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Abstract: Accurate modeling of total building energy is now vital to 

reduce energy consumption. This is especially true for buildings since they 

are considered as the largest energy consumer in the United States. This 

paper investigates modeling methods for building energy-systems using 

non-linear auto-regression artificial neural networks. The proposed model 

can forecast the whole building energy consumptions given the four input 

variables: Dry-bulb and wet-bulb outdoor air temperatures, hours of day 

and type of days. In addition, the paper presents optimization process that 

uses genetic algorithm to determine the best model structure by minimizing 

the model errors. Statistical indexes such as the root mean-square error 

RMSE and the coefficient of variance CV of RMSE are used to measure 

the model accuracy. The data was collected from existing buildings and 

from simulations. The collected data was used to test and train the 

proposed models as well as in the optimization process. Various neural 

network structures were tested using different inputs and feedback 

delays. The results show that the proposed model can accurately predict 

the energy consumptions. The CV values were within a range of 1.7 and 

7.7%. It also proves that the model can be used for saving estimation 

applications and different energy efficiency. 

 

Keywords: Building Energy Model, Neural Network, HVAC System, 

Regression Model 

 

Introduction  

In 1972, sustainable development concept existed and 

extended throughout the years where it becomes one of 

the most important solution to save natural resources and 

energy. However, since energy use is continuously in the 

rise, it may result in the consciousness of the global 

warming. Thus, the need for energy efficient design 

has become increasingly urgent. In the United States, 

buildings consume roughly 48% of the nation’s total 

Energy consumption (EIA), from which heating and 

cooling systems consume about 55% of this energy, 

while the other 45% used by lights and appliances of 

existing buildings. If this level of energy consumption 

continues, buildings would be considered as the top 

consumer of global energy by 2025. Therefore, it’s 

important to understand the parameters that effect the 

energy use in the building, specially the HVAC 

systems and how to reduce such energy use by 

designing a building that will not only provide higher 

quality of living for the inhabitants but also has the 

potential to reduce energy use. 

Several key factors may cause the increase in energy 
use and they can range from weather, size of building 
and use of building. HVAC systems can contribute to 
half of the energy consumption in developed countries. 
Therefore, finding a new and advanced modeling 

methods to predict the energy consumption become 
urgent. Further, the incorporation of Artificial Neural 
Networks (ANNs) in the computing process is inspiring 
and can be an invaluable resource to heating and air 
conditioning system architects. These methods are being 
regarded as the next main progress in the computing 

industry. This paper investigates modeling methods for 
building energy-systems using non-linear auto-
regression artificial neural networks. ANNs by nature are 
pattern and experience based learning programs. Most 
importantly, this modeling tool will provide researchers and 
designers a powerful, simple method in addressing their 

needs of creating more energy-efficient HVAC systems. 
Recent modern buildings are usually equipped with 

power maeter dashboard and Building Auto-motion 
System (BAS) which provides large amount of data and 
the ability of collecting such data. However, because of 
the need of embedded calculations means and centralized 
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explanation, these buildings still do not operate 
optimally. Thus, there is a true need to analyze how new 
computational techniques can be used to generate the 
required data and to utilize the benefits of the available 
online data. Additionally, it is needed to operate many 
intelligent applications such as modeling, optimization, 
energy efficiency and energy assessment and fault 
detection and diagnosis (ASHRAE, 2011; Wang et al., 
2010; Seem, 2007; Nassif, 2013). 

This paper presents optimization process using 

genetic algorithm to determine the best model structure 

by minimizing the model errors. To determine the 

optimal model structural (Model parameters) that 

produces the minimum error between the actual and 

simulated data during the test period, the genetic 

algorithm GA is used. The problem variables (or ANN 

model parameters) are: (1) Input time delays, (2) 

feedback time delays and (3) number of neurons (hidden 

layer size). The objective function could be the Mean-

Square Error (MSE), root mean-square error RMSE, or 

coefficient of variance CV. The constraints cover the lower 

and upper limits of design variables are the maximum and 

minimum size of number of neurons and time delays.  

Preprocessing and Data Analysis  

Data Collection 

Ian this study, data was collected from two buildings. 
For each study case, the building energy consumption 
was collected every 15 min by smart meter and 
converged into a spreadsheet. Also, the weather data 
which was recorded every hour uploaded in a different 
form of spreadsheet called (.csv) files which contains 
potential conditions that will have an impact at the 
output of the energy consumption. This includes time of 
the recorded weather (local airport). After the hourly data 
was collected for each month, it was organized into a 
single spreadsheet by assembling all files together 
consecutively from March 2014 to May 2016. Energy 
consumption data was organized for each month in a 
form of spreadsheet with the hourly data. 

Preprocessing 

This work utilized two different types of data: 

 
• Synthetic data which was collected through eQuest 

software. It uses the actual organized data for the dry 
and wet temperature, type of the day and hour of the 
day for one of the building. Three different trends were 
noted: Occupied period which is 8 am and 5 pm, 
unoccupied period (between 5 pm and 7 am) and 
holidays and HVAC system start and stop period. 
HVAC system turns on at 7 am, 1 h before 
occupied period and it turns off at 4 pm, 1 h 
before the end of occupied period, but the 
ventilation system stays on between 4 to 5 pm. 

Figure 1 shows the hourly energy consumptions as a 
function of outdoor air temperatures for synthetic data 

• Actual data which was collected using dashboard 

power meter system for two of the buildings. The 

data was organized into spreadsheet and used to 

generate the model. Figure 2 shows the hourly 

energy consumptions as a function of outdoor air 

temperatures for the actual data. 

 

Modeling 

As aforementioned, the need for accurate dynamic 

models is vital in developing the energy solution tools. 

Depending on the types of functions and the required 

precision, the models can vary from simple to very 

sophisticated and detailed calculations (Nassif et al., 2008). 

Moreover, it is of practical importance to develop 

simple, yet accurate and reliable models to better 

capture the real dynamic behavior of the subsystems 

and overall system over the entire operating range. In 

this study, non-linear time series auto-regression 

artificial neural networks are used. Artificial neural 

networks are computational models that are inspired 

by the natural neurons of the brain. 
Natural neurons collect signals by synapses located 

on the membrane of a neuron. When the received signals 
are good enough, the neuron is activated and emits a 
signal through to the axon. That signal may be sent to 
different synapse and also may trigger more neurons for 
activation. The strength of the neurons’ interconnections 
is called the adaptive weights. These are numerical 
parameters that are tuned by a learning algorithm. The 
higher the weight of an artificial neuron, the stronger 
the input will be. Weights can also be a negative 
value, so signals may have inhibited by a negative 
weight. Depending on the weights, the computation of 
the neuron in a network will be different. Adjusting 
the weights can produce the outputs needed for 
specific inputs. 

Figure 3 shows the schematic of non-linear time 

series auto-regression artificial neural networks used in 

this research work. 

It should be noted that the model inputs are 

outdoor air dry-bulb temperature, wet-bulb 

temperature, type of day as (weekend/weekday) and 

the hours of day. The model output is building level 

energy consumption. In the process, the type of day 

variable is either “zero” or “one” corresponding to 

weekdays or weekend and holidays. The hour of day 

varies from 1 to 24 h. A large set of various neuron 

networks structures with various number of neurons 

and time delays n are tested in order to determine the 

best and simple structures yielding adequate accuracy 

in terms of mean-square error MSE, root mean-square 

error RMSE, or coefficient of variances CV.  
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Fig. 1. Hourly energy consumptions as a function of outdoor air temperatures for the simulated building 

 

 

 

Fig. 2. Hourly energy consumptions as a function of outdoor air temperatures for the actual data 
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Fig. 3. A schematic of non-linear time series auto-regression artificial neural networks 

 

 
 

Fig. 4. Flow chart of genetic algorithm GA for ANN model parameters optimization 
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Fig. 5. Flow chart of objective function calculations for a sample S of data 
 

Optimization 

To determine optimal model structural (Model 

parameters) that produces the minimum error between 

the actual and simulated data, the genetic algorithm GA 

is used. The problem variables (or ANN model 

parameters) are: (1) Input time delays, (2) feedback time 

delays and (3) number of neurons (hidden layer size). 

The objective function is the Mean-Square Error (MSE), 

Root Mean-Square Error (RMSE), or Coefficient of 

Variance (CV). The constraints cover the lower and 

upper limits of design variables, such as the maximum 

and minimum size of number of neurons and time 

delays. Figure 4 shows the flow chart of genetic 

algorithm GA for ANN model parameters optimization.  

The genetic algorithm GA is a method for solving 

both constrained and unconstrained optimization 

problems that is based on natural selection, process that 

drives biological evolution. The GA is extensively used 

for HVAC system optimization (Nassif, 2014). The 

genetic algorithm repeatedly modifies a population of 

individual solutions. At each step, the genetic algorithm 

selects individuals at random from the current population 

to be parents and uses them to produce the children for 

the next generation. Over successive generations, the 

population "evolves" toward an optimal solution. As 

shown in Fig. 4, the GA starts with a random generation 

of the initial population (initial solution) and ends with 

the optimal solutions including the optimal variables. It 

is worth noted that the problem variables (input time 

delays, feedback time delays and number of neurons) 

represent an individual solution in the population. The 

performance or objective function (MSE, RMSE, or 

CV) of each individual of the first generation is 

estimated. The second generation is generated using 

operations on individuals such as selection, crossover 

and mutation, in which individuals with higher 

performance (fitness) have a greater chance to survive. 

The performance of each new individual is again 

evaluated. The process is repeated until the maximum 

number of generations is reached.  
Figure 5 shows the flow chart of how objective 

function is calculated for each individual solution. For 
each individual solution (specific model parameters), the 
ANN model simulates energy consumption for all 
sample data “S” and compares the results with the actual 
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values collected from the power meters. The Mean-
Square Error (MSE), root mean-square error, or 
Coefficient of Variance (CV) (i.e., objective function) is 
determined and sent back to GA. 

Implementing and Results 

Parametric Study 

The first part of the results, which depends on 
parametric study, was obtained by using MATLAB 
software. In this part of the analysis, the synthetic data 
were divided into two sets: (1) Training set which 
contains data collected during January first to August 
thirty first and (2) testing set from September first to 
December thirty first. The Artificial neural network 
model was built using four inputs: (1) Outdoor air dry-
bulb, (2) web-bulb temperatures, (3) type of day 
(weekend/weekday/holidays) and (4) the hour of day. 
The output from (eQuest) process also entered to be 
compared with output from the ANN 

Synthetic Data 

To predict the best model structure, various ANN 
structures were tested with various input delays ranging 
between 1-3 and feedback delays between 1-3. The 
number of neurons between 5-100 with an increment of 
five were selected in order to better understand the 
relationship between the investigated variables and to 
evaluate its forecasting aptitude by calculating the MSE 
and CV for each structure. 

After obtaining all results, including all the CV for 
testing and training, the results were transferred to excel 
sheet for organization and comparison. The design chart 
includes three numbers of CV for the same delay time 
but in three different feedback delays time. The charts 
were constructed for both the testing and training results 
separately as shown below. Moreover, the data which 
was compiled together in two charts shows that the 
performance of the energy consumption in terms of CV 
is better in ANN number less than 50. Higher value will 
result in higher CV. This is due to the over fitting in 
neurons number more than 50. Figure 6 shows the values 
of CVs for different number of neurons and input delays 
for testing and training period. The test was carried out 
for input time delays varying from 1 to 3 and number of 
neurons varying from 5 to 100 with an increment of five. 
Feedback time delay = 1. 

Values of the minimum MSE and minimum CV for 
the optimal solution are tabulated in Table 1. These 
values correspond to number of neurons of 45 at time 
delays of one and feedback delays of one for both the 
training and testing period. 

Actual Data 

The actual data collected by the power meter for each 
building included: Outdoor air dry bulb and wet bulb 
temperatures, type of day (weekend/weekday/holidays) 

and the hour of day. To predict the best model for the 
actual data, various ANN structures were tested with 
various input delays ranging between 2-6 and feedback 
delays between 2-6. The number of neurons was between 
10-60 with an increment of ten were selected to better 
understand the relationship between the investigated 
variables and to evaluate the forecasting aptitude by 
calculating the MSE and CV for each structure. After 
obtaining all results, CVs were determined for testing 
and training. The results were then transferred to excel 
sheet for organization and comparison. The design chart 
included three numbers of CV for the same delay time 
and feedback delays time. The charts were constructed 
for both the testing and the training results separately as 
shown below. Figure 7 and 8 show the resulted 
coefficient of variance CVs for the first building 
(Blufordlibrary) where the number of neurons varying 
from 10 to 60 with an increment of ten, input delay = 2, 
4, 6 and feedback delays equal to the input delays for 
training and testing period. 

Values of the minimum MSE and minimum CV for 

the optimal solution at 40 neurons, time delays of six and 

feedback delays of six for both training and testing 

period are tabulated in the Table 2. 

The process was repeated to cover the second 

existing buildings (Corbett Building). As in building 1, 

the actual data was divided into training set of five 

months (from Feb to June 2014) and testing set of three 

months (July, August and September 2014). After 

obtaining the required results and determining the CV 

for testing and training, the results transferred to excel 

sheet for organization and comparison. Again, the design 

chart included three numbers of CV for the same delay 

time and feedback delays time for both the testing and 

training as shown below. 

Figure 9 and 10 show the resulted coefficient of 

variance CVs for the second building (Corbett Building) 

for number of neurons varying from 10 to 60 with an 

increment of ten, input delay = 2, 4, 6 and feedback delays 

equal to the input delays for training and testing period. 

Table 3 illustrates the minimum MSE and minimum 

CV for the optimal solution at 10 number of neurons, at 

time delays of six and feedback delays of six for both 

training and testing period. 

Optimization 

Secondly, the optimal solution was determined 

using the optimization algorithm GA as described 

earlier. To get the optimization result, the Genetic 

algorithm tool was run through MATLAB after 

defining the objective function as: the mean-square 

error MSE, root mean-square error RMSE, or 

coefficient of variance CV. Again, the problem 

variables include: Input time delays; feedback time 

delays and number of neurons. Table 4 shows the 

parameter used for synthetic and actual data. 



Maya Arida et al. / Energy Research Journal 2016, 7 (2): 24.34 

DOI:10.3844/erjsp.2017.24.34 

 

30 

 

 
Fig. 6. Coefficient of Variance (CV) for different number of neurons and different input delays for testing and training data 

(feedback delays = 1) 

 

 

 

Fig. 7. Coefficient of variance for (Blufordlibrary) for the same input delay and feedback delays = 2, 4, 6 for testing period 
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Fig. 8. The resulted coefficient of variance for (Bluford library) for the same input delay and feedback delays = 2, 4, 6 for 

training period 

 

 
 

Fig. 9. Coefficient of variance for (Corbett Building) for the same input delay and feedback delays = 2, 4, 6 for testing period 
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Fig. 10. The resulted coefficient of variance for (Corbett Building) for the same input delay and feedback delays = 2, 4, 6 for 

training period 

 
Table 1. Result of the optimal 45 neurons at input delay of one and feedback of one 

 Training  Testing 
Number of neurons at ID = 1 -------------------------------------------- --------------------------------------------- 
FD = 1 MSE CV MSE CV 

45 12.65 6.62 13.38 7.72 

 
Table 2. Result of the optimal 40 neurons at input delay of six and feedback of six 

 Training  Testing 
Number of neurons at ID = 6 ---------------------------------------------- --------------------------------------------- 
FD = 6 MSE CV MSE CV 

40 12.2 3.42 27.7 1.62 

 
Table 3. Result of the optimal 60 neurons at input delay of six and feedback of six 

 Training  Testing 
Number of neurons at ID = 6 ----------------------------------------- -------------------------------------------- 
FD = 6 MSE CV MSE CV 

60 1423200 9.67 817500 2.79 

 

Table 4. Constraint parameters used for synthetic and actual data to run the optimization 

 Mean-Square Error (MSE) Root Mean-Square Error (RMSE) Coefficient of Variance (CV) 
Objective function ----------------------------------------------------------------------------------------------------------------------- 
problem variables  Number of neurons  Input time delays Feedback time delays 

Synthetic data 5-100 1-3 1-3 
Actual data 10-60 2-6 2-6 

 

Table 5. Optimal solutions obtained by the optimization 

 Optimal solution 
 ---------------------------------------------------------------------------------------------------------- 
 Number of neurons Input time delays Feedback time delays 

Synthetic data 45 1 1 
Actual data/building 1 40 6 6 
Actual data/building 2 60 6 6 
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Synthetic Data 

The optimization was run twice for different 

parameters based on the data; first it runs for synthetic 

data for the three variables (number neurons, input and 

feedback time delays). As illustrated in able 5, the 

optimization run for number of neurons between 5 to 

100, input delay ranges between 1 and 3, feedback 

delay equal to the input delay. After obtaining the 

solution and examining the proper operation of the 

optimization algorithm GA, the optimal solution is 

compared with the one obtained from the parametric 

studies above. The optimal solution by GA matches 

exactly the one obtained by the parametric studies, 

which is the number of neurons of 45 and the 

feedback and input time delays of one.  

Actual Data 

Second, the optimization of the actual data was 

carried out once for each building considering three 

variables (number neurons and input and feedback 

time delays). As shown in Table 5, the optimization 

runs for number of neurons between 10 and 60, input 

delay ranges between 2 and 6, feed back delay equal 

to the input delay. Since the actual data was recorded 

in 15 min increments, the input time was selected to 

range from 2-6 to match the input time delays used for 

the synthetic data of 1-3. 

After obtaining the solution and examining the 

proper operation of the optimization algorithm GA, 

the optimal solution is compared with the one 

obtained from the parametric studies above. The 

optimal solution by GA matches exactly the one 

obtained by the parametric studies, which is the 

number of neurons of 40 and the feedback and input 

time delays of six for the first building and the 

number of neurons of 60 and the feedback and input 

time delays of six for the second building. Table 5 

illustrates the optimal solution after running the 

optimization for three times: First for the synthetic data, 

then for the actual data for each building separately. 

In this study, the energy consumption network 

models were carried out for various configurations. 

Each network configuration contained at least two to 

three training algorithms that accurately predicted the 

data. Unfortunately, there were also many cases where 

algorithms either contained anomalous data, or failed 

to model the network to acceptable level.  

The best architecture for modeling the energy 
consumption can be determined by comparing the 
optimal solution (i.e., algorithm and neurons that 

produces best performance) of each network structure. 
The best performing algorithms in each network 
configuration contained 5 or less hidden neurons, 
validating the assumption that the networks were 
originally over-fitted.  

Conclusion 

This paper presented modeling methodologies for 

building energy systems using non-linear auto- regression 

artificial neural networks. The model predicts whole 

building energy consumptions as a function of four input 

variables: Dry-bulb and wet-bulb outdoor air 

temperatures, hours of day and type of days. Data from 

simulations and actual buildings are used to model both 

the training and testing cases. 

 

• The study was constructed using data from 

simulations as well as actual data collected from 

two buildings located at North Carolina A&T 

State University. The computational software 

MATLAB was utilized to develop the ANN models, 

using the integrated Building Dashboard system 

• Different neural network structures were tested 

along with various input delays to determine the 

one yielding the best results in term of CV. When 

a neural network is trained with a given set of 

data, it builds a predictive model based on the 

data. This model reflects a minimization in error 

when the network’s out prediction is compared 

with the known outcome. Each learning algorithm 

has its own set of error-correction rules for 

reducing this error  

• The type of day variable is either “zero” or “one” 

corresponding to weekdays or weekend and 

holidays. The hour of day varies from 1 to 24 h. A 

large set of various neuron networks structures 

with various number of neurons and time delays 

are tested in order to determine the best and 

simple structures yielding adequate accuracy in 

term of Mean-Square Error (MSE), Root Mean-

Square Error (RMSE), or Coefficient of Variances 

(CV) of RMSE  

• To determine optimal model structure (Model 

parameters) with minimum error between the 

actual and simulated data during the test period, 

the Genetic Algorithm (GA) is used. The problem 

variables (or ANN model parameters) are (1) 

input time delays, (2) feedback time delays and 

(3) number of neurons (hidden layer size). The 

objective function could be the Mean-Square 

Error (MSE), Root Mean-Square Error (RMSE), 

or Coefficient of Variance (CV). The constraints 

cover the lower and upper limits of design 

variables, such as the maximum and minimum 

size of number of neurons and time delays  
• The optimization method to improve the selection 

process of the best model parameters are 
developed and tested. Further, the optimal 
solution was compared with the one obtained 
from the parametric studies. The model with 
neurons of between 40 and 60 and with a time 



Maya Arida et al. / Energy Research Journal 2016, 7 (2): 24.34 

DOI:10.3844/erjsp.2017.24.34 

 

34 

delay of one hour holds the best results. The 
testing results show that the coefficient of 
variance is 7.7% for the simulated building, 1.7% 
for Building #1, 2.8% for Building#2  

• The optimal solution by GA matches exactly the 
one obtained by the parametric studies, in which 
the number of neurons was 45 for the simulation 
and 40 and 60 for the actual data. The feedback 
and input time delays was one for the simulation 
and six for the actual data  

• The model can provide accurate prediction of the 
building energy consumptions and that can be 
used for many applications such as energy 
building assessment, fault detection and 
diagnosis, energy saving estimation and saving 
measurement and verifications  

• This study has shown that ANN’s can be used as 

powerful tools in modeling the performance of 

building energy consumption. From the results 

analyzed in this work, neural networks are capable 

of modeling the systems to superior levels of 

prediction accuracy. They are scalable, easy to 

configure and highly adaptable to the information 

they are given. Researchers and designers should 

consider the viability of introducing ANNs to model 

the performance of building energy consumption 

• While traditional modeling techniques require 

continuous updating as these systems grow in 

complexity, the flexible nature of neural networks 

makes them a very attractive alternative for these 

applications 
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