
International Journal of Research in Nursing 4 (2): 40-46, 2013 

ISSN: 1949-0194 

©2013 Science Publication 

doi:10.3844/ijrnsp.2013.40.46 Published Online 4 (2) 2013 (http://www.thescipub.com/ijrn.toc) 

 

40 Science Publications

 
IJRN 

Shortage Level of Matching Kidney and 

Pancreas Organs for Implant is Estimated 

Ramalingam Shanmugam 
 

School of Health Administration, Texas State University-San Marcos, TX 78666, USA 
 

Received 2013-10-15, Revised 2013-10-29; Accepted 2013-11-01 

ABSTRACT 

Organ transplants are increasingly done worldwide. The organ donors might be dead or alive. There are legal, 
ethical, medical and administrative issues to procure organs and to transplant them. However, the donor’s 
organs must fully match the recipient’s requirement before they are quickly transported as the time is the 
essence. The kidney or pancreas organs are more in demand. When a recipient needs two organs such as the 
kidney and pancreas, the requirements are made tighter and the process of finding both organs becomes 
tougher and longer. The patients register and wait with a hope to find both matching organs to be implanted. 
Because of their need for two matching organs, the patients’ waiting time prolongs. In general, the number of 
waiting patients, y = 0,1,2,…., for r = 1,2,…., number of matching organs follows a negative binomial 
frequency pattern with (1-p)

r 
denoting the chance of finding r matching organs by any one waiting patient and 

p
y
 denoting the collective chance for y patients not finding r organs. In reality, there is always a shortage of 

organs for waiting patients. When there is a shortage level, 0≤φ<1 of organs of the types from the living/dead 
donors increases, the chance for all the y waiting patients of not finding r organs should increase by a factor of 
1-φ and the chance for any single patient to find r organs decreases accordingly. This idea triggers a need to 
tweak the negative binomial distribution and it is done in this article. The data for USA indicate that the kidney 
and pancreas implantations occur within 30 days for some patients in some states and they could take even longer 
than 5 years for other patients in other states. This article estimates and illustrates the importance of shortage 
level, φ to configure the chance of implants for patients in each state (including D.C. and Puerto Rico) of USA, 
with an innovative probability model. A model is necessary and it is created since the model is defined as an 
abstraction of the reality. The created new model in this article is named Tweaked Negative Binomial 
Distribution (TNBD). The properties of TNBD are derived and utilized to estimate and illustrate the shortage 
level, φ of kidney and pancreas organs among the Eastern (including D.C. and Puerto Rico), Central, Mountain 
and Pacific (including Hawaii and Alaska) states in the USA. The likelihood ratio based hypothesis testing 
procedure is devised, explained and demonstrated to assess the statistical significance of the estimated shortage 
level, φ of kidney and pancreas organs for the states in each of the four time zones in USA. The statistical power 
of accepting the true 50% shortage level (that is, φ = 0.5) is evaluated for the states in each of the four time zones 
of USA. Then, the chance of getting no transplant of kidney and pancreas organs when there is zero shortage 
level and the odds, of no waiting to get both kidney and pancreas transplant with the existing estimated shortage 
level of organs for the states in USA are explained. In the end, comments and conclusions are stated. 
 
Keywords: Negative Binomial Distribution, Survival Probability, P-Value, Power, Test of Hypothesis, 

Data Analysis  

1. INTRODUCTION 

As of June 21, 2013, about 118,617 people wait for 
organ transplants in the United States of America 
(USA). Of these, 96,645 are for kidney transplants 
(Lumsdaine et al., 2005). The first kidney transplant in 

the U. S. A. was done on 17
th

 June 1950 in Illinois State. 
The pancreas needs to be implanted on diabetic patient 
whose organ is incapable of segregating enough insulin 
to continue living. Scheper-Hughes (2007) for details. 
The first simultaneous kidney-pancreas transplant was 
performed on a diabetic patient in 1966 by the University 
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of Minnesota surgeons. Because of the different laws in 
countries, the frequency of organ donations varies among 
the countries. Glazier (2011) and Scheper-Hughes (2007) 
for laws on organ procurement and transpolantation. For 
example, Australia had 14.9 donors per million, Spain 
had 34 effective donors per millions, Austria had 21 
donors/million and Germany had 16 donors/million and 
Greece had 6 donors/million (Tanriverdi et al., 2004). 
Over 100,000 Americans wait for organs and the list is 
growing. Only 30,000 transplants occur in a year. More 
than 6,000 people die in each year from lack of a donor 
organ, an average of 19 people a day. Tanriverdi et al. 
(2004) for details about the quality of life among the 
receipients after they received organ transplant. Over the 
years from 1988 till 2006, the number of transplants 
doubled, but the number of patients waiting for an organ 
grew six times. In the USA, the two agencies that govern 
organ procurement and distribution within the country are 
the United Network for Organ Sharing and the Organ 
Procurement and Transplant Network (DHHRUS, 2013). 
Both agencies implement high ethics (Truog, 2005) and 
standards. Not all procured organs from the donors end up 
implanted in recipients. The organ is scrutinized for its 
compatibility with the recipient’s body. DHHRUS (2013) 
for details of organ donation and implantation. This 
tedious process consumes more time. The patients wait 
more than five years at times. In case of a need for two 
organs: Kidney and pancreas, the waiting time is more and 
the chance of getting organs depends on the matching 
organs. How could we estimate this unknown proportion? 
Such an estimate is helps the patients with a belief that 
they would get matching organs longer they wait. Is it so, 
at least in US states, according to the collected and stored 
data in http://optn.transplant.hrsa.gov? This query is the 
topic of investigation in this article. 

For this purpose, an innovative tweaked version of 

the negative binomial distribution is introduced and 

utilized. The concepts and methodology are formulated. 

The methodological results are applied to the data on 

patients waiting for implantations of kidney and pancreas 

in US states including Puerto Rico. The findings are 

quite surprising in the sense that the shortage levels 

varied dramatically within and between the four time 

zones states. In specific, expressions are derived to 

estimate the unknown proportion of matching organs in 

shortage, to test the statistical significance of the 

estimate based on a likelihood ratio based hypothesis 

testing and to estimate the odds of receiving matching 

organs for a waiting patients across states within and 

between four time zones of US states including Puerto 

Rico. The significance of the estimate of shortage level is 

calculated. The statistical power of accepting true value 

of a shortage level by the methodology of this article is 

assessed. In the end, conclusive comments are made.  

1.1. Modeling Waiting Numbers for Organ 

Implants 

Model is an abstraction of reality (Shanmugam, 2013a; 

2013b). In almost every state of USA patients in need of 

kidney and pancreas organs register and wait. When there 

are matching organs in shortage of the nation’s repository, 

the chance of getting transplant is higher. When the 

transplant occurs, the patient is no longer in the waiting list. 

With the changing number of waiting patients, it is possible 

to estimate the proportion of matching organs in the 

shortage? This is the topics of this article. Suppose a non-

negative random number, Y = 0,1,2,.., of patients registered 

and wait for a specified positive r = 1,2,.., number of organs 

to be transplanted. Let 0<p<1 and 0≤φ<1 denote 

respectively the proportion getting the organs from live 

donors when the shortage is zero and proportion of organs 

in shortage match the requirements for a particular waiting 

patient. Let 
p

0 1 1
1

 
< − < − φ 

 be the chance for a patient 

in any state or territory of USA to find the organs. An 

implicit meaning is that the chance to get the organs 

increases when φ increases. In other words, the odds 

of getting r organs for transplant is Equation (1): 
 

r 11
Odds [( ) 1]

1 p

−
φ

− φ
= −

− φ −
 (1) 

 

which is maximum with zero shortage level (that is, φ = 

0) but decreases when the shortage level, φ increases. 
The importance of stocking organs for implantation 

cannot be overstated and it cannot happen without more 
donors Realize that φ is bounded by 1-p. In this frame of 
uncertainty, the random number Y of patients waiting to 
receive r number of organs for implantation in any state 
or territory of USA follows a negative binomial 
probability pattern Equation (2): 
 

r y

Pr[Y y ,p, r]

r y 1 1 p p
;

y 1 1

y 0,1,2,....;0 1;

0 p 1;r 1,2,...,.

= φ

+ −    − φ −
=     − φ − φ    
= ≤ φ <

< < =

 (2) 

 
The model (2) is new to the literature and it is named 

Tweaked Negative Binomial Distribution (TNBD). Let 

derive the properties of the TNBD before we can try it 
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on the waiting list of patients for r = 2 (that is, for kidney 

and pancreas) in USA.  

First, we derive the expected value, E[Y = y|φ,p,r] of 

the TNBD and it is Equation (3): 
 

p
E[Y y ,p, r] r

1 p
φ

 
µ = = φ =  

− φ − 
 (3) 

 
After simplifications the expected number, (3) of 

waiting patients increases when the number, r of 

needed organs increases, when the chance, p of not 

receiving matching organs increases, or when the 

shortage level, φ increases. 

Secondly, the variance, Var [Y = y|φ, p, r] of the 

TNBD is derived and it is a quadratic function of the 

expected number as in (4) below Equation (4): 
 

2
( r)

Var[Y y ,p,r]
r

φ φ
φ

µ µ +
σ = = φ =  (4) 

 
The results (3) and (4) together imply that the 

variance increases as the expected waiting number 

increases. That is the number of patients waiting for 

transplants has more volatility around the higher number 

of patients waiting. With 2

jz = σ , y = µφ and x = r, the 

quadratic variance-mean relation (4) is depicted in Fig. 

1. Note that their relationship is quite nonlinear. 

Thirdly, the survival function, SFφ = Pr [Y ≥ m|φ, p, 

r] of the TNBD is derived and it is Equation (5): 
 

2m,2r

r(1 p)
SF Pr[F ];m 1

mp
φ

− φ −
= ≤ ≥  (5) 

 

after algebraic simplifications, where Pr[F2m,2r ≤ a] is the 

cumulative area under the popularly tabulated F-

distribution with 2m and 2r numerator and denominator 

Degrees of Freedom (DF). Realize that when φ → 0 (that 

is when the shortage level with matching organs is lesser), 

the survival function (5) becomes larger as there is more 

chance for patients in need of r organs for transplant. Also, 

with a higher chance, p of not finding matching organs, 

the chance of having more waiting patients is more. 

1.2. An Estimate of Shortage Level of Matching 

Organs  

To check how best the collected data fit the TNBD 

and its properties, we need to first estimate the model 

parameters. For this purpose, consider a random sample 

y1, y2,…, yn of size n ≥ 2.  

Let y and 2

ys denote respectively the sample mean and 

variance. The log-likelihood of the sample is Equation (6): 
 

n
i

i 1 i

ln L nr[ln(1 p) ln(1 )]

r y 1
ny[ln p ln(1 )] ln

y

φ

=

= − φ − − − φ

+ − 
− − − φ +  

 
∑

  (6) 

 
The Maximum Likelihood Estimates (MLE) of the 

parameters φ and p are the solutions of the score 
functions: ∂φln Lφ = 0 and ∂p ln Lφ = 0 where ∂p is the 
partial derivative with respect to p. After algebraic 
simplifications, we obtain the MLE in (7) and (8) below. 
That is Equation (7): 
  

2 2

y y

mle

y(y r) y(y r)ˆ [1 ] / [1 ]
rs rs

+ +
φ = − +   (7) 

 
And Equation (8): 
 

mleˆmle, mle

y ˆp̂ ( )(1 )
y rφ

= − φ
+

  (8) 

 

When 2

yy(y + r) = rs , note that 
mle

ˆ 0φ =  and vice versa. 

Realize from (8) that ˆmle, mle
p̂

φ
is its maximum

y
( )
y + r

when 

mle
ˆ 0φ =  and is lesser as

mle
φ̂ increases from zero level to 

one. An interpretation is that the chance, p of not getting 

implant is estimated to be more only when the estimated 

shortage level, 
mle
φ̂  for matching organs is zero. 

Otherwise, when the estimated shortage level, 
mle
φ̂  for 

matching organs increases, the estimated chance of not 

getting implant decreases. The importance of stocking 

enough matching organs cannot be overstated. To attain 

the enough stocking level, a promotion among the 

potential organ donors is a catalyst. The government and 

private agencies ought to undertake the promotion.  

1.3. Is the Estimate Statistically Significant? 

The likelihood ratio method (Wald, 1943) is the most 
powerful technique to test a null hypothesis against an 
alternative hypothesis. In our context, the null and 
alternative hypothesis are respectively H0:φ = 0 and 
H1:φ>0. The likelihood ratio is Equation (9):  
 

*

* mle

mle *

ˆmle, mle,* mle

ln

ˆˆ ˆln L( ,p ) ln L( ,p )

ˆ2nry

(r y)

φ=φ φ

− ℜ

= − φ + φ

φ − φ
=

+

  (9) 
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Fig. 1. Curvature relation between variance and mean 

 

The expression (9) follows a non-central chi-squared 

distribution with non-centrality 

parameter
*

MLE
*

MLE

ˆ( )

ˆvar( )

φ − φ
δ =

φ
where MLE

ˆvar( )φ
 is a diagonal 

element in the variance-covariance 

matrix
mle mle

1

mle

ˆmle, mle

ˆ ˆmle, mle,mle mle

ˆ ˆ ˆvar( ) cov( ,p )

I
ˆ ˆ ˆcov( ,p ) var(p )

−φ

φ φ

 φ φ
 Σ = = φ  

which 

is the inverse of the Fisher’s information matrix: 
 

  

2 2

p

2 2

p pp

ln L ln L
I E

ln L ln L

φφ φ

φ

 −∂ −∂
=  

−∂ −∂  
 

 

evaluated at mle ˆmle, mle

ˆ ˆ( , )
φ

φ π . After algebraic 

simplifications, we note that the information matrix: 
 

2 2

2 2

nrp nr

(1 )(1 p) (1 p)
I

nr nr(1 )

(1 p) p(1 )

 
 − φ − φ − − φ − =
 − φ
 − φ − − φ − π 

 

 
is singular. The regular inverse matrix is not possible but 

a generalized inverse
 
(Golub and Van Loan, 2013), Σ = I

-
 

is possible. The generalized inverse has the property that 

ΣIΣ = Σ. It is:  
 

2

nr(1 )
0

p(1 )I

0 0

−

− φ 
 − φ − πΣ = =  
  

 

Hence, the estimate of the non-centrality parameter is 

Equation (10):  

 

mle * mle

* 2

ˆ ˆˆrp (1 )
ˆ

n(r y)

φ − φ − φ
δ =

+
 (10) 

 

It is well known that a non-central chi-squared 

distribution with a non-centrality parameter δ is 

approximately 
δ

1+
1+ δ

 
 
 

 times the central chi-squared 

distribution with 
2[1+ δ]

1+ 2δ

 
 
 

 Degrees of Freedom (DF). 

Hence, the null hypothesis H0:φ = 0 can be rejected in 

favor of the research hypothesis H1:φ>0, when 

mle
ˆ2nry

(r y)

φ
+

 exceeds its critical value 

0

0

ˆ
1

ˆ1

 δ
+  + δ 

2

2ˆ[1 ]0 DF,
ˆ1 2 0

 
 
  
 

+δ
α

+ δ

χ at a chosen significance level, α. 

In other words, the p-value to reject the null in favor 

of the research hypothesis is Equation (11): 

 

2 mle

0

0

2ˆ[1 ]0 DF
ˆ1 2 0

p value

ˆ2nry
Pr

ˆ
(r y)(1 )

ˆ1

 
 
  
 

+δ

+ δ

−

 
 

φ ≈ χ >
 δ

+ + 
+ δ  

  (11) 



Ramalingam Shanmugam / International Journal of Research in Nursing 4 (2): 40-46, 2013 

 

44 Science Publications

 
IJRN 

The (statistical) power is the probability of 

accepting a true specific research hypothesis φ*
 = φ1 ≠ 

0. That is, for a specified significance level, α 

Equation (12): 

 

20 1

0 mle

2

*

*

2ˆ[1 ]0 DF,
ˆ1 2 0

2ˆ[1 ]* DF
ˆ1 2 *

statistical _ power

ˆ
(1 ) (1 )

ˆ ˆ1

Pr
ˆ

(1 )
ˆ1

 
 
  
 

 
 
  
 

+δ
α

+ δ

+δ

+ δ

 δ φ
+ − χ 

+ δ φ 
 ≈ χ <
 δ

+ 
+ δ 

  

  (12)  

 

1.4. Illustration with USA Data of Kidney and 

Pancreas Transplant 

In this section, the expressions of the previous two 

sections are illustrated using the waiting list data in 

the U. S. Organ Procurement and Transplantation 

Network’s webpage http://optn.transplant.hrsa.gov for 

kidney and pancreas organs in the Eastern (including 

D. C. and Puerto Rico), Central, Mountain and Pacific 

States of U. S. A. For each state, there are n = 8 

observations based on their waiting periods: Less than 

30 days, 30 to 90 days, 90 days to 6 months, 6 months 

to 1 year, 1 to 2 years, 2 to 3 years, 3 to 5 years and 

more than 5 years.  

Note that r = 2 in the model (2) because of their 

need for two organs: Kidney and pancreas. Using (7) 

and (8), the estimates, 
mle
φ̂ of the proportion of 

matching organs in shortage and the chance, 
mlep̂ for 

not getting implant is done are computed. Using (11) 

and (12), the p-values for rejecting the null 

hypothesis, H0:φ = 0 and the power of accepting the 

true alternative hypothesis, H1:φ* = 0.5 are computed 

for each state in the USA. The results are displayed in 

Table 1 through 4 respectively for the Eastern 

(including D. C. and Puerto Rico), Central, Mountain 

and Pacific States of USA.  

The estimate, 
mle
φ̂ of the proportion of matching 

organs in shortage is highly significant (at α = 0.01) in 

Massachusetts, Michigan, Pennsylvania, South Carolina, 

Tennessee in Eastern states, Illinois, Missouri, Texas and 

Wisconsin in Central states and California in Pacific 

states of USA. The estimate, 
mle
φ̂ is significant (at α = 

0.05) in D, C, Maryland, New Jersey, North Carolina and 

Virginia in Eastern states, Oklahoma in Central states 

and Colorado in Mountain states of U. S. A. In other 

states, the estimate, 
mle
φ̂ is insignificant.  

The power of accepting the true alternative hypothesis, 

H1:φ* = 0.5 is excellent for Michigan and Tennessee in 

Eastern states, Illinois, Missouri and Texas in Central 

states of USA. The power is good in several states and low 

in states. There has to be some reasons for low power 

because of extraneous factors and it is worthwhile to 

explore it in another follow up article.  

Furthermore, recall that p is the chance of not 

finding the matching organs. When φ = 0 (that is with 

zero shortage), it is good to have the lowest chance of 

not finding the organs and it occurs only in the states: 

Rhode Island, Nebraska, North Dakota, Hawaii and 

Oregon of USA.  

Likewise, it is good to have the odds of not waiting 

for kidney and pancreas organs when φ ≠ 0 (that is, with 

a shortage of matching organs) higher than one. It occurs 

only in the states: Rhode Island, Kansas, Nebraska, 

North Dakota, Hawaii and Oregon.  

2. COMMENTS 

More populous states seem to have a higher level 

of shortage of organs. Intuitively, one would think 

that there should be more organ donors in the 

populous states. Shouldn’t there be more organs 

donated by the living/dead donors in the populous 

states as much as equally higher amount of need for 

the organs? It is not seen happening. A natural 

question to ask is then: What are the factors that 

create an imbalance between the number of available 

and the number of needed organs? If there is more 

need for organs in a state, it warns an existing public 

health crisis in the state. If there is more shortage of 

available organs in the state, it reflects a lack of public 

awareness of the importance of donating organs in the 

state and it is a lack of enough promotion or 

administrative efficiency to procure organs from 

donors. The estimate of the shortage level of kidney 

and pancreas organs in the states (Table 1-4) of USA. 

is educational to us to probe the above mentioned two 

issues on each side of the imbalance. A lesser 

imbalance is witnessed in Connecticut, Kentucky, 

New York, Puerto Rico, Alabama, Minnesota, South 

Dakota, Arizona, Utah and Washington states in the 

USA. Such findings would not have been possible 

without the concepts and expressions which are 

derived for the TNBD in this article. 
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Table 1. Estimated shortage level with r = 2 (kidney and pancreas) organs, p-value, power, chance of no more waiting in Eastern US states (* = 

significant at 0.05, ** = significant at 0.001) 

   Proportion of   Chance for no kidney ˆ
ˆOdds

φ
 no waiting  

 Average  kidney and p-value for Power of and pancreas to have kidney and  

 number Sample pancreas organs H0: φ = 0 accepting true Transplant with no pancreas transplant  

State waiting y  variance
2

ys  shortage
mle
φ̂  to be true H1: φ* = 0.5 shortage (that is φ = 0) with 

mle
φ̂   

Connecticut 1.750 2.79 0.082 0.27 0.024 0.429 0.398 

DC 2.000 6.86 0.263* 0.04 0.343 0.368 0.333 

Florida 11.630 48.60 0.240* 0.011 0.298 0.649 0.022 

Georgia 11.500 59.70 0.130 0.059 0.092 0.741 0.022 

Indiana 4.875 12.70 0.138 0.077 0.105 0.611 0.092 

Kentucky 2.625 5.70 0.032 0.447 1.00E-04 0.55 0.230 

Maryland 4.500 9.71 0.202* 0.035 0.224 0.553 0.105 

Massachusetts 4.750 8.79 0.292** 0.01 0.399 0.498 0.096 

Michigan 5.000 5.71 0.508** 7.00E-04 0.902 0.352 0.089 

New Hampshire 1.125 1.84 0.023 0.61 5.00E-06 0.352 0.694 

New Jersey 6.000 16.60 0.183* 0.036 0.188 0.613 0.067 

New York 20.130 229.00 0.015 0.513 9.00E-09 0.896 0.008 

North Carolina 8.750 63.40 0.148* 0.05 0.123 0.694 0.036 

Ohio 15.380 108.00 0.105 0.085 0.052 0.792 0.013 

Pennsylvania 16.250 61.90 0.411** 6.00E-04 0.641 0.525 0.012 

Puerto Rico 0.875 1.27 0.004 0.844 8.00E-29 0.303 0.938 

Rhode Island 0.500 0.29 0.373 0.123 0.558 0.125 Good 1.778 Good 

South Carolina 6.625 12.00 0.409** 0.002 0.637 0.454 0.057 

Tennessee 1.750 1.07 0.508** 0.006 0.902 0.23 0.398 

Vermont 1.000 2.86 0.311 0.069 0.436 0.23 0.800 

Virginia 5.625 12.60 0.262* 0.013 0.34 0.545 0.074 

 

Table 2. Estimated shortage level with r = 2 (kidney and pancreas) organs, p-value, power, chance of no more waiting in Central US states (* = 

significant at 0.05, ** = significant at 0.001) 

   Proportion of   Chance for no kidney ˆ
ˆOdds

φ
no waiting to  

 Average  kidney and p-value for Power of and pancreas Transplant have kidney and  

 number Sample pancreas organs H0: φ = 0 accepting true with no shortage pancreas transplant 

State waiting y  variance
2

ys  shortage
mle
φ̂  to be true H1: φ* = 0.5 (that is φ = 0) with 

mle
φ̂   

Alabama 4.750 13.360 0.09 0.152 0.034 0.640 0.096 

Illinois 11.750 24.210 0.54** 1E-04 0.789 0.394 0.022 

Iowa 1.375 1.411 0.24 0.075 0.305 0.308 0.541 

Kansas 0.750 0.786 0.14 0.278 0.101 0.236 1.123 Good 

Kentucky 2.625 5.696 0.03 0.447 1E-04 0.550 0.230 

Louisiana 5.500 14.860 0.16 0.051 0.15 0.614 0.077 

Minnesota 21.750 235.1.00 0.05 0.24 0.002 0.873 0.007 

Missouri 3.625 2.554 0.60** 4E-04 0.684 0.258 0.145 

Nebraska 0.250 0.500 0.28 0.319 0.375 0.080 Good 3.765 Good 

North Dakota 0.250 0.214 0.14 0.488 0.101 0.096 Good 3.765 Good 

Oklahoma 1.875 2.125 0.26* 0.044 0.34 0.357 0.363 

South Dakota 1.125 1.839 0.02 0.61 5E-06 0.352 0.694 

Tennessee 1.750 1.071 0.51** 0.006 0.902 0.230 0.398 

Texas 15.000 55.430 0.39** 9E-04 0.604 0.535 0.014 

Wisconsin 6.125 3.554 0.75** 2E-05 0.564 0.188 0.064 
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Table 3. Estimated shortage level with r = 2 (kidney and pancreas) organs, p-value, power, chance of no more waiting in Mountain US states (* = 

significant at 0.05, ** = significant at 0.001) 

   Proportion of   Chance for no kidney ˆ
ˆOdds

φ
no waiting to  

 Average  kidney and p-value for Power of and pancreas Transplant have kidney and  

 number Sample pancreas organs H0: φ = 0 accepting true with no shortage pancreas transplant 

State waiting y  variance
2

ys  shortage
mle
φ̂  to be true H1:φ* = 0.5 (that is, φ = 0) with 

mle
φ̂   

Arizona 6.625 26.84 0.03 0.381 0.0001 0.744 0.057 

Colorado 4.375 20.27 0.18* 0.044 0.1916 0.559 0.109 

Utah 3.250 7.071 0.09 0.173 0.0373 0.561 0.170 

 
Table 4. Estimated shortage level with r = 2 (kidney and pancreas) organs, p-value, power, chance of no more waiting in Pacific US states (* = 

significant at 0.05, ** = significant at 0.001) 

   Proportion of   Chance for no kidney ˆ
ˆOdds

φ
no waiting to  

 Average  kidney and p-value for Power of and pancreas Transplant have kidney and  

 number Sample pancreas organs H0: φ = 0 accepting true with no shortage pancreas transplant 

State waiting y  variance
2

ys  shortage
mle
φ̂  to be true H1:φ* = 0.5 (that is, φ = 0) with 

mle
φ̂   

California 36.37 339.1300 0.35** 0.001 0.505 0.620 0.003 

Hawaii 0.25 0.2143 0.14 0.488 0.101 0.096 Good 3.765 Good 
Oregon 0.25 0.2143 0.14 0.488 0.101 0.096 Good 3.765 Good 

Washington 5.25 21.3570 0.06 0.248 0.006 0.682 0.082 

 

3. CONCLUSION 

This article analyzed only the USA data. Similar 

patterns probably exist in other nations. With no agency 

in other nations collecting pertinent data of the patients 

waiting for transplant forbids a discussion of the 

situations globally. However, having sufficiently enough 

organs in the stock reduces the waiting time of patients. 

Encouraging the procurement of organs from the 

potential donors is an important factor. The citizens 

should be made aware of the importance of organ 

donations to save life of patients waiting for matching 

organs. It will be worthwhile to explore issues and their 

practical solutions in the procurement as well as finding 

matching organs for the waiting patients. This article has 

made a research contribution in that direction.  
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