradient in some neighbourhood of the
point x + Ag. The ith coordinate of the discrete gradient
is defined so that to approximate a sub-gradient of the
function f. Thus the discrete gradient contains scme
information abeut the behavicur of the function f in
some region around the point x.

Now we will consider the following unconstrained
minimization problem:
minimize fx}subjecttoxe R® (123
where the function fis assumed to be lecally Lipschitz
continucus. We consider the discrete gradient method
for solving this problem. An important step in this
methed is the computation of a descent direction of the
objective function f. So first, we describe an algoerithm
for the computation of the descent direction of the
function f.

Let ze P, >0, pe(0,1], the number ¢ € (0,1) and a

small enough number 3 > 0 be given.

Algorithm 1: An algorithm for the computation of the
descent direction.

Step 1: Choose any gleSl, e, ie I(gl,ot) and
compute a discrete gradient v' =T" (x,gl,e,z,h, [3) . Set

D, (x)=1{v'} andk=1.

J. Computer Sci., 1 (3): 387-394, 2005

Step 2: Calculate the vector
Hwk H =min{|w|:we D, (x)}. If HwkH <§ then stop.
Otherwise go to Step 3.

Step 3: Calculate the search direction by
=

Step 4: If f(x+lgk+l)—f(x)S—C7LHWk , then stop.
Otherwise go to Step 5.

Step 5: Calculate a discrete

gradient v:'' =T (x,gk“,e,z,K,ﬁ), ie I(gk“,oc),
construct the set ﬁkﬂ(x):co{ﬁk (X)u{vk“}} , set

k=k+1 and go to Step 2.

The algorithm contains steps, which deserve some
explanations. In Step 1 we take any direction g' € S,
and calculate the first discrete gradient. In Step 2 we
calculate least distance between the convex hull of the
discrete gradients and the origin. This problem is
reduced to a quadratic programming problem and can
be effectively solved by Welfe's terminating algorithm.
If this distance is less than some tolerance & > 0, the
algorithm stops and we can consider this point as an
approximated stationary point. Otherwise, in Step 3, a
search direction is calculated. If this directicn is a
descent direction, the algorithm terminates, otherwise,
in Step 3, we calculate a new discrete gradient with
respect to this direction to improve the approximation
of the set of generalized gradients. Since the discrete
gradient contains some information about the behaviour
of the function fin some regions around the point x this
algorithm allows to find descent directions in staticnary
points which are not local minima {descent directions in
such stationary point always exist). This property
makes the discrete gradient method attractive for design
of hybrid metheds in global optimization. It is proved
that Algorithm 1 is a terminating.

The main advantage of the Discrete gradient method is
that the method approximates the descent direction with
respect to the discretfe gradient in a particular direction.
Hence we do not require the gradient information. So
the algorithm is suitable for non-smooth optimization
where the derivative does not exists at certain points.
The other advantage is that as Discrete gradient method
is a local search technique hence it takes much less time
compare o other global optimization metheds. With a
good initial guess the method converges te a near
optimal selution with high accuracy.

Evolutionary Algorithm: Evolutionary algorithms
(EAs} are search methods that take their inspiration
from natural selection and survival of the fittest in the
biclogical world. EAs differ from more traditional
optimization techniques in that they involve a search

390

from a "population" of sclutions, not from a single
point. Each iteration of an EA involves a competitive
selecticn that rejects the poor solutions. The solutions
with high "fitness" are "recombined" with other
solutions by swapping parts of a solution with another.
Solutions are also "mutated” by making a small change
to a single element of the sclution. Recombination and
mutaticn are used to generate new solutions that are
biased towards regions of the space for which good
sclutions have already been seen.

Let W = (W,, W,) be an n dimensicnal solution vector
and © be the corresponding step size. Let m be the
number of the population in a generation where each
populaticn is the pair {W,, G.).

In the first generation m pepulations are generated
randomly. In the subsequent generations the population
set is created by selection and mutaticn.

Fusion Strategies: There are three different fusion
strategies, we are investigating in this research. All the
models are described in the following subsections.

Linear Hybrid Model (LHM): The Linear Hybrid
Medel is so named as the two methods EA and DG are
coupled linearly. In fact this corresponds to the
algorithm described earlier.

In this moedel we are applying the Evolutionary
algorithm for a certain number of generation to
converge to a near optimal solution. Then we applying
the Discrete gradient method as local search with the
starting peint provided by the evolutionary algorithm as
the best sclution in the final generation. The discrete
gradient method generates the final optimal cutput. A
sample genotype used for the LHM for n input, A
hidden units, & cutput and paf number of patterns can
be written as:

2 h Aoh B h noh noh A h
WU gy W I W g W L g W gy W, Wy

a a a} a} a a a a a a a a
Wl e W Iy W g W B g Wl e W [y

where, range(w) initially is setin the closed interval
[-1+1]. The evolutionary algorithm starts by initialising
the population peol and tries to find the near optimal
solution over few generations. The fitness of the
populaticen is determined as the classification error on
the validation dataset. After getting a near optimal
solution the evelutionary algorithm passes the solutien
to the Discrete Gradient method. The discrete gradient
method takes the near optimal solution as starting point
and tries to generate the optimal set of weights for the
neural network.

A good staring peint provided by the Evolutionary
algorithm helps the discrete gradient method to improve
the quality of the sclution. Also the evolutionary
algorithm is running for enly a few generation, hence
the time taken by that algorithm to generate the staring
point for the Discrete gradient method is less than the
normal evolutionary algorithm would take for the

J. Computer Sci., 1 (3): 387-394, 2005

whele process. Hence the time taken by the hybrid
model to converge is much less that of the Evoluticnary
algorithm. The disadvantage of the model is that it
depends on the convergence quality of the Evolutionary
Algorithm. As the Evolutionary algorithm is running
for a few generations, sometimes it cannot converge to
a good near optimal solution. Hence it often fails to
serve as a good staring point to the Discrete gradient
method. As the convergence of discrete gradient
method depends on the staring poeint, hence the guality
of the soluticn is not always good in the Linear Model.

Iterative Hybrid Model (IHM): The Iterative Hybrid
model is so named because the two methods are
coeupled in each iteration.

In this medel we are applying the Discrete gradient
method to all the individuals in the population in each
generation. This algerithm is equivalent to multiple
discrete gradient selutions. Each selution is involved in
a competitive selection after each selection and the
Evolutionary algorithm rejects the poor sclution. The
solutions with high fitness are selected and mutated to
serve as the staring point of the Discrete gradient
methods in the next generation. The stopping criteria of
this model are the number of generation and the
classification accuracy of the best solution in a
generation. A sample genotype used for the [HM for n
input, A hidden units, & ocutput and par number of
patterns can be writien as

noh hooho b nooh nob nooh
Wb e W By W g W W W L W Ly

a a a a a a a a a a a a
WM e W gy W M Wy Wy W W By

where, range(w) initially is set in the closed interval
[-1+1]. The [Iterative Hybrid algorithm starts by
initialising the population pool. Then it applies the
Discrete gradient method te generate the optimal
solutions by the method with those staring points. Then
it applies evelutionary strategies to select the better
solutions and generates the next generation.

The iterative hybrid algerithm generates multiple
optimal solutions and selects the best one. It decreases
the chance for the discrete gradient method to get stuck
in a local minimum. Even if it gets stuck in certain
cases the evoluticnary algorithm is capable of
correcting the point either through recombination or by
rejecting the point or just passing it to a starting peint
and generates befter staring points in next generation.
Hence the quality of the solution in this moedel should
be much better than the Linear Hybrid medel in most of
the cases. Also the chances of getfing an optimal
solution is much higher than the Evelutionary
algorithm, hence the time taken by this hybrid
algorithm is less than the normal evolutionary
algorithm takes for the whole process. The
disadvantage of the model is that it takes more time to

391

converge than the linear hybrid method. As the discrete
gradient method is run for each peopulation in each
generation, the Iterative Hybrid Methed is much slower
than the previous model.

Restricted Local Search Hybrid Model (RLSHM):
The weight variables for each layer are found using a
hybrid method, which uses the evolutionary algerithm
and the Discrete gradient method. The Restricted Local
Search Hybrid medel is an extensicn of the iterative
hybrid medel when the local search method invelved in
the hybridisation is limited te search in one layer of the
neural network. The architecture is shown in Fig. 1. The
Eveluticnary algorithm is applied to the hidden layer
weight and the discrete gradient method is applied te
find the weights for the output layer. We initialize the
hidden layer weights with a uniform distribution with
closed range interval [-1,+1].

The Evolutionary algorithm is involved in modifying
the weights for the hidden layer. The Discrete gradient
method is invelved in modifying the weights for the
output layer. The hybrid algorithm first initialises all
the weights using a uniform distribution on a closed
interval range of [-1, +1]. The evolutionary algorithm
uses only the hidden layer weights. A sample genotype
used for the RLSHM for n input, # hidden units, &
output and paf number of patterns can be written as

o T noh aoh noh
|W llu ll"'W ln“‘lnw 21“‘ 21'"w lnu‘ ln"'w hl“‘ hl"'w hnu“hn

The discrete gradient is then applied in the cutput layer
with the hidden layer weights fixed. The fitness is then
calculated using the weight represented by the
population genome and the Discrete gradient output of
the output layer weights. The solution with high fitness
are selected and in the next generation. The stopping
criteria of this model are the number of generation and
the classification accuracy of the best sclution in a
generation. One of the most important attributes in this
hybridisation is the application of the DG method for
the cutput laver only. Hence the fitness of the
chromosome can be affected by breaking into two
halves.

Input

Hidden layer weights
are found by EA

Fig. 1: ANN Architecture for RLSHM Model

Output layer weights
are found by DG

Table 1: Data Set Information

J. Computer Sci., 1 (3): 387-394, 2005

Data

Input details

Attribute information

Astral

Breast cancer

Pattern length = 690
Training pattern = 600
Testing pattern = 90
Pattern length = 685

(Wisconsin) Training pattern = 600
Testing paftern = 85
Cleveland Pattern length = 297
Training pattern = 200
Testing pattern = 97
Diabetes Pattern length = 768
Training pattern = 700
Testing pattern = 68
Liver Pattern length = 345

Training pattern = 300
Testing paftern = 45

Input columns = 14
Output column =1

Input columns =9
Output column =1

Input columns = 13
Output column =1

Input columns = §
Output column =1

[nput columns = 6
Output column = 1

Table 2: Classification Accuracy Results for All Data Sets for Fusicns of EA and DG

Dataset Test Classification Accuracy (%)

LHM [HM RLSHM EA RP DG
Austral 91 92.2 90 90 §87.8 86.7
Breast Cancer 106 100 99 85.5 98.8 100
Cleveland 90 90.7 90.7 89.7 78.4 80
Diabetes 83.8 85.2 82.3 81 78 76.5
Liver 88.8 93.3 933 86.7 75.6 86.7
Table 3: Time Complexity Results for All Data Sets for Fusions of EA and DG
Dataset CPU Time {s}

LHM [HM RLSHM EA RP DG
Austral 68.4 115 101 94 293 29.6%
Breast cancer 57 96.4 87.4 68 28.7 13.12
Cleveland 36.2 538.4 442 44 293 13.9
Diabetes 33 78.1 69 68.4 30.1 59.22
Liver 94 139 73 101 78 14.07

EXPERIMENTAL RESULTS convergence time is much greater than the convergence

Dataset: Experiments were conducted using the
benchmark data sets: Breast cancer (Wisconsin) and
Heart Disease {Cleveland). Diabetes and Liver data
from the UCI Machine Learning repositery. Table 1
shows the details of the individual data set used for
{raining and testing for comparing all algorithms.

Results: Table 2 and 3 show the classification accuracy
as a percentage and the time complexity of the ANN for
all metheds and data sets.

Figure 2 and 3 show a comparison of classification
accuracy and the time complexity for all the algorithms.
Figure 4 shows the comparison of memory complexity
for all the algorithms.

Analysis of Convergence: The convergence property
graph (Fig. 5) shows that steady convergence is
obtained using the Linear Hybrid Model. However the

392

times of [HM and RLSHM. The convergence property
for the iterative hybrid model has some sudden decrease
by applying the DG method and de not have the ups
and downs such as seen in the RLSHM. It can be seen
that the application of the DG methed guarantees a
quantum improvement for the solutien point.

Analysis of Fitness Breaking for RLSHM: Figure 6
shows the fitness distribution for the 10 best
populatiens before the DG method is applied. Figure 7
shows the fitness distribution for the same population
after applving the DG method. After every generation
of the evolutionary algorithm, the fitness for the
populaticn pocel is calculated by the evolutionary
algorithm. Then the fitness of the chromosome is
calculated by breaking it info two halves and taking the
first half and then cembining it with the output layer
weights (by calling the least square function).

J. Computer Sci., 1 (3): 387-394, 2005

Comparison of Classification Accuracy
Opop 1
120 Hpap 2
160 Opop 3
80 ‘ Opop 4
& o = LHM mpops
40 1 = HM Epop &
201 O RLSHW ;pop ;
o pop
& . & & . o E’g Mpop &
$ @db b o o® " Wpop 10
v 5 o oF moG
@fb'
@ . . o)
Dataset Fig. 6: Fitness Distribution of EA before Applying
DG
Fig. 2: Comparison of Classification Opop |
Hpop 2
Coemparisen of Time Complexi
P plexity Opop 3
160 Opop 4
o BLHM Hpop 5
100] alHy
g 50l DE:SHM Opop 6
80 o AP Bpop 7
40 =
50 anG Opop 8
ol Mpop &
Austral Breast Clewland Dizbetes Liver
Cancer Hpop 10
Dataset

Fig. 3: Comparison of Time Complexity Fig. 7: Fitness Distributicn of EA After Applying DG

Comparison of memory complexity
0.254
8OO0 0.2
5000 g M OEALS
4000 BILHM 0.15 O EBefore
000 DIHM
ORLSHM 0.1 [After

2000 - moG
1600 | - 0.054

0 ol

Austral Breast Cleveland Diabetes Liver
Cancer

Fig. 4: Comparison of Memory Complexities for All Fig. 8: Ranking of the Population Based on Fitness

Algorithms Th))

e comparisons of the fitness values are reported.
{Population number is given based on the rank, rather
Classification error over the generation than the raw number of the population obtained from
the program). Figure 6 and 7 show that the fitness of the
gene {particularly for the chromosomes with very high
fitness) is not affected much when it is broken and
—o—LHM combined with the DG method.

—u— i Further Fig. 8 shows that the ranking based on their

ALSHY fitness value remains unaffected. So, even when the
upper half characteristic is replaced by the DG weights,
=3 and only the lower half characteristic is considered, it
Generaticn does not distort the fitness and affect their rank. The
fitness based on the lower half characteristic of the
chromosome has almost the same rank in the population
pool, with the fitness based on the full-length
chremoeseme.

393

G

40 -

3G A

20 4

Classification error [%]

Fig. 5: Comparison of Cenvergence Property for All
Algorithms

J. Computer Sci., 1 (3): 387-394, 2005

CONCLUSION

In this work we have investigated a hybrid model based
on the Discrete Gradient method and an evoluticnary
strategy for determining the weights in a feed forward
artificial neural network. We have used three different
fusion strategies for hybridising EA and DG and
compared their performance in terms of classification
accuracy and time complexity. The results indicate that
there is generally an improvement in classification
accuracy, time complexity and memeoery complexity for
hybridisation. Time complexity results are more
complex but indicate that some fusion strategies can
also improve performance over single approaches
whilst others may not or indeed may decrease
performance. In the RLSHM fusion, it is interesting to
find that the decomposition of the chromosome does
not distort the fitness rank of the generations. In future
research, we will explore a slight variant of the iterative
hybrid medel, where the DG methed can be applied for
the whole populaticn, thus exploring a bigger range of
initial sclution peints.

REFERENCES

1. Mangasarian, O.L., 1993,
programming in neural networks.
Computing, 5: 349-360.

Zhang, X M. and Y.Q. Chen, 2000. Ray-guided
global optimization method for training neural
networks. Neurocomputing, 30: 333-337.

Masters, T., 1993. Practical Neural Network
Recipes in C++. Academic Press, Boston.

Masters, T., 1995. Advanced Algorithms for
Neural Networks: A C++ Scurcebook. Wiley, New
York.

Whitley, D., T. Starkweather and C. Bogart, 1990.
Genetic algorithms and neural networks-optimizing
connections and connectivity. Parallel Computing,
14: 347-361.

Montana, D. and L. Davis, 1989. Training feed
forward neural networks using genetic algorithms.
Proceedings of 11" Intl. Joint Conference on
Artificial Intelligence [JCAI-89, 1: 762-767.
Goldberg, D.EH., 1989. Genetic Algerithms in
Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

Belew, R.K., J. McInerney and N.N. Schraudolph,
1991. Evolving networks: using genetic
algorith, with connectionist learning. Technical
Report #CS90-174 (Revised}, Computer Science
and Engineering Department {C-014}, University
of California at San Diege, La Jolla, CA
92093, USA.

Topchy, A.P. and O.A. Lebedko, 1997. Neural
network fraining by means of cooperative
evolutionary search. Nuclear Instruments and
Metheds in Physics Research, Section A:

Mathematical
ORSA .

394

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20,

21.

Accelerators. Spectometers, Detectors and
Associated Equipment, 389: 240-241.

Koeppen, M., M. Teunis and B. Nickolay, 1994.
Neural Network that Uses Evolutionary Learning.
Proceedings of IEEE Intl. Conference on Neural
Networks, IEEE Press, Piscstaway, NI, USA,
5: 635-639.

Likartsis, A., 1. Vlachavas and L.H. Tsoukalas,
1997. New hybrid neural genetic methodolegy for
improving learning. Proceedings of 9" [EEE Intl.
Conference on Teols with Artificial Intelligence,
Piscataway, NI, USA, pp: 32-36.

Omatu, S. and S. Deris, 1996, Stabhilizaticn
of inverted pendulum by the genetic algorithm.
Proceedings of [EEE Conference on Emerging
Technologies and Factory Automation,
ETEFA’96., Piscataway, NJ, USA, IEEE Press,
1: 282-287.

Omatu, S. and M. Yoshioka, 1997. Self tuning
neurc PID contrel and applications. Proceedings of
[EEE Intl. Cenference on Systems, Man and
Cybernatics, Picatasway, NJ, USA, [EEE Press,
3: 1985-1989.

Abraham, A., 2001. Neuro-Fuzzy Systems: State-
of-the-Art Modeling Techniques. Connectionist
Medels of Neurcns, Learning Process and
Artificial Intelligence, Springer-Verlag Germany,
LNCS 2084, Jose Mira and Alberto Prieto (Eds.},
Spain, pp: 269-276.

Abraham, A. and B. Nath, 2001. Is evoluticnary
design the solution for optimising neural networks?
Preceedings of 5™ Intl. Conference on Cognitive
and Neural Systems (ICCNS 2001}, Published by
Boston University Press, Boston, USA.

Rumelhart, D.E. er al., 1988. Parallel Distributed
Precessing. Cambridge, MA, MIT Press, Vol: 1.
Rechenberg, [., 1965. Cybernetic solution of an
experiental problem. Royal Aircraft Establishment,
Library Transaction no. 1122, Farnberough, Hants,
UK.

Beliakov, G. and A. Abraham, 2002. Glebal
optimization of neural networks using deterministic
hybrid approach. Hybrid Information Systems,
Proceedings of 1" Intl. Workshop on Hybrid
Intelligent Systems, HIS 2001, Springer Verlag,
Germany, pp: 79-92.

Ghosh, R. and B. Verma, 2003. Finding
architecture and weights for ANN using
evolutionary based least square algorithm. Intl. I.
Neural Systems, 13: 13-24.

Bagirov, A M., 1999. Derivative-free methods for
unconstrained nonsmooth optimization and its
numerical analysis. Investigacao Operacional,
19: 75-93.

Bagirov, AM., 2002. A method for minimizaticn
of quasidifferentiable functions. Optimization
Methods and Software, 17: 31-60.

