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Abstract: In this study, we present the derivation of the mathematical model 

for a rocket’s autopilot in state-space. The basic equations defining the 

airframe dynamics of a typical six-Degree-of-Freedom (6DoF) are non-linear 

and coupled. Separation of these nonlinear coupled dynamics is presented as 

lateral and longitudinal dynamic equations. The need to determine 

aerodynamic coefficients and their derivative components are brought to light 

here, which is the crux of the equations. Methods of obtaining such 

coefficients and their derivatives in a sequential form are also put forward. 

After the aerodynamic coefficients and their derivatives are obtained, the next 

step is to trim and linearize the decoupled non-linear 6DoFs. In a novel way, 

we presented the linearization of the decoupled 6DoF equations in a 

generalized form. This provides a lucid and easy way to implement trim and 

linearization using any computer program.  
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Introduction 

Over the years a number of authors (Papp, 2017; 

Faruqi, 2007; Chelaru and Barbu, 2009; Belega, 2012) 

have considered modelling, rocket/missile dynamics for 

atmospheric flights. In the majority of the published 

work on these mathematical models, trim and locally 

linearisation are done without detail explanation to the 

variables in the decoupled airframe dynamics. As such, 

the easy to write computer programs to facilitate this 

process numerically has been impeded.  

With the advent of fast processors and numerical 

software like MATLAB
®
, Maple

®
, Python

®
, etc., it is 

now possible to take a complex non-linear 6DoF 

equation like that of a rocket and run a program that 

can trim and linearize it with easy. This has made the 

field of control system design to grow at an exponential 

rate (Siouris, 2004). 

It is a known fact the mathematical models are 

developed with their use in mind. This means before 

delving in to the realisation of a model one should be 

well informed of the purpose for which that 

mathematical model will serve (Blakelock, 1965). 

Especially, in the field of control system design, a 

mathematical model in transfer function might not be the 

ideal for optimal control design. Though, Problem 

Solving Environments (PSEs) like MATLAB/Simulink
®
 

come with built-in functions capable of transforming, 

say state-spacemodelt to transfer functions. One should 

bear in mind that this is not without a ‘cost’.  

Mathematical Model 

The inevitable part of any control problem is 

modeling the process or plant. The aim is to obtain a 

mathematical equation that sufficiently predicts the 

response of the plant to all inputs. For a rigid dynamic 

body, its motion can be described in translational, 

rotational and angular inclination at all times.  

Translational Motion 

An accelerometer is often used to measure force on 

dynamic body. For a rocket in motion, these forces 

(Handbook, 1995) are represented as given in (1). 

Actually, this is a measure of the specific force, i.e., 

the nongravitational force per unit mass in x, y, z-

directions respectively. The specific force (also called 

the g-force or mass-specific force) has units of 

acceleration or ms-1. So it is not actually a force at 

all, but a type of acceleration: 
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where: 

, ,

xb yb zbA A AF F F  = Aerodynamic force vectors expressed 

in the body coordinate system, N 

, ,

xb yb zbg g gF F F   = Gravitational force vector expressed in 

body coordinate system, N 

, ,

xb yb zbp p pF F F  = Thrust vector expressed in the body 

coordinate system, N 

m  = Instantaneous rocket mass, kg 

p,q,r = angular rates of roll, pitch and yaw, 

respectively, rad/s 

u,v,w  = Linear velocity, m/s 

, ,u v wɺ ɺ ɺ  = linear acceleration, m/s
2
 

 

The aerodynamic forces have the following 

components: 
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where: 

CA = Axial force coefficient, dimensionless 
CN  = Normal force coefficient, dimensionless 
CNy = Normal force coefficient on yb-axis 

2 2

,

y
N N

v
C C

v w

−

=

+

 

dimensionless  

CNz = Normal force coefficient on zb-axis 

2 2

1
,

z
N N

C C

v w

=

+

dimensionless 

S  = Reference area, m
2 

VM  = Magnitude of velocity vector of the center of 
mass of the rocket, m/s 

�  = Atmospheric density, kg/m
3
. 

 
The propulsive forces in (1) are computed as follows 

(Tewari, 2011): 
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(3) 

 
where: 
Fp = Thrust force vector, N 
Fpxb, Fpyb, Fpzb = Components of thrust vector Fp, N 
γ1 = Angle from xb-axis projecting thrust 

vector Fp on xb yb-plane, rad (deg) 
γ2 = Angle projecting thrust vector Fp on xb 

yb-plane to the thrust vector Fp, rad. 
lp = Distance from aerodynamic centre to 

centre of mass, m 
l = Distance from centre of mass to 

nozzle, m 

 

 
 

Fig. 1: Propulsion force from the nozzle of a rocket 
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If the rocket was designed for thrust vector control 

via gimbaling of the nozzle, as shown in Fp in Fig. 1,will 

be computed as given in (3). Here we assume that Fp, is 

acting along the line of symmetry of the rocket because 

the nozzle is fixed (fin control). Hence, the magnitude of 

the thrust force Fp is calculated by: 
 

( ) ,p pref ref a eF F p p A N= + −

 
(4) 

 
where: 

Ae = Rocket nozzle exit area, m
2
 

Fpref  = Reference thrust force, N 

Pa = Ambient atmospheric pressure, Pa 

Pref = Reference ambient pressure, Pa 
 

The gravitational forces in (1) are computed as follows: 
 

0,

0,

,
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ye

ze

g

g

g

F N

F N

F mg N

=

=

=

 (5) 

 
where: 

Fgxe, Fgye, Fgze = Gravitational force components, N 

g = Acceleration due to gravity, m/s
2
 

m = Instantaneous mass of rocket, kg 
 

The dependence of the acceleration due to gravity on 

the altitude of the rocket is given by: 
 

( )

2
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where: 

g  = Acceleration due to gravity, m/s
2 

g0 = Acceleration due to gravity at earth surface 

(nominally 9.8 m/s
2
) 

h = Altitude above sea level, m 

Re = Radius of the earth, m 

 

The gravitational force expressed in body coordinates 

is computed by multiplying (5) by the matrix (7): 

 

/bT
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s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

  

− + 
 

= + − 
 −   

(7) 

 

where: 

c  = cosine function (cθ = cos θ), dimensionless 

s  = Sine function (sθ = sin θ), dimensionless 

θ  = Euler angle of rotation in elevation (pitch) of 

body frame relative to earth frame, rad (deg) 

�  = Euler angle of rotation in roll of body frame 

relative to earth frame, rad (deg) 

ψ  = Euler angle of rotation in azimuth (heading) of 

body frame relative to earth frame, rad (deg) 

[Te/b] = Transformation matrix from earth to body. 

 

A vector v expressed in the body coordinate system 

can be transformed to the earth coordinate system by the 

matrix equation: 

 

/e e b bv T v=     (8) 

 

Hence, considering (5) we can write the following: 
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(9) 

 

The terms Fgxb, Fgyb and Fgzb are the components of 

the gravitational force substitute into (1). 

The mass in (1) is as given below: 
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1
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p
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m m F dt kg
I

= − ∫
 

(10) 

 

where: 

Fpref  = Reference thrust force, N 

Isp  = specific impulse of propellant, Ns/kg 

m0  = rocket mass at time zero (i.e., at the time of 

launch), kg 

t  = simulated time, s 
 

Rotational Motion 

A gyroscope or gyro is adevice that measure the 

angular acceleration or rotational motion of a dynamic 

body. On a rocket, this rotational motion can be 

described as: 
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(11) 

 

where: 

LA ,MA, NA = Moments in roll, pitch and yaw, 

respectively, Nm 
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Lp,Mp,Np = Propulsion in duced moments in roll, 

pitch and yaw, respectively, Nm 

Ix,Iy,Iz = Inertia, kg-m
2
 

p,q,r (P,Q,R) = Angular rates in roll, pitch and yaw, 

respectively, rad/s (deg/s) 

, ,p q rɺ ɺ ɺ
 

= Angular acceleration in roll, pitch and 

yaw, respectively, rad/s
2
 (deg/s

2
): 
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where: 

Cl  = Roll moment coefficient 

Cm = Pitch moment coefficient 

Cn  = Yaw moment coefficient 

d  = Aerodynamic reference length of body, m 

 

The aerodynamic moment coefficients are all about 

the center of mass and dimensionless and are expressed 

mathematically as: 
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where: 

Clp = Roll damping derivative relative to roll rate 

p,rad
−1
 (deg

−1
) 

Cl� = Slope of curve formed by roll moment 

coefficient C1 versus control-surface 

deflection,rad
−1
 (deg

−1
) 

Cmref = pitching moment coefficient about reference 

moment station, dimensionless 

Cmq = Pitch damping derivatives relative to pitch rate 

q, rad
−1
 (deg

−1
)  

mC
αɺ  
= Pitch damping derivative relative to angle of 

attack rate αɺ (slope of curve formed by Cα 

verses α), rad
−1
 (deg

−1
) 

CNy = Normal force on yb-axis, dimensionless 

CNz = Normal force on zb-axis, dimensionless 

r
n

C
ɺ
 = Yaw damping derivative relative to yaw rate rɺ , 

rad
−1
 (deg

−1
) 

Cnref = Yawing moment coefficient about reference 

moment station, dimensionless 

n
C

βɺ  
= Yaw damping derivative relative to angle of 

sideslip rate βɺ , rad-l (deg
−1
) 

xcm = Distance from rocket nose to center of mass, m 

xref = Distance from rocket nose to reference moment 

station, m 

�r = Effective control-surface deflection causing 

rolling moment, rad (deg). 

 

Cnsidering that the rocket we intend to control is via 

fin deflection, fins on the rocket will designated as 

shown in Fig. 2. 

Hence, the following moment coefficients are also 

given as: 
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where: 

refm
C  = Pitching moment coefficient about 

reference moment station (This is the 

static value normally measured in the 

wind tunnel.), dimensionless 

mC
α  

= Slope of curve formed by pitch moment 

coefficient. Cm versus angle of attack, α 
rad

−1
 (deg

−1
) slope of tune formed 

mC
δ  

= Slope of tune formed by pitch moment 

coefficient Cm versus control-surface 

deflection for pitch,�p rad
−1
 (deg

−1
) 

n
C

β
 

= Slope of curve formed by yaw moment 

coefficient Cn versus angle of sideslip β, 

rad
−1
 (deg

−1
) 

n
C

δ  
= Slope of curve formed by yaw moment 

coefficient Cn versus effective control-

surface deflection for yaw�y rad
−1
 (deg

−1
) 

α = Angle of attack, rad (deg) 

� = Angle of sideslip, rad (deg) 

�η =�1= �3  = Effective control-surface deflection 

causing pitch moment, rad (deg) 

�ζ = �4= �2 = Effective control-surface deflection 

causing yaw moment, rad (deg). 
 

The angle of attack, angle of sideslip and roll angle 
required for the realization of the aerodynamic 
coefficients are: 
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where, ∅ is aerodynamic roll angle, rad (deg) and �t is 

the total angle of attack. 
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Table 1: Aerodynamic coefficients as a function of angle-of-attack 

S/N Coefficient Description 

1 CN Normal force (body axis) 
2 CL Lift (wind axis) 
3 CM Pitch moment (body axis) 
4 Xcp Center of pressure in calibers from moment reference center 
5 CA Axial Force (body axis) 
6 CD Drag (wind axis) 
7 CY Side Force (body axis) 
8 Cn Yaw Moment (body axis) 
9 Cl Roll Moment (body axis) 
10 CNα Normal force derivative with angle of attack 
11 CMα Pitch moment derivative with angle of attach 
12 CYβ Side force derivative with side slip angle 
13 Cnβ Yaw moment derivative with sideslip angle (body axis) 
14 Clβ Roll moment derivative with sideslip angle (body axis) 
15 CMq Pitch moment derivative with pitch rate 
16 CNq Normal force derivative with pitch rate 
17 CAq Axial force derivative with pitch rate 

18 
MC

αɺ
 Pitch moment derivative with rate of change of angle of attack 

19 NC
αɺ
 Normal force derivative with rate of change of angle of attack 

20 Clp Roll moment derivative with roll rate 
21 Cnp Yaw moment derivative with roll rate 
22 CYp Side force derivative with roll rate 
23 Clr Roll moment derivative with yaw rate 
24 Cnr Yaw moment derivative with yaw rate 
25 CYr Side force derivative with yaw rate 

 

 
 

Fig. 2: Fin control and designation for control 
 

Table 1 give a list of the aerodynamic coeefficents 
that must be obtained for every rocket design before a 
model can be realized. There exist numerical and semi-
numerical means of obtaining such coeffients. Examples 
of software that can do semi-empericl computation of 
such coefficients and their derivatives are MISSILE 
DIGITAL DATCOM

® 
(Rosema et al., 2008) and 

Flexible Structures Simulator (FSS) (PSUAI, 2013). 
Finally, a wind tunnel test is expected to validate and 
update all coefficients and their derivatives before the 
system engineer delves in the control design. 

The third and final component to fully describe the 
motion of a rocket is its angulerinclinationor attitude. 
We chose the Euler angles to describe the attitude of 
the rocket.  

Euler Angles 

Missile attitude is required for a number of 
simulation functions including the calculation of angle 
of attack, seeker gimbal angles, fuze look-angles and 
warhead spray pattern. In simulations with six degrees 
of freedom, the missile attitude is calculated directly 
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by integrating the set of equations that define Euler 
angle rates, i.e.: 
 

( ) ( )
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(16) 

 
where: 

θ = Pitch angle, rad (deg) 

φ = Roll angle, rad (deg) 

, ,ψ θ φɺ ɺɺ
 
= Rates of change of Euler agles in heading, 

pitch and roll, respectively, rad/s (deg/s) 

P,q,r  = Angular of roll, pitch and yaw, respectively, 

rad/s 
 

The three heading angle of , ,ψ θ φɺ ɺɺ  as shown in Fig. 3 

can be measure directly using a magnetometer. Note 

also, that the rulers angles in (16) can all be derived by 

integrating gyroscopic measurements. As such we might 

not need a instrument that will measure it directly. 

Nevertheless, a magnetor meter can be added to the 

instrumentation on board to measure heading.  

Combining (1), (11) and (16) gives a complet6 

degree of freedom equation of motion for a rocket in 

flight. This could be written together as given in (17). In 

today’s modern aerospace industry, a single device like 

the MPU6050- a MEMs based integrated chip can be used 

to give numerical values for state variables of (17) on any 

dynamic body. For control system design, the rocket 

system as described in (17) needs to be separated into the 

two planes (decoupled), these are called the lateral (la) 

and longitudinal (lo) dynamic equations of motion: 
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Fig. 3: 6-degree-of freedom motion of a rocket 
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Since the control system we intend to design is in a 

family of linear controllers and (17) is a non-linear 

system of differential equations, trimming and 

linearization must be done. 

Trimming 

To trim or find equilibrium values requires a good 

knowledge of advance computational techniques. A trim 

point, is also known as an equilibrium point. At 

equilibrium, all inputs to a system will attenuate and 

cause the system to return to a non-disturbance state or a 

nominal one. For a rocket, hence, a trim point involves 

setting controls(input) that causes the rocket to fly 

straight and level in the longitudinal plane. The suitable 

input values are the control surface deflections, the thrust 

and the rocket attitude (Yang et al., 2005). The set of 

conditions are the rocket’s accelerations. The variables 

associated with the trim problems can be divided into 

three categories: 

 

• Objective variables 

• Control variables  

• Flight condition variables 

 

The objective variables need to be driven towards the 

specified values, often zero (i.e., steady flight with zero 

sideslip). The objective parameters are combined in the 

objective vectors ola and olo, for the lateral and 

longitudinal missile dynamics respectively as: 

 

[ ] .

T

la
o v p r β= ɺ ɺ ɺ   (18) 

 

[ ] .
T

loo u w q α= ɺ ɺ ɺ   (19) 

 

For a typical solution, the sideslip angle in (18), 

should be zero. In that case, the drag is at a minimum. 

The control parameters are tunned to drive the objective 

parameters to desired values. Together, they form the 

control vector cla and clo, described in (22): 

 

[ ] ,
T

la a rc δ δ φ ψ=
 

(20) 

 

[ ] ,
T

lo ec δ τ θ=
 

(21) 

 

Finally, the 12 states of the 6DOF equation of motion 

must be initialized; with the initial state conditions. In 

MATLAB
®
, the trim command is used to find 

equilibrium points. The object of trimming is to bring the 

forces and moments acting on the rocket into a state of 

equilibrium. That is the condition when the axial, normal 

and side forces and the roll, pitch and yaw moments are 

all zero. Mathematically, trimming combined implicit 

and explicit Jacobian approaches. For rigid rocket, 

Jacobian trim approach is the preferred due to the fact 

that with rough estimates of the Jacobian and a first 

guess, convergence is likely to occur. Though, any 

robust optimization routine could be used to solve the 

trim problem. Mathematically, the Jacobian approach 

can be described as given in (22): 
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In (22), Ji is the Jacobian matrix evaluated near 

control input ci. It’s elements are first order partial 

derivatives and depict the effect of changes in each 

control input on acceleration. 

Note, changes in lateral plane induceses changes in 

the longitudinal plane and vise vasa thus, we can write 

(23) a the Jacobian for the lateral dynamics and (24) for 

the longitudinal or pitch dynamics: 
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(23) 
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  (24) 

 

If the rocket is assumed to be at equilibrium, or trim 

condition then the equations of motion can be linearized 
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and the 6DOF equation of motion can be resolved into 

their lateral and longitudinal states.  

Linearization  

The system of first order non-linear differential 

equations of the rocket as presented by (17) is said to be in 

state-variable form if its mathematical model is described 

by a system of n first-order differential equations and an 

algebraic output equation as (White, 2003): 

 

( )

( )

( )

( )

1 1 1

2 2 1

1

1

,..., ,

,..., ,

...

,..., ,

,..., ,

n

n

n n n

n

x f x x u

x f x x u

x f x x u

y h x x u

=

=

=

=

ɺ

ɺ

ɺ

 

(25) 

 

The column vector x = [x1,…xn]
T
 is called the state of 

the system. The scalars u and y are called the control 

input and the system output, respectively. Denoting: 
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( )

( )

( )

1 1

2 1

1

,..., ,

,..., ,
, ,

,..., ,

n

n

n n

f x x u

f x x u
f x u

f x x u

 
 
 =
 
 
  

⋮
  (26) 

 

Concisely, (26) is written as: 

 

( )

( )

, ,

, .

x f x u

y h x u

=

=

ɺ

  (27) 

 

where, f and h are nonlinear functions of x and u, then 

we say that the system is nonlinear. To linearize (26), we 

desire it to become: 

 

.

x Ax Bu

y Cx Du

= +

= +

ɺ

 

(28) 

 

where, A is n×n, B is n×1, C is 1× n and D are all scalar. 

In MATLAB/Simulink
®
. 

One reason for approximating the nonlinear system 

(26) by a linear model of the form (28) is that, by so 

doing, one can apply rather simple and systematic linear 

control design techniques. Given the nonlinear system 

(26) and an equilibrium or trimmed points * * *

1
...

T

n
x x x    

obtained when u = u∗, noting that ∆x = x = x
*
 we define a 

coordinate transformation as follows: 

 
*

1 1 1

*

.

n n n

x x x

x

x x x

 ∆ − 
  ∆ = =   
  ∆ −   

⋮ ⋮

 

Further, denoting ∆u = u-u
*
 and ∆y = y-h(x

*
,u

*
). 

The new coordinates ∆x, ∆u and ∆y represent the 

variations of x, u and y from their equilibrium values. 

You have to think of these as a new state, new control 

input and new output respectively. The linearization 

of (26) at x*, which the equilibrium or trim (White, 

2003) state is given by: 

 

,

x A x B u

y C x D u

∆ = ∆ + ∆

∆ = ∆ + ∆

ɺ

  (29) 

 

where: 
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⋯

 

 

Note that the matrices A, B, C, D have constant 

coefficients in that all partial derivatives are evaluated at 

the numerical values ( )* * *

1
,..., ,

n
x x u . 

Lateral Dynamics of a Rocket 

Equations of motion in the lateral plane are described 

by (30). Notice that (30) comprises of one of the force 

equations (Fy), one of the momentum equations (My) and 

two of the Euler angles from the 6DoF equations 

(decoupled from (17)): 
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(30) 
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For a completely computed aerodynamic coefficients 

and their derivatives, (30) can be expressed in state-

space form (Cook, 2007) as: 
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(31) 

 

All the variables in the A matrix of (31) are the 

lateral dimensionless aerodynamic stability derivatives 

with respect to the system state vectors. The variables 

in the B matrix of (31) are the lateral dimensionless 

aerodynamic control derivatives with respect to the 

designated control surfaces. 

Longitunal Dynamics of a Rocket 

The longitudinal dynamics is motion is also called 

the pitch plane. Equations describing the motion of a 

rocket in this plane can be describes as given in (32). 

Notice that (32) comprises of two of the force 

equations (Fx and Fz), two of the momentum equations 

(Mx and Mz) and two of the Euler angles from the 

6DoF equations as given in (17): 
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(32) 

 

Just as with (31), (32) can also br re-expressed in 

state-space as: 
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(33) 

 

In MATLAB
®
 the linmod (MathWorks, 2014) 

command is used to invoke linearization. The 

assumption made for decoupling the linear model is that 

the cross coupling effects between the two modes is 

negligible. These assumptions are: 

 

• The rocket is designed with conventional control 

surfaces that do not give significant cross-coupling 

control between the lateral and longitudinal modes 

• The rocket is symmetrical about the xz plane in 

which the inertia cross coupling in (xy and xz 

planes) result to cross-coupling between the lateral 

and longitudinal modes are minimum 

 

It can be shown that a typical trimmed and linearized 

model of the pitch plane (longitudinal dynamics) for a 

rocket (BharKisabo, 2011) is given as presented in (34). 

Notice that compared to (33), the velocity in x-direction 

is not included in (34). This basically due to the fact that 

in this pitch plane, translational motion for a rocket is 

predominantly in the z-direction (velocity w): 
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(34) 

 

where: 

 

[ ]

0 1 0 0

14.7805 0 0.01958 , 3.4858 ,

100.858 1 0.1256 20.42

0

14.7805 1 0 0 ,  0.

94.8557

A B

G C D

   
   = =   
   − −   

 
 = = = 
 − 

 

 

Discussion of Result 

From (34), it can be seen that a three state-variable 

model, has been realized in state-space. This implies that 

modern observer like the kalman filter can be designed 

to estimate and predict the trajectory of such rocket 

dynamics. This mathematical model also can be use to 

design all the control algorithms that fall in the class of 

modern (Optimal theory) control. Particularly, this 

model is important in the realization of the longitudinal 

autopilot system of a rocket. 

Conclusion 

Mathematical models are the bedrock of most 

scientific activities. Here we were able to define the 

non-linear airframe dynamics of a rocket in 6DoF. We 

went futher to decouple the 6DoF equations of motion 

for the rocket and presented forms in which the 

decouple 6DoF equations could be easily trimmed and 
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linearized with a computer program like MATLAB
®
. 

The process presented here can be repeated for any size 

of rocket, aircrafts/Unmanned Areial Vehicle (UAV). 

Note, if the aerospace vehicle being model is not a 

rocket and a state-space model is needed, all the 

procedures outlined in this study will remain the same. 

The only major changes that will be accomodated will 

come from the numerical values of the aerdynamic 

coefficients and their derivatives. 
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