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Abstract: Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis remains the core 
of proteomic technology because it is currently the most powerful method to analyze large collections 
of proteins. Advances in electrophoresis equipment are making this technique more accessible but 
effective computer assisted protein spot detection remains a very labor-intensive endeavor. Protein 
spot analysis is still time consuming, requires human intervention and is in need of further 
development. This study explores a technique of recursively applying a Support Vector Machine 
(SVM) in identifying protein. An SVM is a powerful learner capable of optimizing differences 
between classes. In this context the different classes correspond to the presence/absence of a protein. 
Different experiments are conducted to assess these differences in class formation in the context of a 
normal image and a highly saturated image. 
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INTRODUCTION 

 
At present, most proteome analysis projects begin with 
the separation of proteins by two-dimensional 
electrophoresis. Two-dimensional polyacrylamide gel 
electrophoresis (2-D PAGE) is a widely used method 
for separating a large number of proteins from complex 
protein mixtures and for revealing differential patterns 
of protein expressions. These protein mixtures can 
come from a variety of different sources such as a 
complex tumor tissue sample taken from a cancer 
patient or from a homogeneous cell tissue culture 
sample. An established method used to study 
differential protein expression is to compare 2-D PAGE 
images from different samples. A normal versus a 
cancer tissue type, or a stimulated vs. a non-stimulated 
cell tissue culture samples are examples of model 
systems. This type of study relies on methods that can 
compare images from at least 2 different gels. Due to 
the high variation between gels, detection and 
quantification of protein differences can be 
problematic. 
 
Background: The inevitable inventory of genes that 
will be produced by the Human Genome Project heralds 
the start of a new era: the Age of Proteomics [1]. 
Although DNA is the blueprint for life, it is the set of 
proteins that are actually transcribed and translated at 
any moment in time that determines the function of a 
particular cell. Proteomics is the study of the complete 
protein complement of the cell, tissue, or organism at 
any  one  time.  One  of the main techniques used in this  

growing field is two-dimensional polyacrylamide gel 
electrophoresis (2-D PAGE) [2]. 
Patrick O’Farrell [3] first described 2-D PAGE 
technology more than 25 years ago. However, recent 
advances have made the technique more popular, by 
improving what was often a harrowing and time-
consuming experience. Fragile polyacrylamide tube 
gels containing drift-prone carrier ampholytes have 
been replaced by Immobilized pH Gradient (IPG) strips 
that allow for simultaneous "in-gel" rehydration and 
sample application. They offer mechanical stability due 
to plastic backing and provide an increased range of pH 
values. Most importantly, they improve reproducibility 
between gels and among different laboratories [4].  
The first dimension of the 2-D PAGE technique 
resolves proteins by Isoelectric Focusing (IEF). All 
proteins have a net charge (the sum of the charges of 
the amino acid side chains). The pH at which the net 
charge of the protein equals zero is the isoelectric point 
(pI). IEF separates (focuses) proteins on the basis of 
their charge or pI by electrophoresis across a 
polyacrylamide gel containing a pH gradient. Even 
proteins that differ from each other by only one amino 
acid residue can be separated in this manner. Precast, 
dehydrated, immobilized pH gradient gel strips are 
widely used for the IEF step and are available in a 
variety of pH ranges that can be overlapped for even 
higher resolution. Because the voltage necessary for 
IEF is generally high (up to 3,500 V) the gels are 
typically run horizontally on a flatbed system complete 
with a cooling plate.  
After completion of IEF, the proteins are resolved in the 
second dimension via SDS-polyacrylamide gel 
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electrophoresis (2-D PAGE). SDS not only denatures 
proteins, but also applies a uniform negative charge to 
the surface of the proteins, allowing separation based 
on relative molecular weight. After the IPG strips are 
equilibrated they are affixed to the top of a vertical 
SDS-polyacrylamide gel and electrophoresed. Finally, 
the separated proteins are visualized. Proteins labeled 
with isotopes are detected by autoradiography; other 
methods of detection commonly used are silver 
staining, Coomassie brilliant blue staining and 
fluorography. New stains and staining techniques now 
permit proteins present in low abundance to be detected 
in one step.  
Matrix-Assisted Laser Desorption Ionization-Time of 
Flight (MALDI-ToF) Mass Spectrometry (MS) allows 
the analysis and identification of very small amounts of 
protein isolated from the gel. These advances have 
combined to make 2-D PAGE a more attractive option 
for the analysis of complex protein mixtures. 
2-D PAGE has long been recognized as a powerful tool 
for the analytical analysis of biological samples. 
Several thousand different proteins can be expressed at 
one time in a particular tissue sample or organism and 
2-D PAGE makes it possible to resolve these proteins. 
Scientists can compare samples from living samples 
and identify those proteins whose expression levels 
have changed using 2-D PAGE. With this method, it is 
possible to distinguish functionally distinct proteins 
encoded by the same gene, such as mRNA splice 
variants and proteins bearing post-translational 
modifications (e.g., methylation, glycosylation and 
phosphorylation). When combined with a means to 
quantitatively analyze these patterns, 2-D PAGE 
provides   the  ability  to  analyze  complex   patterns   
of  gene  regulation  both  temporally  and spatially 
(i.e., subcellular enrichment). The resultant two-
dimensional array of spots, each of which corresponds 
to a single protein species, can then be analyzed with 
specialized computer software. 
Computerized imaging and image analysis is used now 
to analyze the array of spots on the gel. While most 
standard imaging systems--storage phosphor screen or 
fluoro imagers, flatbed document scanners, or even old-
fashioned densitometers--will do the job of collecting 
images of 2-D PAGE gels, specialized software has 
been developed for analyzing the complex patterns of 
spots. Sophisticated imaging and image analysis 
strategies are required for conclusive interpretation of 
two-dimensional gel electrophoresis (2-D PAGE) maps 
in order to identify pertinent differences in protein 
expression during regulation of the transcription of 
discrete sets of genes.  
A  single  protein  may be present as several spots on a 
2-D PAGE gel due to a chemical separation of protein 
subunits that would normally be associated within the 
cell. Modified forms of a protein through post-
translational processes, which changes the charge of 
that protein, may result in even more spots representing 
the same protein. Many proteins don’t run as a globular 
mass and sometimes appear as smears on the gel. There 

is also a major problem of physical overlapping of 
different proteins within the same area on the gel. 
Therefore, the enormous potential of 2-D PAGE is 
severely restricted by the difficulty of the image 
analysis of each of the individual proteins within the 
protein spots.  
A few investigators, most notably Celis et al. [5], have 
made remarkable in-roads in the identification of 2-D 
PAGE-resolved proteins and the development of 2-D 
PAGE maps and databases, but there is much continued 
debate about the sustainability of 2-D PAGE as a 
platform for protein expression mapping. This debate is 
fueled by its technical demands and limitations that 
mostly stem from the analysis of the data.  
In computer-assisted Proteomic research, the 
comparison of protein separation profiles involves 
several heuristic steps, ranging from protein spot 
detection to matching of unknown spots. The 
development of more sophisticated Mass Spectrometry 
(MS)-based methods to characterize 2-D PAGE-
resolved protein spots and proteins from other sources 
has led to an increase in the efforts now being made to 
exploit 2-D PAGE as a protein expression mapping tool 
[6-10]. Many different investigators have tried different 
methods to solve the technical demands and limitations 
of the analysis of the data. 
Several current analysis programs are based on the 
important step of the recognition of the geometric 
relationship between the gel profiles, which is modeled 
on the basis of a given set of known corresponding 
spots, so-called landmarks. The locations of unknown 
spots are predicted using the optimized model where 
efficient protein spot matching is achieved using this 
image-warping step. This approach is known to be 
incapable of modeling all the complex distortions 
inherent in electrophoretic data even when polynomial 
functions together with least squares optimizations have 
been used. Some investigators, Salmi [11], have tried to 
satisfy the need of more flexible gel distortion 
correction by using a hierarchical grid transformation 
method with stochastic optimization that provides an 
adaptive multi-resolution model between the gels to 
achieve automatic warping of gel images. This method 
seems to achieve some success in correcting the spot-
matching image, but percent recognition is still too low.  
The shift in the research interest in the recent years 
from Genomics to Proteomics has increased the 
potentials and the demand for more research work on 
protein activity analysis. That shift was caused by the 
fact that most diseases manifest themselves at the level 
of protein activity and the realization that genetic 
information seems to be insufficient to predict and 
distinguish healthy from diseased tissues [12]. The 
focus in Proteomics is on analysis of the proteins 
expressed by a genome, which involves three major 
tasks: (i) protein spot detection, (ii) protein gel image 
matching, (iii) and spot quantitation. There are many 
software packages supporting these three steps and 
most of them require user guidance and allow for 
comparison of only two gel images, but efficient 
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Proteomics study of a disease may require a large 
number of sample gels to be analyzed and compared.  
When investigators compared two well-known 
computer analysis programs [13] using three of the 
fundamental steps (spot detection, gel matching and 
spot quantitation) involved in 2-D PAGE image 
analysis, they found each of the programs deficient in 
one or more of the three steps. In spot detection, even 
the best program only recognized 89% of the real spots 
and relatively few of the extraneous spots. When the 
two programs were compared using non-geometrical 
distortions in gel matching, both required user 
intervention. During spot quantitation tests, both 
programs did relatively well in ratios less than 1/6, but 
there was a large difference between the two programs 
using larger ratios. 
One major goal of research in this domain is to 
minimize human intervention during the entire process, 
so that, to reduce the subjectivity of the human expert 
and to increase throughput. Other important goals 
include, matching and alignment of several 2-D PAGE 
gels at a time and efficiently handling merged spots and 
complex regions in a 2DE gel image.  
 

MATERIALS AND METHODS 
 
A number of approaches and systems have been 
proposed and developed for the 2-D PAGE analysis 
problem. Commercial software products and tools for 
supporting research in Proteomics are available. Among 
these programs are: Delta 2D from Decodon Inc. 
(http://www.decodon.com/Solutions/Delta2D.html), 
Melanie 3.0 from Geneva Bioinformatics Inc. 
(http://us.expasy.org/melanie/Melanie.htm), Progenesis 
from Nonlinear Inc. (http://www.nonlinear.com), 
ProFinder 2D from Perkin-Elmer Life Sciences 
(http://las.perkinelmer.com), Melanie, Z3, DIGE and 
CAROL.  
Two sub-tasks, which are universal in the gel matching 
process, are local matching and global matching. 
Several of the analysis packages have attempted to 
build in these capabilities into their software. In local 
matching, a number of local spots compose a pattern P 
in a source gel S, the goal is to compute all the local 
patterns P’ in the target gel T that resemble both the 
geometric pattern and shape of P. Whereas global 
matching computes the overall list of spot pairs that 
correspond to each other in the two gels. Usually the 
local matching produces the landmark spots to be used 
for global matching.  
Takashami et al. [14-17] developed a fully automated 
set of algorithms for processing 2-D PAGE. The 
algorithms are based on the Restriction Landmark 
Genomic Scanning (RLGS) method. The implemented 
computer system is called DNAinsight. DNAinsight 
treats RLGS profiles as pattern matching using Delauny 
Nets (DN) and Relative Neighborhood Graph (RNG) 
algorithms. The algorithms are fully automated and the 
company states that no human intervention is required. 
One drawback of this approach is that it produces a 

number of false positive (ill-recognized spots) and true 
negative (unrecognized spots) which requires 
subsequently a time-consuming spot revising process 
by a human expert. To try to overcome this drawback, 
Takahashi and his colleagues developed a new 
approach that used Gaussian modeling of landmark 
spots. Another algorithm called Master Spot Pattern 
(MSP) has been also applied to allow easily 
distinguishing spot patterns of diseased and non-
diseased tissues. 
The differential protein expression analysis, DIGE [18], 
has been used to try to improve the reproducibility and 
reliability of quantification between samples. DIGE 
includes a standard sample in each gel thereby 
improving the accuracy of the protein quantification 
between samples.  
Another approach described is one [19-21] in which the 
spot detection algorithm depends on watershed 
transformation applied to the gradient image. The 
analysis can interpret twin spots/streaks and so-called 
complex regions using a Linear Programming (LP) 
formulation. For matching, the detection algorithm 
performs global-via-local (as they call it) matching. 
The local matching is done in step one to generate a 
number of landmark spots to be used in step two for the 
global matching. This approach is implemented in 
CAROL and has been deployed over the Internet for 
use by remote researchers. CAROL consists of two 
components, a core functionality component residing 
on a server machine and a graphical user interface via 
the Internet. 
Kaczmarek et al. [12] describes an approach for 
automatic matching of two 2-D PAGE images using 
feature-based matching technique and Fuzzy Alignment 
(FA). The FA allows automatic matching of images 
with different numbers of features and with unknown 
correspondence. The approach has been tested on real 
and simulated data. 
 
Support Vector Machines: The Support Vector 
Machine (SVM) [22, 23] is one of the most powerful 
classification methods and enjoys a considerable 
empirical and theoretical support. SVMs have proven 
success in many applications like object recognition 
[24], face detection [25] and text categorization [26]. 
Given a data sets consisting of two types of points, 
positive and negative, SVM attempts to compute a 
separating hyperplane (a decision surface) with 
maximum margin between the points of the two sets. 
This phase constitute the training and the computed 
hyperplane will be used subsequently to classify some 
new unseen points in the testing phase. However, the 
task could merely be separating the points of the given 
(training) data set. When various lines may be chosen 
as decision surfaces, the SVM method selects the 
middle element from the “widest” set of parallel lines. 
The best decision surface is determined by only a small 
set of (training) points called the support vectors. This 
case  of  finding  the optimal  separating  hyperplane 
with  maximum  margin  can  be  generalized to the 
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Protein Spots 

non-separable cases via introducing the concept of 
“soft-margin” and constructing nonlinear classifiers via 
kernel functions. The kernel functions map the training 
data into a higher dimensional feature space and SVM 
constructs an optimal separating hyperplane in the 
higher dimensional space that is corresponding to a 
nonlinear classifier in the input space. The kernel 
function can be linear, polynomial, or Gaussians (RBF). 
Now, with the kernel functions and the high 
dimensional space, the hyperplane computation requires 
a quadratic programming, which is computationally 
intensive and is of non-trivial implementation. The 
Kernel Adatron (KA) algorithms [27, 28] provide an 
alternative to this extensive computation by offering 
methods to find solutions rapidly with a fast rate of 
convergence to an optimal solution. While the classic 
Adatron algorithm [27] was designed for linear 
classifiers, the KA is adapted into the (high) feature 
space of SVMs [28]. The KA algorithm solves the 
maximization of the dual Lagrangian by implementing 
the gradient ascent algorithm. Finally, some of the 
advantages of using a support vector machine in this 
application include-the ability to separate classes using 
normal at the boundary lines, and the ability to 
transform a curved space to linear space. 
 
The Proposed Method: Two-dimensional gel analysis 
remains the core of proteomic technology because it is 
currently the most powerful method to analyze large 
collections of proteins. Advances in electrophoresis 
equipment are making the technique more and more 
accessible to scientists previously intimidated by 
lengthy procedures and disappointing outcomes, but 
effective computer assisted image analysis of gels is 
still time-consuming and in need of further 
development. The research outlined here demonstrates 
an effective data-mining, machine learning process that 
improves the processing and automation of image 
analysis of 2-D PAGE gels. 
The approach uses a Kernel Adatron Support Vector 
Machines to analyze a 2-D PAGE gel. Analyzing these 
images pose many challenges including: 
 
* Proteins when stained may not be visible to the 

human eye either because of their low 
concentration or the stain is not specific for that 
type of protein. 

* Highly saturated areas make it hard to identify 
proteins. 

* Poor Image quality. A protein may smear across a 
2-D PAGE gels. This can be due to the chemical 
makeup of the protein, i.e., post-translational 
modification. 

 
A traditional automated approach to analyzing a 2-D 
PAGE examines the whole image for detecting protein 
spots. However, this approach must contend with 
inherent image complexity in terms of pixel density 
diversity and the pixel topology. 

An alternative approach is to preprocess the image by 
dynamically partitioning the image, assessing each 
subsection and then merging the corresponding pieces. 
 
Partitioning the Image: Initial analysis involves 
extracting pixel coordinates and the respective 
intensities. These intensities serve as a basis for 
identifying local maximas. In the event that a local 
maxima spans a group of neighboring pixels, then a 
centroid pixel is determined by using the average of the 
minimum/maximum values with respect to the local 
minima points. 
These centroids act as corner anchors for extracting 
sub-images from the main image. 
   

       
 
Fig. 1: Original Image and Image bounded by Centroids 
 
 
 
 
 
 
 
 
 
    
 

Fig. 2: Sample Rectangle with 3 Protein Spots (Two 
visible) (Image enlarged) 

 
Thus any rectangle may contain up to 4 proteins at each 
of the corners. There will be no proteins at the edges. 
Otherwise, it would be necessary to partition the 
rectangle into smaller rectangles. Those rectangles with 
zero proteins may be ignored. Figure 2 illustrates these 
ideas.  
We conduct several experiments applying the Kernel 
Adatron to these partitioned rectangles. 
 
Experiment 1: Proof of Concept: All experiments 
seek to divide a rectangle into two classes as input 
values for the Support Vector Machine. Since an image 
contains at least two proteins, the coordinates of the 
local maximas for each protein will be identified as the 
first class. The question remains on how to identify the 
second class.  
Since proteins occur at the corners of an image, the first 
experiment uses the center of the rectangle as the 
second class. The idea is that a single point will rapidly 
converge to a solution. The parameters for this 
experiment are set to 1000 epochs with dither set to 0.1. 
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Although the Support Vector Machine trained very fast, 
it did a poor job in recognizing the proteins as indicated 
in Fig. 3. Upon inspection of the results, it is evident 
that more points are needed for the second class. 
The next experiment further populates the second class 
by adding the midpoints from each of the edges. The 
intent is to provide tighter boundaries around the points 
from the first class. Once again, this experiment trains 
for 1000 epochs with a dither rate set to 0.1. 
The second experiment produced a better image than 
the first experiment. In this case, there is better clarity 
in proteins. However as Fig. 4 illustrates, the 
boundaries need further definition. 
 

      
 

Fig. 3: Original Image and Results from the 
Experiment 1A (Images Enlarged) 

 

     
 

Fig. 4: Original Image and Results from the 
Experiment 1B (Images Enlarged) 

 
The next experiment seeks to maximize the number of 
points in the second (non-protein) class. This is 
accomplished by  inverting  the original image from 
Fig. 2 and extracting out the maximum values. Figure 5 
shows the inverted image. This technique produces 
14,210 points for the second class. 
Figure 6 shows the results from the third experiment. 
The Support Vector Machine is able to identify all three 
proteins with crisp boundaries. A question arises 
regarding the extent of the boundary. The experiment 
strives to discriminate points into a two-class system, 
thus there is a tradeoff between granularity and 
simplicity. 
 
Experiment 2: Highly Saturated Region: Identifying 
protein spots in highly saturated regions, as illustrated 
in Fig. 7, is a major challenge in the field of 
Bioinformatics. The next experiment extracts out the 

circled region from Fig. 7 for analysis as depicted in 
Fig. 8. 
Visually inspection reveals that Fig. 8 offers very little 
contrast.  As  a  consequence only 4 points are extracted  
out from the second class (which corresponds to the 
minima values). Recall that the second class in the first 
set of experiments had 14,210 points. 
 

                     
 
Fig. 5: Inversion of Original Image from Fig. 2 (Image 

Enlarged) 
 

       
 

Fig. 6: Original Image and Results from Experiment 
1C (Images Enlarged) 

 
A series of experiments are performed varying the 
number of epochs from 150 to 5000. The dither rate 
was 0.1 all the cases.  
The results are highly contrasted with respect to the 
original image. However, drawing the images closer to 
scale, as in Fig. 10, diminishes the differences between 
the images. One argument is that Support Vector 
Machine-based image accentuates the contrast. 
 

 
 

Fig. 7: Identified Saturated Region in a 2D- 
Electrophoresis Gel 
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Fig. 8: Enlarged Region from Fig. 7 
 

      
 

Fig. 9: Original Image and Results from Experiment 
2A (Images Enlarged) 

 
  

 
Fig. 10: Original Image and Results from Experiment 

2A (Sized Closer to Scale) 
 

  
 
Fig. 11: Original Image (Raised Contrast) and Results 

from Experiment 2A (Images Enlarged) 
 
Raising the contrast in the original image, as displayed 
in Fig. 11, shows that the results from the Support 
Vector Machine are reasonably close in appearance. 
 

DISCUSSION 
 
One challenge faced by Bioinformaticists is the lack of 
standards in identifying protein spots. Different protein 
spot detection programs (and lab technicians) 
frequently  disagree  on  what  constitutes  a protein and 
what is the extent, in terms of surface area, of the 
protein. Figure 12, a sample screenshot from an 
unnamed commercial product, illustrates this dilemma. 
The software package assumes contiguous boundaries 

between proteins. This assumption tends to skew the 
actual size of the proteins. 
 

          
 

Fig. 12: Image with Wide Boundaries 
 

             
 

Fig. 13: Image with Narrow, But Fuzzy Boundaries 
 
The two-class approach of the Support Vector Machine 
seeks to quickly transition from where a protein ends to 
“non-protein” terrain. 
A second challenge in defining a protein’s perimeter 
makes it difficult to establish a crisp border. For 
example, Figure 13 illustrates this situation for the two 
proteins in the middle of the image. One solution is to 
apply Bezier curves to each of the protein boundaries.  
Contrary to the example in Fig. 13, the Support Vector 
Machine produces very smooth curves with little 
jaggedness. 
The Bioinformatic challenges, in terms of lack of 
standards, make it difficult to statistically assess any 
methodology. What seems to be important is having a 
defined, repeatable and consistent process. This 
approach certainly offers all these features. 
 

CONCLUSION 
 
A Support Vector Machine is able to identify protein 
spots  and  mimic  their shapes with smooth boundaries.  
The approach performs very well when the original 
image is highly contrasted, thus producing an abundant 
set of points for both classes. 
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Furthermore, this approach is well suited for a 
distributed processing environment where sub-images 
can be delegated for processing and the corresponding 
results can be merged together. 
 
Future Directions: The current approach uses a 2-class 
system to separate spots. The benefit of this approach is 
its simplicity in terms of representation. Adding multi-
class analysis along with probabilistic reasoning would 
allow for refined granularity within the solution space. 
Thus reducing the contrast within the resulting image. 
It may be possible to preprocess each subregion in term 
of contrast. Using a higher contrast would accentuate 
the differences between classes. 
The approach of dynamically partitioning an image and 
processing each sub-image separately implies a 
distributed processing approach. One goal would be to 
develop Support Vector Machines in a client-server 
architecture. This could leverage off of a distributed 
system and thereby provide a faster solution. 
Other tasks and sub-tasks to be achieved in the future of 
this research include:  
 
∗ Automatic spot detection with the possibility to 

interactively tune the results and with no, or 
minimum, domain expert intervention. 

∗ Semi-automatic spot editing facilities.  
∗ Accurate spot quantification.  
∗ Powerful automatic spot matching and editing 

facilities. 
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