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Abstract: Problem statement: In this study, a combination of a classical Sliding Mode Control 
(SMC) and a PID tuning technique with low-pass filter is developed for a position tracking control of a 
DC servo motor. Approach: The DC servo motor will be used to adjust the throttle angle of the 
gasoline engine in our laboratory. To control the engine speed to be accurate, the servo motor position 
has to be controlled precisely. Results: Uncertainty and nonlinearity of the servo motor system can be 
surmounted by the sliding mode control while the system response can be fine adjusted via the PID 
gain tuning. A low-pass filter has been incorporated also in order to eliminate and limit amplification 
of noise due to differentiation in the PID algorithm. The stability of the control system is guaranteed by 
the Lyapunov stability theorem. The experimental results shown that, the proposed technique has good 
tracking performance compares to a PIDSMC and a conventional PID technique even without actuator 
model. Conclusion/Recommendations: However, the performance strongly depends on the specified 
control gain in PID portion and sliding function. Therefore, any self tuning control gain techniques 
should be developed further.  
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INTRODUCTION 

 
 Recently, DC servo motors have been widely used 
as an actuator for motion control and direct-drive 
applications. Examples are as robotic and actuator for 
automation process, mechanical motion and others. This 
is because the well controllability features of the DC 
servo motors and they have adaptability to various types 
of control methods. The DC servo motors have been 
extensively applying in many servomechanisms. 
Therefore, it is very important to study about the 
position control of the DC servo motors.  
 Generally, the DC servo motor systems have 
uncertain and nonlinear characteristics which degrade 
performance of controllers. Based on these reasons, 
Sliding Mode Control (SMC) is one of the popular 
control strategies and powerful control technology to 
deal with the nonlinear uncertain system (Utkin, 1978). 
It is often used to handle any worst-case control 
environment such as parametric perturbations with 
lower and upper bounds, external disturbances, stick-
slip friction and etc. Precise dynamic models are not 
required and its control algorithms can be easily 
implemented. Moreover, its advantage is good 

robustness. However, the robustness of the sliding 
control strongly depends on specified parameters in 
designing of the sliding function (Fujisawa and 
Kawada, 2004).  
 To improve ability to tuning of the sliding mode 
control, some means of control technique has to be 
added. One of the most useful control algorithm in 
linear and nonlinear control systems is PID control 
(Kelly and Moreno, 2001). It is extensively interested to 
tune control gain by PID method. The popularity of PID 
controllers is due to their functional simplicity and 
reliability (Moradi, 2003). The PID control tuning was 
proposed for a class of uncertain chaotic systems with 
external disturbance (Chang and Yan, 2005). The major 
concern of the PID tuning is its transient behaviors 
either in the time domain, such as peak of overshoot, 
rise time and setting time or in frequency domain such 
as bandwidth, damping ratio and undamped natural 
frequency (Xu and Huang, 2007). 
 In this study, the PID control based on sliding 
surface with a low-pass filter has been adopted to 
control the motion of a DC servo motor to achieve the 
desired position tracking performance. The goal is to 
achieve robustness of the servo motor system in order to 
against system parameter variations and any external 
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disturbances. This study will present the system 
description and the proposed control technique design. 
Stability analysis of the proposed control technique was 
derived in stability analysis. The comparisons of the 
proposed technique with a conventional PID and a 
PIDSMC controllers that demonstrated faster response, 
more robustness to parameter variations and external 
disturbances of the proposed controller than the other 
controllers will be presented in results. Then conclusion 
will be given. 
 
System description and definition: An uncer-tain 
dynamic system satisfying the matching condition 
(Barmish and Leitmann, 1982) can be described by 
canonical form as below: 
 
x(n)(t) = fn(X,t)+Bn(X,t)un(t)+Bn(X,t)ηn(X,t) (1) 
 
x(t0) = x0 
 
where,  (n) (n1) (n 2) (nm) T

1 2 mx (t) [x ,x ,...,x ]= ∈ Rm, xi
(ni)∈R, i = 

1,2,…,m in which ( )(k) k
i ix d x / dt=  is the highest order 

of the state vector, t ∈ R is time,Xi = [ i

(ni 1)
i ix ,x , , x −…ɺ ]T 

∈ Rni is the state subvector for the nonlinear square 
system that forms the global state vector X = 

TT T
1 mX ,...,X   ∈Rr

, 
M

ii 1
r n ,

=
=∑  m is the number of 

independent coordinates of Xi that are assumed to be 
available for feedback without noise, the subscript (.)n 
stands for belonging to the n-order system, un(t) = 
[u1,…,um]T ∈ Rm is the control input, ηn(X,t) = 
[η1,…,ηm]T ∈ Rm is the uncertain element that forms the 
lump uncertain element Bn(X,t)ηn(X,t) that enters only 
the highest order of the system, fn(X,t) = [f1,…,fm]T ∈ 
Rm is the known nonlinear  function and Bn(X,t) = [bij] 
∈ Rmxm, i,j = 1,…,m is the known control gain 
distribution matrix. 
 For the system satisfying the matching conditions 
under consideration, the system uncertainty is required 
to lie in the image of the known control gain 
distribution matrix Bn(X,t) (Decarlo et al., 1988). 
Therefore, the total uncertainty can be lumped into the 
single uncertain element ηn(X,t) and the control input 
must have more influence over the system dynamic than 
the uncertainty (Barmish and Leitmann, 1982). 
However, for simplicity, only   the first order (all ni = 1) 
of Eq. 1 will be considered. Thus, the system equation 
can be rewritten as:  
 

( ) ( ) ( ) ( ) ( )
( )0 0

x(t) f X, t B X, t u t B X, t X, t

 x t   x

= + + η

=

ɺ

 (2) 

 
 A control task is to make the system state xi(t) to 
track the desired trajectory xid(t) so that the error  

i i idx x (t) x (t) 0,i 1, ,m= − → = …ɶ . Note that the subscript 

(.)n is not present in this case and if there is no 
uncertainty, the last term on the Right-Hand Side (RHS) 
of Eq. 2 will disappear. By considering Eq. 2 the 
uniform ultimate boundedness can be achieved due to 
the knowledge of the maximum possible value of the 
norm ||B(X,t)η(X,t)|| (Corless and Leitmann, 1981). 
However, if the uncertain element can be realized, the 
control law can be designed. Therefore, with the 
following assumption, the next discussion will describe 
the technique to against system uncertainty using the 
first derivative of the sliding function for the matching 
system (Radpukdee and Jirawattana, 2008). Then, a 
controller design and a stability analysis based on 
Lyapunov’s second method will be presented: 
 
• Assumption I: The functions f(X,t), B(X,t) and 

η(X,t) are continuous in X for all t. They are all 
Lebesgue measurable in t (Coddington and 
Levison, 1984) 

• Assumption II: The lumped uncertain element is 
bounded and the maximum possible value of its 
norm ||B(X,t)η(X,t)|| is known 

• Assumption III: The functions f(X,t), B(X,t),and 
η(X,t) are bounded by a Lebesgue integrable 
function of t 

• Assumption IV: The desired dynamic function is 
bounded and C∞ class so that the trajectory xd(t) is 
smooth and continuous for all t 

 
Controller design: The proposed of controller is 
described. The definition of the classical sliding mode 
control also recalled. Then a control law will be 
determine in order to force the system to reach and stay 
on a sliding surface (st(x) = 0). In the stability analysis, 
asymptotic stability of   the proposed control system of 
Eq. 2 has been evaluated by Lyapunov stability 
theorem. 
 Let st(x) = 0 be the sliding surface which is 
expected to response desired control specifications. It is 
refers to the definition of the sliding function (Slotine 
and Li, 1991). The sliding function can be defined 
individually on each sliding surface as: 
 

in 1
iit i i

d
s (x (t)) ( ) x ,i 1,...,m

dt
−= + λ =ɶ  (3) 

 
Where: 
λi = A strictly positive constant 
ni = The order of the system of interest 
 
 Note that Eq. 3 is continuous in ixɶ  for all t, so it 

has a unique solution on the sliding surface sit = 0. 
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 To make the control input and uncertain elements 
within the range space of the input distribution matrix 
B(X,t) to appear, the first derivative of the sliding 
function of Eq. 3 for the ni order system (higher than 
one) can be calculated from: 
 

i i

i

i

n 1 n 2
(n 1)(k) (k)it it it

it i i ki(n 1)(k) (k)
k 0 k 1 i

s s s
s x x x

x x x

− −
−

−
= =

∂ ∂ ∂= = +
∂ ∂ ∂∑ ∑ɺ ɶ ɶ ɶ
ɶ ɶ ɶ

 (4) 

 
with 
 

k
(k) i
i k

d (x )
x

dt
=

ɶ
ɶ  

 
where, the superscript k =  1,…,ni-1 is the order of an 
error derivative. 
 To derive the control law, some of the basic 
concepts of the classical sliding mode control should be 
given and considered on the system with exactly known 
dynamics (Eq. 2 without any imperfection) and the 
sliding function is presented in term of the first order as 
Eq. 6, from Eq. 3 the sliding function is: 
 

ds x x= −  (5) 
 
 Then the first order derivative of an error(x-xd) in 
Eq. 5 is: 
 

t ds (x) C(x x )= −ɺ ɺ ɺ  (6) 
 
 The best approximation of an equivalent control 
(ueq) is found from Eq. 7 with s 0=ɺ  that is: 
 

eq dCf  CBu Cx  0+ − =ɺ  (7) 
 
where, C is a positive constant coefficient m×m matrix. 
It is linearly independent in full row rank and its 
arguments equal to 1, which implies that det |CB| ≠ 0 
for any x and t (Utkin, 1978). Then, the equivalent 
control law can be rearranged as: 
 

)xCCf((CB)u
d

1

eq ɺ+−= −  (8) 
 
 Then the position tracking problem can be 
considered as the error remaining on the sliding surface 
s(t ) ≠ 0 for all t≥ 0. If the system trajectory has reached 
to the sliding surface s(t) = 0, it implies that the control 
law can force the error e(t) to approach the sliding 
surface and then move along the sliding surface. 
Therefore it is required that the sliding surface must be 
stable, which means limt→∞ e(t) = 0, then the error will 
be asymptotically. This implies that response of the 
system will track the desired trajectory asymptotically 
(Slotine and Li, 1991). 

 
 
Fig. 1: Schematic diagram of PIDSMC with an adopted 

low-pass filter 
  
 Practically in the sliding mode, the equivalent 
control input (Eq. 8) is described when the trajectory is 
nearly s(t) = 0 (Jafarov et al., 2005), while the PID 
control is determined when s(t) ≠ 0 (Jafarov et al., 
2005). Refers to the PID illustrated in Fig. 1, given the 
coefficients KP, KI, KD ∈ R+ are strictly positive 
constants and lets the tracking error in a closed loop 
control system to be “e”. If the control gain KP, KI, KD 
are properly chosen, it   implies   that   limt→∞ e = 0 and 
it means the closed-loop system is globally 
asymptotically stable (Wai et al., 2004). The error “e” 
can be defined in terms of physical plant parameter as: 
 
e = ω – ωd (9) 
 
Where 
ωd = The desired signal 
ω  = The output signal (angular displacement) from the 

measurement of a plant 
 
 Intuitively, the error in PID and sliding mode 
function are similar, except that the sliding function can 
take all error dynamics (errors derivative) into account. 
Therefore, any imperfection occurred in systems due to 
the PID could be coped by the sliding control. 
 The imperfection can be explained as follow. The 
initial state response of the PID controlled system such 
that the transient behaviors such as peak of overshoot, 
rise time, setting time which occurs from the designing 
parameters in the PID controller are not suitable. Thus, 
it remains the errors on the controlled system. However, 
these can be reduced by adopted low-pass filter to the 
PID controller. 
 As stated earlier, the sliding control can improve 
the PID control, The proposed control algorithm would 
be sliding mode control with PID controller gather with 
the low-pass filter as illustrated in Fig. 1, thus the 
control inputs uIL, uPL, uDL can be written as: 
 

( )
t

t
IL I

0

 u t u (T)e dT−γ= ∫  (10) 
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( )
t

t
PL P

0

 u t u (T)e dT−γ= ∫  (11) 

 

( )
t

t
DL D

0

 u t u (T)e dT−γ= ∫  (12) 

 
Where: 
γ = A low-pass filter frequency  
T = Time 

 
 Thus, to satisfy the reaching condition, the control 
input based PID tuning with sliding mode control can be 
derived in term of the control input u as Eq. 13, Then 
argument “t” is omitted for simplicity from now on. 
 
u = ueq– (CB)-1(uDL + uIL + uPL) (13) 
 
From Eq. 13 it can be rearranged as: 
 

1
d DL IL PLu (CB) [ Cf Cx u u u ]−= − + − − −ɺ  (14)  

  
 In order to eliminate the imperfection of the PID 
and the well known chattering phenomenon, which may 
occur from switching action of SMC. The continuous 
control function would be chosen as in the work of 
Slotine and Li (1991). Thus the control input from Eq. 
14 can be rewritten as: 

 
u = ueq– (CB)-1(uDL + uIL + uPL)-(CB)−1ksat(Y) (15) 
 
or 

 
d DL IL PL

-1 - + - + + -  u = (CB) [ Cf Cx (u u u ) ksat(y)]ɺ  (16)  

 
 The schematic diagram of the proposed control law 
from Eq. 16 was shown in Fig. 1 and then Y in the last 
term of RHS of Eq.16 is a vector whose components are 
yi = si/Φi and Φi is the boundary layer width, k is 
positive constants, k∈R+. such that: 

 

( ) i i
i

i

y if y 1
sat Y   

sgn(y ) if otherwise

 ≤= 


 

 
where 

  

( ) i
i

i

1 if s 0
sgn s  

1 if s 0

+ >
= − <

 

 Then the initial output trajectory is not on the 
sliding surface s(t), the controller should be designed 
such that it can drive the output trajectory into the 
sliding surface s(t) = 0. The output trajectory, under the 
condition that it will move toward and reach the sliding 
surface, is said to be on the reaching phase.  
 
Stability analysis: The Lyapunov theorem has been 
chosen to prove the stability of the proposed control 
system that the error response asymptotically 
convergences to the sliding surface if the control law u 

is constructed to satisfy the condition of 0ss
T ≤ɺ . Lets 

the Lyapunov function candidate as: 
 

T1
V  s s

2
=  (17) 

 
With time differentiation to yield 
 

TV s s=ɺ ɺ  (18) 
 
From Eq. 1 and 6, where ds x x= −ɺ ɺ ɺ , thus: 

 

( )
( )

( ) ( )
( ) ( )

1T
d DL

IL PL d

T
DL IL PL

T T
DL IL PL

V = s C[f  B( CB (–Cf  Cx –  (u –

u –  u ) –  ksat Y )  CB  –  x ]

 s [– u  u  u  –  ksat Y   CB ]

S S  –  s ksat Y   CB  –  u  u  u

V   0

−+ +

+ η

= + + + η

= + η + +

≤

ɺ ɺ

ɺ

ɺ

 (19)  

 
 From Eq. 16, since the assumptions Ι-ΙV are 
satisfied and available global state vector x ∈ Rm has no 
disturbances, the asymptotic stability of the error 
response along sliding surface from the control law in 
Eq. 16 can be guarantee as long as V  0.≤ɺ  In this case, 
when ||sTksat(Y)|| ≥ || CBη – (uDL+uIL+uPL) || Additional- 
ly, the continuous term ksat(Y) has been selected 
commonly as in SMC problems to avoid chattering of 
the control force and to achieve stability.  
 Consequently, the desired response depends on the 
selection of the constants KP, KI, KD and k which have 
to be suitable from experimental adjustment. 
 

 
MATERIAL AND METHODS 

 
 According to the schematic diagram of the 
experimental setup in Fig. 1, the propose of controller is 
to control the angular movable of a dc servo motor via 
MATLAB-simulink programming and the 
implementation of there technique is shown in Fig. 2. 
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DC supply 1 is supply voltage to potentiometer about 
6.5 V. which using for notify the position of dc servo 
motor and the power-amp able to generate the 
current(current of PWM signal) about 80 mA for supply 
to signal-control line of dc servo motor. DC supply 2 
using for supply voltage to VCC-line of DC servo 
motor. The signal control directed to the power-amp via 
DAC card which it generated by algorithm of controller 
by MATLAB-simulink programming. The simplified 
block diagram for implementation shown in Fig. 3 and 
from Fig. 1 based on Eq. 2 can be simplified all 
parameters as in Table 1. 

 Then the low-pass filter can be as
100

s 200+
. 

 

 
 
Fig. 2: Implementation for the angular displacement 

control of the DC servo motor 

 

 
 
Fig. 3: Block diagram structure for the angular 

displacement control of the DC servo motor 

 
Table 1: Parameters for implementation 
 Implement constant 
 ------------------------------------------- 
 PID with SMC (propose technique) PID (conventional) 
k 2000 - 
KP 30 30 
Kl 450 450 
KD 1 1 
Φ 20 - 

RESULTS AND DISCUSSION 
 
 Some experimental results are provided here to 
demonstrate the performance of the proposed technique. 
Figure 4 shows the response of the system from the 
different control techniques. It has been found that the 
performance of PIDSMC is better than conventional 
PID technique. The transient of PIDSMC technique can 
be settles down after 3.3 sec while the response from the 
PID has large overshoot and settles down after 5.2 sec. 
Notice, that the performance of the PIDSMC with an 
adopted low-pass filter is better than the conventional 
PID and the PIDSMC techniques. The response from 
the proposed technique has tiny transient state which its 
response can be approach to steady state after 1.7 sec. 
Note that these techniques have equivalent parameters. 
 For their control input signal, the PIDSMC input 
signal is smaller than the PID as illustrated Fig. 5 while 
the residual of error in term of uncertainty as shown in 
Fig. 6 behave in the same manner. This means that the 
response of the PIDSMC can be reached to the desired 
state faster than the PID due to the sliding function s(t) of 
the PIDSMC is close to 0 more than the conventional PID.  
 

 
 
Fig. 4: Angular displacement of the motor by PID, 

PIDSMC and PIDSMC with low-pass filter. 
 

 
 
Fig. 5: Control input of PID, PIDSMC and PIDSMC 

with low-pass filter 
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Fig. 6: Residual error in term of uncertainty signal of 

PID, PIDSMC and  PIDSMC with low-pass 
filter 

 
Obviously, the performance of the proposed control 
technique is better than the PID and PIDSMC. This is 
because the proposed technique have stability to 
recovers the disturbance in small time due to the 
derivative effect has been alleviated by the low-pass 
filter. Refers to the experimental results in Fig. 4-6, the 
residual error signal has smaller overshoot or oscillation 
than the PID and PIDSMC. According to the 
experimental results, the proposed technique can 
confirm the actual implementation with high precision. 
 Note that large overshoot at the initial state occur 
from the initial error and the gain of the controller which 
is learned from the convergence rate of the system 
response. Too large values of the learning gains can 
deteriorate the good transient response of the system. 
Therefore any suitable parameters should be adjusted by 
understanding of the PID gain adjustment.   
      The behavior of a PID gain tuning can be 
characterized in terms of its frequency response where 
the gain increases with frequency. This is because the 
nature of the derivative function in the PID that it is 
likely to cause problem in any noisy system. In fact, all 
high-frequency noise is amplified by term of the 
derivative. Further intensification of an error will 
damage a control system. This is why digital controllers 
will almost never implement a pure derivative. And if 
the rate of process variable cannot be fed back directly, 
this problem can be solve by modifying the PID tuning 
so that the gain curve levels off beyond a given 
frequency. To limit the system frequency response, a 
controller has to limit the amplification of the noise. 
The modified technique essentially consists of a PID 
tuning followed by a low-pass filter in conjunction with 
the differentiator to attenuate noise (Jacob, 2000). The 
result of incorporated  a low-pass   filter   in all PID 
junction (Fig. 1) shown in Fig. 4. It has been found that 
the transient response can be reduced at initial state. The 

response settles down after 1.7 sec and s→0 faster than 
the other techniques. 
 

CONCLUSION 
 
 This study presented incorporation between a PID 
tuning and sliding mode control with an adopted low-
pass filter for a position tracking control of a DC servo 
motors. The nonlinear uncertain servo motor system 
has been steered to desire position by virtue of sliding 
mode control and the high frequency chattering was 
eliminated by the boundary layer technique. The task 
of the PID is to perform when s(t) ≠ 0 while the 
equivalent control input is described when the   
trajectory is nearly s(t) =  0. Moreover, a low-pass filter 
has been adopted in order to limit the amplification of the 
noise that may occur from derivative portion in the PID. 
 From the experimental results, the proposed 
technique has good tracking performance and it has the 
transient behavior at initial state better than the 
conventional PID and the PIDSMC.   
  However, the controller strongly depends on the 
specified parameters in the designing control function. 
Therefore, any self tuning for the control parameter 
should be studied in the future. 
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