Journal of Computer Science 1 {3}: 304-309, 2005
ISSN 1549-3636
© Science Publicaticns, 2005

Revisiting Overflow in Integer Multiplication

Eyas El-Qawasmeh and Ahmed Dalalah
Department of Computer Science, Jordan University of Science and Technology, Jordan

Abstract: Integer multiplication is a very common operation that is executed in many applications.
However, some of these applications suffer from the overflow problem caused by the multiply
operation of two operands. The overflow occurs whenever the multiplication of any two-integer
numbers exceeds the maximum limit available for the result. Many programming languages ignored
this preblem; therefore, the programmer has te handle it, mostly in “predict and aveid” approach.
Present study addresses the detection and centrol of integer overflow in programming languages. Two
examples from C and JAVA programming languages are considered. The paper suggests “detect and
do” algorithms to handle the overflow. In addition, this paper suggests adding a built-in function to test
whether an overflow will be generated by multiplication operation in advance.

Key words: Biglnteger, Detection, Multiplication, Overflow.

INTRODUCTION

Currently, many applicaticns use the multiplication
operation. These applications include schedules robot
motion planning, load balancing, math and financial
problems [1-3]. Examples of mathematical and
financial applications include math clubs, statistics
tools, calculators and interactive finance tools.

Some of these applications must solve the overflow
problem in order to get the correct results. For example,
the computation of a jackpot prize with one ticket,
where the number of combinations of 40 numbers takes
5 at a time is “40 choose 5 which is 401/{40-5}!5!, The
intermediate computation of 40! generates a number
that requires more than 30 digits. Another example is
the calculation of Fibenacci numbers for 100 and
above. In these two examples, the result cannot fit in a
typical integer data type and it will produce incorrect
results due to the overflow of the multiply operation.
Multiplication is “one of the common arithmetic integer
operations that a processor performs and it has been an
active area in computer science” [4, 5]. When two
unsigned n-bit numbers are muliiplied tegether, it is
always possible to preduce a result with 2n bits; as a
result, an overflow occurs. In other words, we are trying
to store a number in a memeory location that is not large
encugh to hold it [5-7]. A simplified example is an 8-bit
variable, which can hold a maximum number equal to
{(2’-1) in case of signed integer or (2°-1) in case of
unsigned integer. However, if we (ry (o store a number
equal to or greater than 2° into this 8-bit variable, then
an overflow will cccur since we cannet represent that
number with § bits.

Many programming languages, especially procedural
languages, have ignored the coverflow problem and
shifted the responsibility of solving it toward the
programmer. However, programmers are unable to
solve it efficiently. They use one of two approaches:

304

“predict and avoid”, or “do and detect”. The former
approach, which predicts the overflow preblem and
avoids it, works in many cases, but when numbers get
very large it does not work since it becomes impossible
to avoid the overflow due to the limitations in hardware
or in language itself. The later approach, which is a “de
and detect”, lacks the capability to be implemented in
the programming language itself. Therefore, the
programmer has to do it using the assembly language.
The use of assembly language is very time consuming
and is a tedicus process, which might not work on all
platforms.

An ideal solution to the overflow problem should
“detect and do” the corresponding operation. Either the
hardware or the software can sclve this problem. A
hardware approach might allow a computer word to be
of a very big size. For example, expand the 32-bit
computer word to 128-bit. However, this sclution is not
currently available due to many reasons. An alternative
to the hardware approach is the software approach,
which can confrol the overflow by providing a
mechanism to detect the overflow and do the arithmetic
operation. In this paper, we focus our atlention toward
the software to solve the overflow preblem.

This study will review the detection of overflow in
integer multiplication. Then, it will present the
corresponding algerithms to handle integer overflow in
multiplication. The presented algorithms allow us to
handle integers of any size (without any exfra
requirements of hardware) in the procedural languages.
This paper assumes that the size of the computer word
is 16-bit unless mentioned something else.

Overflow Detection: Given unsigned infeger A
consists of n-bit where A = ayjan5.....2785. To produce
an overflow, it is sufficient {in unsigned multiplication}
to have a "carry cut" of the most significant bit. For
example, consider 3-bit representations of 5 and 6. The

J. Computer Sci., 1 (3): 304-309, 2005

multiplicaticn of (5*6} = (101 * 110} shculd vield
11110, but in a 3-bit answer, the most left 2-bit are lost
and the resultis 110 = 6.

The result of unsigned/signed multiplication will be
out-of-range when it generates a carry, which is used to
flag the error. The output bits remain valid, but only as
the n significant bits of 2n-bit result. The full result can
be computed using the “carry out” generated from the
most significant bits of the result and increasing the
number of bits that can hold the number.

A hardware implementation defines ifs own process
that it will execute for some instances of undefined
behavier. Undefined behavior cccurs when the result is
not mathematically defined or when the result is not in
the range of representable values for its type. The
immediate consequences of a signed integer overflow
mosily yield one of the following: 1}- a mathematically
incorrect result; 2)- some sort of trap that may appear as
an implementation-defined signal; 3)- raising an
exception; and 4)- terminating the program.

Integer overflow detection should be implemented
before its occurrence, not after its occurrence. The
reason for this is that the overflow in some
programming languages causes undefined behavior, so
on some machines the program will never reach the call
to the function that checks whether an overflow
occurred or not. As an example, consider the function
skeleton code given in Fig. 1:

In a language like C, there is no way to reach the last
statement of Fig. 1 (provided that there is an overflow
in {c = a * b) and that overflow can result in exception).
Another reason why we need to check for an overflow
before its cccurrence is the absence of a compiler up to
the knowledge of the authors that has a portable way to
detect an overflow after its occurrence. Therefore, it is
recommended to check for possible overflow before we
apply the multiplication on any two numbers that
generates overflow.

Multiplication overflow should be detected in advance
so that we can take the necessary actions to avoid it.
There are two types here: unsigned numbers and signed
numbers. The unsigned numbers case is a special case
of signed numbers. Therefore, we will cover the signed
numbers case. [the overflow changes only cne sign of
the two operands then we can check for overflow by
verifying the sign of the answer. For this case, consider
the following sign of truth table

Multiplier Multiplicand Product
+ + +

+ - -

- + -

- - +

Let us assume that the + sign represents the true value
(represented by non-zere integer in C/C++) and-
represents the false value {represented by zero value in

C/C++). Therefore, we can check for potential overflow
from the following equation.

Overflow = {(Multiplier sign XOR Multiplicand sign }
Product sign) (1)

Where overflow is a logical variable that will be
evaluated to frue or false. If the value of the variable
Overflow is true then an overflow has occurred,
otherwise the overflow preobably did not occur. The
previcus test detects for overflow in most cases, but not
all of them. Fig. 2 provides a procedure, which detects
overflow in all cases.

The authors recommend using the test in equation (1) to
check for overflow. If the variable Gverflow in equation
(1) is false, then we need to apply procedure
Test Multiply. The result of procedure Test Muliiply
will be one of the following: First, it return false and
this indicated that the overflow will not cccur. Second,
it returns true and this means that an overflow will
occur. Third, it generates undefined behavior due to the
computation of variable product. The occurrence of
third case in some languages tells us that we need to
avoid traditional multiplication and use one of the
algorithms.

The overflow detection should be followed by a
mechanism te do the multiplication although we predict
the occurrence of the cverflow. The fellowing section
discusses how the mechanism of handling it in scme
programming languages can be applied by censidering
C and JAVA languages as two examples.

Currently, many programming languages raise an
exception, which is the standard solution to this
problem. In this case, it will raise an exception without
treating the overflow preblem. This is a way of
detecting and reporting the overflow rather than solving
it. This treatment does not produce the required answer
for the arithmetic operations. The later sclution is not
standard, but many programmers use it commeonly in
practice.

The overflow preblem can be reduced by using long
integer arithmetic. There are three basic strategies for
implementing long integer arithmetic. The first strategy,
which is called the defauvlt strategy, is implemented in
the traditional long integer arithmetic package. The
second strategy is to use Gnu Multi-Precision Package
(GMP} as a supplementary long integer arithmetic
package. The third strategy is to use GMP as the
primary long integer arithmetic package. The GMP
libraries are available at [11].

C Language Approach: The procedural language,
which we will take as an example, is the C language. C
does not pay atlention to the “carry out” or overflow; it
simply leaves the problem to the programmer (it gives

J. Computer Sci., 1 (3): 304-309, 2005

/ sizeof {int) may be any number

Integer a, b, ¢

Boolean Overflow;

/1 Assume arbitrary values assigned to a and b
c=a*h;

/% Flag */

/* Possible overflow */

/{ The following sentence will never be reached in case of overflow

Overflow = Check_Integer_Overflow (};

/*# True if overflow occurs, or false otherwise */

Fig. 1: Example of Unreachable Call to Overflow Detection after the Multiply Operation

Boolean Test_Multiply {(int x, int y)
Begin
int product = x * y;
If{{v #0) AND (product / v) # x)
return true;
else
return false;
End If
End

/{ No Overflow

/1 Overflow will cccur and normal multiplication should be avoided.

Fig. 2: C Like Function to Detect Overflow in the Mulfiplication

22

no access to the “carry out” or overflow flags, which
are needed to verify the occurrence of overflow).

The C language standard says that overflow is simply
undefined behavior, Therefore, we will not be able to
detect it after its occurrence because the program will
go into a twilight zone. Thus, if we would like to detect
overflow, we must explicitly write some code before
the multiply operation as we menticned previously. Of
course, for a given C compiler, overflow of integer
arithmetic multiplication may be well defined, but the
code will not be portable.

In C, we do not need to generate such an overflow to
determine the value of a “carry cur” or an overflow flag
that would result from multiplication. We can
determine whether the multiply operation would
overflow before performing it. Take for example a*b
where a and b represent integer values. This operation
overflows if the result would be greater than MAX INT
or less than MIN _INT. An expression that determines
whether a*b would overflow in C-like is:

Overflow = {((a > 0) AND (b > 0)) OR {(a < 0) AND
(b< 0))) 7 ((Abs(a) > Abs(tMAX_INT / b)) OR { Abs(b)
> Abs(MAX_INT/a))} : ((a < MIN_INT /b) Il { b <
MAX_INT / a))

Where Abs represents the absclute value. This was
done to consider the case when both a and b are
negative. Note that C language permits throwing
overflow exception on integer overflow, but the
implementation is not obligatory. Thus, the programmer
must test for overflow by himself. In this context, C
does provide any of the basic facilities such as a test for
overflow.

JAVA Approach: Integer overflow in JAVA
specification is not detectable, thus, it is the
responsibility of the programmer to verify the values by

306

checking if an overflow occurs or not. In JAVA, the
result of integer overflow operation is specified to be
different from the arithmetically correct results by 2"
where nis a 32-bit for type integer.

JTAVA provides a solution to the overflow by using the
Big Integer class (Biglnr) instead of integer. The
general mechanism of big integers is as follows: For
integers laréger than a certain size (2 on most
machines, 2°* for some others), we use a “large integer”
library. All large integer libraries store each integer in
multiple machine words. For example, if we have a
128-bit number and the integer size of our machine is
32 bits, then it will use four machine words to store that
number.

The implementation of Biglns (Big Integer) class takes
care of the overflow so that it will not be discarded;
rather the results in a “carry out” are handled just like
pencil and paper arithmetic. The difference in the
implementation is the use of base 2 instead of base 10.
The Biginr class in JAVA allows the programmer tc use
very large values as long as there is sufficient memory.
A big integer is an integer, which dees not cverflow.
Internally, a big Integer (an object of class Biglns) is an
array of single digit values and the array can grow as
large as we need. Big Infegers therefore will not
overflow. The Bigint class provides many constructors
and methoeds, among these methods is the multiply
methed. The multiply methed returns the answer
{which is an object) through the this pointer.

Detect and Do Algorithm: The programming
languages that do net handle the overflow
problem should use a different approach. This paper
uses three different methods. The first method is the
arrays. The second is linked list. The third method
divides the number inte two halves. Third methed
works for double the size of the word and has limited
capabilities.

J. Computer Sci., 1 (3): 304-309, 2005

Algorithm Muliiply()
/{ Declare the following
/'S4, Sy strings

/ Answer is one-dimensional array of type integer where each element contain part of the answer
/f LengthMax is an integer temporary variable which contains the length of the largest number

Begin

[nput Number; and Number, which you would like to do the multiplication.

For each number do the following

Store in strings S;, S,, the contents of Number; and Number, respectively (i.e. 5; = string (Number;}, S, =
string{Number,)}. Thus, each string will hold the contents of a number but in character form.

If (strlength (S;) > strlength (S,})
{

LengthMax = strlength {5}
LengthMin = strlength (S,)

}
else
{
LengthMax = strlength {S,)
LengthMin = strlength (S}
}
For (I = ;I < LengthMin; [++) do
{
count =0
For (j=0;j<LengthMax, j++) do
{ .
Answer[l] = Answer[[] + {integer (S1[J]) * 10! Y*integer (S:[L])
Increase count by 1
}
}

For (I=0;1 < LengthMin; I ++) do

Break Answer[[]into its individual bits
For (I=0;1 < LengthMin; I ++) do

Shift Answer[[]1 bits to the left
For (I =0; 7 <2 *LengthMax; I ++) do

{
Total =0
Add bit No. I for all answers and print the total
}
End

// casting and multiplicaticn

Fig. 3: The Multiplication of two Numbers

The arrays method represents a number as a sequence
of digits stored in an array of characters. Then, we can
write a function to do multiplication on those arrays and
then make them as large as we want. Fig. 3 is our
algorithm for performing the multiply operation based
on arrays.

In this algerithm, we convert each number inte an array
of characters {strings). Then the length of the lengest
two strings {S,, S;) is assigned fo a variable called
LengthMax. Note that we convert each decimal digit
into a character form, where each character occupies
two bytes (one for the character and the other unused
temporarily}. Thus, if we have an integer number that
consists of two decimal digits, then they will be stored

307

in 4 bytes as character variable. Fig. 4 explains how we
get the answer.

The generated answer will not fit inte the added
resultant. In order to stere the value of the answer in a
variable we might do one of the following twe
approaches: 1)- Frequency Repetition, or 2)-Scaling.

In frequency repetition, we count how many times we
have reached the maximum integer available on the
machine. Thus, the answer will be the contents of our
answer array minus the maximum integer; meanwhile
we have to create a variable called Frequency, which
will contain the value 1. If cur answer overflows one
more time, then the value of the frequency will be
incremented whenever saturation occurs [9].

J. Computer Sci., 1 (3): 304-309, 2005

2 bytes
Nol

2 hytes

3 | Ne2 Answer array
2 hthes M2 h;tes 2 h;rktes Mo haes N 2 b;tes o2 byA'tes N
Iunusadl 2 Iunusadl 1 I £ i.musadl 1 Iunusadl 3 I = Iunusedl 2 I 7 I 3 I

Fig. 4: The Multiplication of Two Overflowed Numbers

As an example, consider Fig. 4, where the answer array
contains (2 and 73). To find the result, we need to
subtract MAX_INT from answer array and increase the
frequency by cne. This step will be repeated until the
content of answer array becomes less than MAX_INT.
The same thing applies to negative numbers, however,
we compare with MIN_INT.

The other method is the scaling method where we
divide our number by some factor and store the factor
in a variable called Sealing. Note that this method
might generate rcunding in the number.

To correct the cutput value of cur answer, we (race
answer array clement by element te print the required
cutput.

A second algorithm is to use the linked list. Following
is the exact algorithm for it.

Algorithm Multiply_using linked list()
Begin
Input Number; and Number, which vou would like to do
the multiplication.
For the first variable, create a linked list and store each
digit in a one node
For the second variable, create a linked list and store
each digit in one node.
// The following n is equal to max (length1, length2) of
// the two numbers
Create a linked list of length 2n that will hold the answer.
For each node (digit} in the second linked list do
Multiply the node with the first linked list and store
the result in two nodes of the answer linked list.
Print the result using all the nodes of the answer linked
list
End

A third method that is applicable to a limited range of
numbers. In this method, we split the number inte two
halves and do normal multiplication. This allows us to
achieve the multiplication for 64 bits. However, if we
use some special data types such as __int64, which is
available in Visual Studio version 6, then we can do the
multiplication operation on numbers each of which has
a length of 128 bits. Following is algerithm
Multiply using splitiing{) that divides the number into
two halves without using any special data types then it
performs the multiplication operation.

Algorithm Multiply_using_splitting {Nel, NoZ}
Begin
// This program computes the entire 64-bit of the

/f product and set

maskl = 635535,

int a_halfl = Nol & maskl; // Getthe least 16 bit
/fofa

inta half2 = Nol »>»>16; //shiftright to get the
// most 16 bitof a

intb_halfl = No2 & maskl;// Get the least 16 bit
/ofb

int b_half2 = Ne2 »>»16; / Shiftright to get
// the most 16 bitof b

intrl, 2, 3, r4, r12, r34

rl = b_halfl * a halfl;

r2 = b_halfl * a_half2;

3 = b_halfZ * a_halfl;

r4 = b_half2 * a_ half2;

rl2 =rl + r2;

34 =r3 + rd;

Print the answer, which is a concatenation of (r12,

34); / get 64 bitresult
End

A fourth algerithm is to use builtin data structure called
ArrayList, which exists, in C# {ArrayList handles
numbers as arrays but it allows the programmer tc use
built in methods). The algorithm of it is a kind of
similar to algorithm Mulriply() presented previously.
However, it is designed for C#.

The previous paragraphs describes many variations for
the Multiply algorithm. Scme of these variations are
specific to a certain language like C#. Fig. 5 is a generic
“Detect and Do” algerithm that handles overflow in
multiplication.

The Detect and Do algorithm will be as follows:

Detect_amd_Do (variablel, variable?)
Begin
If thereisno cverflow then
Do the normal multiplication
else
Apply the multiply algerithm /fany version
Cutput the result using the corresponding data structure that
holds the answer
End If
End

308

Fig. 5: Detect and Do Algorithm

J. Computer Sci., 1 (3): 304-309, 2005

Table 1: The Time Required by Different Approaches Using C/C++

Approach Regular Detect and DG {Multiply Detect and Do {Multiply Detect and Do {(Multiply
using array) using linked List) using _splitting) __int64
Nermalized time 1 34 4.4 4.6 1.7
Table 2: The Time Required by Different Approaches Using JAVA
Approach Regular Detect and DG {Multiply Detect and Do (Multply Detect and Do (Multiply Big
Using arrays} _using linked List) using splitting) Integer
Nermalized time 1 5.1 3.9 4.2 4.7
EXPERIMENTAL RESULTS built-in function that takes twe integer parameters and

An experiment conducted to see the time required by
our algorithm. Table 1 shows the normalized tme
required by different variations of Multiply algorithm,
the time required by regular multiplication and the vse
of __int64 in C/C++ language

Note that Visual C++ version 6, which contains a C
compiler, allows the vse of 64-bit integer variables on
32-bit machines using the __ini64 data type. In Table 1,
the “Detect and Do” algorithm requires extra time, but
it generates safer arithmetic results. In this table, a
value like 3.4 means that the required fime for
multiplication using “Detect and Do” is about three
times if we use regular operaticns. However, there is a
possibility of cverflow using a regular approach. The
same experiment was repeated using JAVA. The results
of JAVA are listed in Table 2.

All the previous programs were run many times and the
average run time was taken as a measurement in Table
1 and 2. The number of multiplication cases is 1000 and
the used computer is Pentium IV with a speed of 1GHz.
In these experiments, we tried to freeze all unnecessary
operations of CPU while the program was running. In
addition, the computation of each number was repeated
10000 times and the average is considered.

CONCLUSION

The overflow problem occurs whenever the
multiplication of two binary numbers generates a result
that does net fit infe the same number of bits. The
overflow can have a large impact on the execution
speed and on the “software quality of the final product
either directly or indirectly” [10]. Many pregramming
languages do not specify what may happen in the event
of overflow. Therefore, the results are not those the
programmer is intended to get.

A careful programmer will only rely on a minimum
range for every variable, but not on an upper bound. For
example, a 32-bit application will handle 16-bit values,
but the opposite is not true. However, if the
programmer is blocked with the maximum size, then
he/she can use our suggested approach.

The suggested approach avoids the idea of increasing
the capabilities of computer hardware. The
compensation for this is an extra cost in the execution
time. It is recommended and worth the addition of a

309

determines whether an overflow will occur or not. This
built-in function should be supported in the
programming languages that ignores overflow.

REFEREENCES

Fiat, A. and G. Woeginger, 1998. Ounline
algorithms. The State of the Art. Lecture Notes in
Computer Science 1442, Springer, Berlin.

Grove, E., M.-Y Kao, P. Krishnan and J. Vifter,
1995. Online perfect matching and mobile
Computing. Proc. of the 4% Workshop on
Algorithms and Data Structures (WADS '93),
Kingston, Ontario, pp: 194-205.

El-Qawasmeh, E., 2003, Handling overflow in
integer addition in inline computations. Digital
[nformation Management J., India, 1: 129-135.
Gok, M., 2000. Integer multiplication with
overflow detection or saturation. Master’s Thesis,
Lehigh University, PA, USA.

Schulte, M., P. Balzola, A. Akkas and R. Brocato,
2000, Integer multiplication with overflow
detection or saturation. IEEE on Computers, 49:
681-691.

Elguibaly, F., 2000. Overflow handling in inner-
product processors. IEEE Trans. on Circuits and
Systermns-II: Analog and Digital Signal Processing,
47: 1086-1090.

Parhamin, B., 1988. Zero, sign and overflow
detection schemes for generalized signed digit
arithmetic. Proc. of the 22™ Asilomar Conf. on
Signals, Systems and Computers, Pacific Grove,
CA, pp: 636-639.

Lang, T. and Bruguera, J. D., 1999. Multilevel
Reverse-Carry Cemputation for Comparison and
for Sign and Overflow Detection in Addition. Proc.
of the International Conference on Computer
Design, pp: 73-79.

Mustafa G. "Integer Multiplication with Owverflow
Detection or Saturation,” Master Thesis, Lehigh,
USA, May 2000.

Burgess, C.J., 1995. Software quality issues when
choosing a pregramming language. Proc. of the 3¢
Intl. Conference on Software Quality Management,
Software Quality Management 3, Spain, 2: 25-31.
GMP web page. http://www.swox.com/gmp/

10.

11.

