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Email: rs25@txstate.edu Abstract: In their practice, healthcare administrators and professionals 

often wonder about the non-matching level organs in transplants for the 

sake of future forecasting. Currently, there is no appropriate methodology 

to analyze the pertinent transplant data and describe the patterns. The lack 

of a suitable methodology in the literature originates from an incorrect 

impression that the primary transplant cases and the repeat transplant cases 

are two separate and independent Poisson probability processes. In fact, the 

actual data on the primary and repeat transplant cases in USA during the 

year 2014 indicate otherwise with a high degree of correlation between 

them. One wonders about the missing link and it hides in their model as this 

article articulates. The aims of this article are set to find an appropriate 

underlying model for the data and then construct an analytic methodology. 

In this research process, a novel and useful bivariate probability distribution 

is discovered and it is named here “seemingly independent bivariate 

Poisson distribution” for a lack of better title. Its statistical properties are 

derived, explained and illustrated. This new bivariate distribution helps not 

only to estimate the non-matching level of organs in the transplant cases but 

also to project the number of repeat transplant cases based on knowing the 

number of primary transplant cases and vice versa.  
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Introduction 

Motivation 

Organ transplantation is too important medical 

procedure to miss not learning enough details (Bentley, 

2014 for details). Transplanting organs or tissues within 

the same person's body are auto-grafts. Transplants 

occurring between two different persons are allografts. 

In each scenario, non-matching transplants could occur. 

Tydén et al. (2012) and Urschel et al. (2013) for 

details on how the blood group incompatibility results 

in non-matching and failure in transplanted hearts. 

Estimating the level of non-matching is a precursor to 

improve the transplant process (Almond et al., 2010). 

Klymiuk et al. (2010) to learn about how the genetics 

play a crucial role in detecting non-matches of organs. 

The organs that have been successfully transplanted so 

far include hearts, kidneys, livers, lungs, pancreas, 

intestines and thymus. Some organs, like the brain, are 

not transplanted. Tissues like the bones, tendons (both 

referred to as musculoskeletal grafts), cornea, skin, heart 

valves, nerves and veins are transplantable. Most 

commonly transplanted organs are kidneys, followed by 

livers and then hearts (Gupta et al., 2015 for data). 

Failure in primary transplanted cases proceed to repeat 

transplant cases. Naesens (2014) for historical reasons 

for the failure of transplanted kidneys. Saczkowski et al. 

(2010) for reasons of the failure in the transplanted 

hearts. Cornea and musculoskeletal grafts are most 

commonly repeat-transplanted tissues. Shanmugam, 

2015b) for their incidences.  

How important is then the topic of transplants? For 

example, as of December 31, 2013, about 86,965 

candidates wait for kidney transplant and it is rather a 

high number. Only about 83% of those candidates were 

awaiting for their first transplant and the remaining 17% 
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waited for their repeat transplant. It is easy to realize the 

gravity of repeat transplant based on the numbers. 

Among the new candidates wait-listed for either a first 

time or a repeat kidney-alone transplant in 2009, the 

median waiting time to transplant was about 3.6 years 

and it suggests a great need to improve the system. Any 

improvement is not feasible until we learn and 

comprehend the information in the data. Patient survival 

is considerably better following repeat transplant, which 

is not surprising given that patients receiving second 

transplants are on the average younger (West, 2011). 

Shanmugam (2013a) for details about a technique how to 

estimate the chance for more survival time if a cancerous 

kidney is removed. Vera et al. (2009) for non-matching 

issues with respect to the liver transplants. In addition, 

there are ethical issues with respect to repeat transplants 

(Dobbels et al., 2012). Len et al. (2014) advocate and 

encourage the importance of screening and selecting 

organs for transplant. Whether it was for primary or repeat 

scenario, the transplants (Daniels, 2008; Magee et al., 

2007; Piccoli et al., 2004) helped to extend the survival 

time. In this globalized economy, the patients in need 

of transplants do make a medical tour to another 

country and get less expensive organs transplanted 

(Budiani-Saberi and Delmonico, 2008).  

The data for analyses and interpretations in this 

article are downloaded from the public domain 

http://optn.transplant.hrsa.gov. Motivated by the data on 

the primary and repeat transplant cases in USA (Table 

1-4 in Eastern, Central, Mountain and Pacific regions 

respectively) in the year 2014, this article is prepared to 

guide the data analysts on how to extract and interpret 

pertinent data evidence for the increased survival time. 

Notice that the primary and repeat transplant cases are 

highly correlated whether the data pertain to the 

Eastern, Central, Mountain, or Pacific region in USA, 

though individually primary as well as repeat transplant 

cases are seemingly follow two separate and 

independent Poisson probability distributions with 

different incidence rates. The Poisson distribution is a 

versatile model to capture and explain how the chance 

mechanism adapts to adverse rare outcomes 

(Shanmugam, 2013b for details). 

After searching the literature, we realized that there is 

no appropriate probability model to fit and explain 

together both primary and repeat incidences data trend. 

Hence, we introduce a novel bivariate probability 

distribution and name it as “Seemingly Independent 

Bivariate Poisson (SIBP) distribution”. This new 

bivariate distribution helps to predict the number of 

repeat transplant cases based on knowing the number of 

primary transplant cases and vice versa. In general, 

bivariate probability distributions play a key role in both 

the analyses and interpretations of medical or health 

data. Shanmugam (2015a; 2014a; 2014b; 2014c) for 

details about the vital role of bivariate probability 

distribution in health data analyses. Considering hacking 

versus vigilance as opposite but two different uncertain 

events, Shanmugam (2013c) recently developed and 

demonstrated a new bivariate probability distribution to 

assess the cyber insecurity level.  

 
Table 1. Primary and repeat organ transplant cases in the Eastern US region during 2014 

States Y X X̂  Ŷ  Volatility of Y Volatility of X 

Alabama 14,319 1,634 1191.62 14122.46 4.58024E-06 0.003082 

Connecticut 2,845 404 299.96 10383.10 1.15295E-06 0.002266 

DC 13,324 1,699 1238.75 13798.19 4.76136E-06 0.003011 

Florida 39,029 4,866 3534.61 22175.41 1.35859E-05 0.004839 

Georgia 16,607 1,799 1311.24 14868.11 5.04E-06 0.003244 

Indiana 11,844 1,304 952.40 13315.86 3.66072E-06 0.002906 

Kentucky 7,222 731 537.01 11809.55 2.06411E-06 0.002577 

Maryland 18,898 2,755 2004.28 15614.75 7.70381E-06 0.003407 

Massachusetts 26,879 2,865 2084.02 18215.74 8.01032E-06 0.003975 

Michigan 22,489 2,939 2137.66 16785.05 8.21651E-06 0.003663 

New Jersey 17,378 2,230 1623.69 15119.38 6.24094E-06 0.003299 

New York 53,672 6,730 4885.89 26947.54 1.87798E-05 0.00588 

North Carolina 22,220 2,414 1757.07 16697.38 6.75364E-06 0.003643 

Ohio 27,243 3,557 2585.67 18334.37 9.93852E-06 0.004001 

Pennsylvania 61,171 8,271 6003.01 29391.46 2.30737E-05 0.006413 

Puerto Rico 2,618 185 141.19 10309.12 5.42726E-07 0.002249 

South Carolina 6,289 883  647.20 11505.49 2.48764E-06 0.002511 

Virginia 14,563 1,552 1132.18 14201.98 4.35176E-06 0.003099 

2
ˆ xλ =   2,601     

1 y xλ = −  18,433      

ˆ y x
r

x
φ

−
≈  2.63      
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Table 2. Primary and repeat organ transplant cases in Central US region during 2014 

States Y X X̂  Ŷ  Volatility of Y Volatility of X 

Arkansas 3,356 367 269.79 8269.91 1.02491E-06 0.002361 

Illinois 33,477 4,597 3300.84 18006.63 1.25392E-05 0.00514 

Iowa 4,508 703 510.56 8642.30 1.93952E-06 0.002467 

Kansas 7,611 1,113 804.35 9645.35 3.05556E-06 0.002753 

Louisiana 13,275 1,464 1055.86 11476.26 4.01101E-06 0.003276 

Minnesota 21,156 3,751 2694.63 14023.83 1.02364E-05 0.004003 

Mississippi 1,889 198 148.69 7795.69 5.64878E-07 0.002225 

Missouri 13,628 1,369 987.79 11590.37 3.75241E-06 0.003308 

Nebraska 6,317 1,075 777.12 9227.06 2.95212E-06 0.002634 

Oklahoma 6,482 729 529.19 9280.40 2.01029E-06 0.002649 

Tennessee 16,237 2,033 1463.58 12433.74 5.55986E-06 0.003549 

Texas 61,445 6,516 4675.92 27047.39 1.77629E-05 0.00772 

Wisconsin 17,673 2,560 1841.21 12897.93 6.99438E-06 0.003681 

2
ˆ xλ =   2,037     

1 y xλ = −  15,927      

ˆ y x
r

x
φ

−
≈  2.53      

 
Table 3. Primary and repeat organ transplant cases in Mountain US region during 2014 

States Y X X̂  Ŷ  Volatility of Y Volatility of X 

Arizona 12,630 1,272 933.05 6713.96 3.59E-05 0.025237 

Colorado 10,907 1,247 914.86 6173.87 3.52E-05 0.023207 

Nevada 1,638 224 170.50 3268.42 6.56E-06 0.012286 

New Mexico 1,960 233 177.05 3369.35 6.81E-06 0.012665 

Utah 4,840 776 572.15 4272.11 2.2E-05 0.016059 

2
ˆ xλ =   750     

1 y xλ = −  6,395      

ˆ y x
r

x
φ

−
≈  2.67      

 
Table 4. Primary and repeat organ transplant cases in Pacific US region during 2014 

States Y X X̂  Ŷ  Volatility of Y Volatility of X 

California 108,697 12,069 8900.09 44808.47 4.12879E-06 0.001686 

Hawaii 1,953 113 91.24 11586.91 4.23307E-08 0.000436 

Nevada 1,638 224 173.03 11488.88 8.02696E-08 0.000432 

Oregon 5,477 654 489.84 12683.67 2.2724E-07 0.000477 

Washington 12,190 1,390 1032.10 14772.94 4.78799E-07 0.000556 

2
ˆ xλ =   2,890     

1 y xλ = −  25,991      

ˆ y x
r

x
φ

−
≈  2.80      

 

In section 2, various statistical properties of our new 

SIBP distribution including their correlation, marginal, 

conditional probability structures are derived and then 

they are utilized to capture non-obvious intricacies 

between the primary and repeat transplant cases. One of 

the intricacies is an estimate of non-matching in the 

primary transplant cases. In section 3, the analytic 

expressions are illustrated using the data on total primary 

versus repeat transplant cases in USA (Table 1-4) in the 

year 2014. Finally, in section 4, a few final comments 

and conclusions are compiled and stated.  

Seemingly Independent Bivariate Poisson 

Distribution and its Statistical Properties  

Let Y and X be two dependent (with a correlation, 

-1≤ρ≤1) Poisson distributed random variables with 

incidence rates λ1>0 and λ2>0 respectively. Let ϕ>0 be 

a bonding parameter, which can break down their 

dependence or glue together stochastically the two 

random variables. In the context of transplant cases, 

the bonding parameter portrays the non-matching 

level of the organ transplants. Then, we propose a 
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novel seemingly independent bivariate Poisson (SIBP) 

distribution (1) below to model for predictability of 

the number of repeat transplant cases based on 

knowing the number of primary transplant cases and 

vice versa. That is: 

 

( )

1 2

1 2

( )

1 2

1

1 2

, , ,

! 1
1

;( )!
;

;(1 ) ! !

0

0,1,2,....., ;0 , , .

x

y x

p Y y X x

y
e

x yy x
for

x yy x

y

λ λ

λ λ φ

φ λ λ
λ

φ

λ λ φ

− +

= =

  
 +   ≤−    =  

> +


= ∞ < < ∞

 (1) 

 

It is obvious that 1 2( , , , ) 0p X x Y y λ λ φ= = > . After 

algebraic simplifications, we can show that 

( )1 2

0 0

, , , 1
y

y x

p Y y X x λ λ φ
∞

= =

= = =∑∑ . Hence, the expression (1) 

is indeed a bona fide probability function. A specific 

probability: 

 

( )1 20, 0 , ,p Y X λ λ φ= =  

 

in (1) of no primary and no repeat transplant incidence 

portrays the likelihood of a healthy community. The 

odds for a healthy community to exist is displayed in Fig. 

1, where its odds are identified in z-axis, the primary 

transplant incidence rate, λ2 in x-axis and the repeat 

incidence rate λ1 in y-axis). That is:  

 

( )
( )

( )1 2

(0,0)

1 2

1 2

1

0, 0 , ,

1 0, 0 , ,

1

Odds

p Y X

p Y X

eλ λ

λ λ φ

λ λ φ
−+

= =
=

− = =

= −

 (2)  

 

The (0,0)Odds in (2) for having a healthy community 

diminishes as the incidence rate λ1 for the primary or 

the incidence rate λ2 for the repeat transplant 

increases from a zero level. Likewise, the specific 

probability: 

 

( )1 21, 0 , ,p Y X λ λ φ= =  

 

of one primary but no repeat transplant portrays a 

scenario of an efficient community (because no need for 

repeat transplant). The odds for such an efficient is: 

 

( )
( )

( )1 2

(1,0)

1 2

1 2

1

1 1

1, 0 , ,

1 1, 0 , ,

Odds

p Y X

p Y X

eλ λ

λ λ φ

λ λ φ

λ λ
−+

= =
=

− = =

= −

 (3) 

 

 

 
Fig. 1. Odds for healthy community 
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Fig. 2. Odds for efficient community 

 

 
 

Fig. 3. Odds for inefficient community 

 

The odds for an efficient community to exist is 

displayed in Fig. 2. The (1,0)Odds starts at a finite level, 

depending on just the primary incidence rate λ1 but 

concavely (Fig. 2) diminishes.  

However, the probability: 

( )1 21, 1 , ,p Y X λ λ φ= =  

 

Portrays the likelihood of having one primary 

transplant and a need to have another repeat transplant 

(because either the primary transplant was done poorly 
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or the patient’s body rejects the non-matching 

transplanted organ or both). This scenario amounts to 

having an inefficient primary transplant. The odds (Fig. 

3 with φ = 0, 0.5, 1) of having inefficient primary 

transplant is therefore: 

 

( )
( )

2 1

(1,1)

1 2

1 2

2 1

2 1

1, 1 , ,

1 1, 1 , ,

( )

( )

Odds

p Y X

p Y X

eλ λ

λ λ φ

λ λ φ

λ λ φ
λ λ φ+

= =
=

− = =

+
=
 − + 

 (4)  

 

where, φ≥0 is recognized as the level of nonmatching 

primary transplant. In other words, with φ = 0, the 

scenario refers the absence of non-matching primary 

transplant. This scenario would not have a need for 

repeat transplant. Only in this scenario, the SIBP 

probability mass function (1) reduces to: 

 

( )

( ) ( )

1 2

1 2

( )

1 2

1 2

, , , 0

! !

y x

p Y y X x

e

y x

p Y y p X x

λ λ

λ λ φ

λ λ

λ λ

− +

= = =

=

= = =

 

 

It implies then that only this scenario portrays the 

stochastic independence between the primary and repeat 

transplant incidences. In a statistical sense, the bonding 

parameter with an attainment of a particular value φ = 0 

breaks down the intricate relation between the primary 

and the repeat transplant Poisson incidences. Of course, 

by definition or conceptually viewing, the probability,  

 

( )1 20, 1 , , 0p Y X λ λ φ= = =  

 

of no primary but a repeat transplant is impossible. 

Hence, this scenario is null and void with a thought that 

the (0,1) 0Odds = in a sense of degeneration.  

Now, let us proceed to examine how does the 

number of primary transplants marginally behave 

without a knowledge about the number of repeat 

transplant cases. That is: 
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( )

2

1

1 2
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0
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1
1
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;
(1 ) !
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y

y

p Y y

p Y y X x

e
e

y

y

λ

λ

λ λ φ

λ λ φ

λ
φ

λ λ
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λ λ φ

=

−

−

=

= = =

  
 + + 
   =

+

= ∞ < < ∞

∑

 (5) 

which is nothing but a size-biased version of the regular 

Poisson probability mass function. The size-biased 

sampling has been studied by statisticians as the sampled 

population is quite different from the intended 

population in a sampling process (Shanmugam and 

Singh, 2012 along with the cited references there). When 

there is an absolute absence of non-matching transplant 

cases (that is, φ = 0), the number of primary transplant 

cases is really a separate Poisson incidences with a rate 

λ1>0 (that is, ( )
1

1
1 2, ,

!

ye
p Y y

y

λ λ
λ λ φ

−

= → as φ → 0). The 

marginal expected value and variance of the primary 

transplants in that scenario are then: 
 

 

( )1 2

1 2

, ,

(1 )

E Y y λ λ φ

φ
λ λ

φ

=

= +
+

 (6)  

 
and: 
 

( )
( )

1 2

1 2 2

, ,

(1 ) 2

Var Y y λ λ φ

φ λ φλ λ

=

≈ + + +
 (7)  

 
From the expression (7), we realize that the expected 

number of the primary transplants has an add-on to what 

it would have been when there is an absence of 

nonmatching transplant (that is, φ = 0). Such an add-on 

number is 2
(1 )

φ
λ

φ+
which is controlled by not only the 

non-matching level φ but also the repeat transplant rate 

λ2. As mentioned in the motivation, an intricacy between 

the primary transplant incidences and the repeat 

transplant incidences is established in clear terms. The 

incorrect impression of seemingly unrelated occurrences 

of primary and repeat transplant occurrences is set 

correct now by the SIBP distribution (1).  

Likewise, in the presence of non-matching transplant 

cases (that is, φ ≠ 0), the variance (7) increases from λ1 

(which is what it would have been in the absence of non-

matching primary transplant cases) with an add-on 

amount φ[λ1+λ2 (λ2 +2)]. This add-on amount suggests 

that the number of primary transplants is more volatile 

(Fig. 4) due to a higher non-matching level (that is, φ ≠ 

0) in primary transplant cases. The volatility is further 

controlled by a higher primary transplant occurrence rate 

λ1 and a higher rate λ2 of repeat transplant cases. This is 

another important intricate relation between the primary 

and repeat transplant cases and it would not have been 

possible without our new SIBP distribution (1). 

Furthermore, only when φ = 0, the variance (7) is 

exactly equal to the expected value (6), validating the 

unique characteristics property of two separate Poisson 

incidences. The functional relationship between the 
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variance and the mean provides unexpected clues in the 

data to characterize the Poisson chance mechanism (see 

Shanmugam, 2014d) for details). The Fig. 5 depicts the 

nonlinear behavior of the variance (7). 

 

 
 

Fig. 4. Mean of SIBP with φ = 0, 0.5, 1 

 

 
 

Fig. 5. Variance of SIBP with φ = 0, 0.5, 1 
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Hence, the conditional probability mass function, p(X 

= x|Y = y,λ1,λ2,φ) of the number of repeat transplant 

cases for a given marginal number Y = y|λ1,λ2,φ of 

primary transplants is estimable. That is: 

 

( )
( )
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 (8.1) 

 

Notice that the conditional probability mass function 

(8) is also size-biased, but the bias vanishes in the 

absence of nonmatching transplant (that is, when φ = 0). 

In an event that there is just one primary transplant, how 

likely it matches so that there will be no repeat 

transplant? Such a probability is: 
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Furthermore, the projectile, 1 2( , , , )E X x Y y λ λ φ= =  of 

the number of repeat transplant cases for a given number 

1 2, ,Y y λ λ φ=  of primary transplant cases is: 

 

( )1 2

2

2 1

, , ,

1 1

E X x Y y

y

λ λ φ

λ φ
λ λ

= =

  
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+   

 (9) 

 

The projectile (9) would have been the rate λ2 of the 

repeat transplant occurrences only in the absence of non-

matching scenario (that is, when φ = 0). The expression 

(9) is indeed a nonlinear regression for X = x in terms of 

1 2, , ,Y y λ λ φ= . The conditional variance (describing the 

volatility of the number x of repeat transplants) is then: 
 

1 2
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2
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The conditional variance (10) is also nonlinear and it 

converges to the rate λ2 of the repeat transplant 

occurrences only in the absence of no matching (that is, 

when φ = 0). The above intricate relations between the 

primary and repeat transplant cases would have been 

missed without the SIBP distribution (1).  

Analogously, let us proceed to examine how the number 

of repeat transplant cases behave marginally. That is: 
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which is, interestingly, the regular Poisson probability 

mass function with incidence rate λ2 of the repeat 

transplant cases. In a marginal sense, the number of 

repeat transplant cases do not control the chance for 

non-matching of the number of primary transplant 

cases. There exists asymmetry in the intricate 

relations between the primary and repeat transplant 

cases. In practical terms, the asymmetry portrays 

traceability. Such an asymmetry would have been 

undiscovered without the SIBP distribution (1). 

The marginal expected value and variance of repeat 

transplants are then: 

 

( )2 2E X x λ λ= =  (12)  

 

and: 

 

( )2 2Var X x λ λ= =  (13)  

 

Hence, the conditional probability mass function, p(Y 

= y|X = x,λ1,λ2,φ) of the number of primary transplant 

cases for a given marginal number X = x,λ1,λ2,φ of repeat 

transplant cases is tractable. That is: 
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which is also a size-biased Poisson distribution with 

incidence rate λ1. However, the size-bias, 

1

!
1

( )!

[1 ]

x

y

y x

φ
λ

φ

 
+ − 

+
 vanishes in an absence of non-matching 
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transplant cases (that is, when φ = 0). In an event that 

there is just one repeat transplant, how likely there 

might had been two or more primary transplant cases. 

Such probability is: 

 

( )
1

1 2

1

2 1, , ,

[ ]
1

[1 ]

p Y X

e λ

λ λ φ

λ φ
φ

−

≥ =

+
= −

+

 (14.2)  

 

Furthermore, the projectile, 1 2( , , , )E Y y X x λ λ φ= =  of 

the number of primary transplant cases for a given 

number 1 2, ,X x λ λ φ=  of repeat transplant cases is: 

 

( )1 2

1

, , ,

1

E Y y X x

x

λ λ φ

φ
λ

φ

= =

 
= +  + 

 (15) 

 

The expression (15) is indeed a linear regression, in 

terms of the repeat transplant cases X = x, with incidence 

rate λ1 as intercept and the proportion 
1

φ
φ

 
 + 

as its 

slope. The conditional variance (describing the volatility 

of the number y of primary transplant cases) is then: 

 

 
( )1 2

2

1

, , ,

1

Var Y y X x

x

λ λ φ

φ λ

= =

 ≈ + 

 (16) 

 

The variance (16) is also nonlinear but it converges to 

the rate λ1 of independent primary transplant 

occurrences, in the absence of non-matching transplant 

cases (that is, φ = 0). Otherwise (that is, in the presence 

of non-matching transplant cases indicated by φ ≠ 0), the 

volatility is more with an add-on amount φx
2λ1 which is 

controlled by the non-matching level φ, the occurrence 

rate of primary transplant cases λ1 and the number x of 

repeat transplant cases. These are extra intricate relations 

and revelations that would have been missed without the 

SIBP distribution (1).  

Now, we proceed to assess the correlation between 

the primary and repeat transplant occurrences. For this 

purpose, using seemingly independent bivariate Poisson 

(SIBP) distribution (1), we first obtain the product 

moment E(xy). That is: 

 

( )1 2

0 0

2
2 1

( )

, , ,

( 1)

(1 )

y

y x

E xy

xyp Y y X x λ λ φ

φ λ
λ λ

φ

∞

= =

= = =

 +
= + + 

∑∑  (17) 

Substituting the expression (17) in Cov(x,y) = E(xy) -

E(x)Ey), we obtain that 2( , )
(1 )

Cov x y
φλ
φ

=
+

. Using (7) and 

(13), we obtain the correlation (18) between the primary 

and repeat transplant cases. That is: 

 

2

1

2 2

( , )
( , )

( ) ( )

1
(1 )

(1 )
2

(1 ) (1 )

Cov x y
Corr x y

Var x Var y

φ λ

φ
λ

φ
φ

φ φ
λ λ

φ φ

=

=
 
+ + 

+
  +

+ +  + +  

 (18)  

 

Only in the absence of non-matching transplant 

cases (that is, φ = 0), the primary and repeat transplant 

cases (namely, the random variables x and y) would 

have been independent. Otherwise (that is, in the 

presence of non-matching primary transplant cases), 

the number of primary and repeat transplant cases are 

correlated, as their correlation is calculable using 

expression (18).  

Now, we proceed to obtain estimators of the 

parameters: λ1, λ2 and φ. For this purpose, consider a 

bivariate random sample (x1,y1),(x2,y2),,,,,( xn,yn) from 

the seemingly independent bivariate Poisson (SIBP) 

distribution (1). From expression (12), notice that the 

estimator of the rate of repeat transplants is
2

ˆ xλ = . 

Using expression (6), the estimator of the rate of 

primary transplant cases is 1
ˆ

(1 )
y x y x

φ
λ

φ
 

= − ≈ − 
+ 

. 

Let ˆ ( , )r Corr x y=  denote the sample correlation 

coefficient. Then, the estimator of the non-matching 

level (or the bonding parameter otherwise called), φ 

is ˆ y x
r

x
φ

−
≈ .  

Illustration of Primary versus Repeat Organ 

Tranplant Cases in USA  

We now examine how the conceptual ideas and the 

derived expressions of earlier section play out in the 

747,594 primary and 91,495 cases of repeat transplant 

cases across Eastern, Central, Mountain and Pacific 

regions in USA. The data for analyses and 

interpretations in this article are downloaded from the 

public domain http://optn.transplant.hrsa.gov. The 

primary and repeat transplant cases are categorized in the 

Table 1-4. The correlation between the primary and 

repeat transplant cases is calculated and displayed in Fig. 

10 for the Eastern, Fig. 11 for the Central, in Fig. 12 for 
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the Mountain and in Fig. 13 for the Pacific region of the 

USA. The estimate 
2
λ̂  of the rate of repeat transplant 

cases, 
1
λ̂  of the rate of primary transplant cases and φ̂ of 

the non-matching level of the primary transplant cases 

(also called the bonding parameter) are calculated and 

displayed in the tables. The projectile, ˆ[ ]E y x of the 

number of primary transplant cases for a known number, 

X = x of repeat transplant cases using (15) and the 

projectile, ˆ[ ]E x y of the number of repeat transplant cases 

for a known number, Y = y of primary transplants using 

(9) are calculated and displayed in the tables. Their risks: 

 

{ } { }
ˆ

ˆ ˆ ˆ ˆ

E y x

V E y x E V y x

  
   +   

 

 

and: 

 

{ } { }
ˆ

ˆ ˆ ˆ ˆ

E x y

V E x y E V x y

  
   +   

 

 

are calculated using (16) and (10) respectively and are 

separately displayed in the tables for the Eastern, 

Central, Mountain and Pacific regions in USA. In all 

regions, the risk for the projectiles of the repeat 

transplant cases is more in comparison to the risk for the 

projectiles of the primary transplant cases.  

Comments and Conclusion 

We summarize that the patterns are consistent 

across all (Eastern, Central, Mountain and Pacific) 

regions of the USA. There exists a significant 

discrepancy between the observed number, Y = y of 

primary and its projectile, Ê y x    as much 

discrepancy between the observed number, X = x of 

repeat and its projectile, Ê x y   . There ought to be 

reasons for the discrepancies. Perhaps, the 

discrepancies are attributable not only to the inability 

of the model “Seemingly Independent Bivariate 

Poisson (SIBP) distribution” to perfectly resemble the 

actual reality of the transplant occurrences but also to 

the fact that some of the primary transplant cases 

might not have enough financial support to go for 

another round of repeat transplant, died due to other 

illnesses, or lost from a follow-up in the data 

collection process. The organ or tissue transplants are 

not cheap anymore. Some health insurances do 

reimburse their clients’ air travel and/or lodging 

expenses to overseas hospitals in other countries if the 

overall medical expense for transplants are lesser 

expensive. However, this article provides a novel 

bivariate distribution and a statistical methodology to 

analyze and interpret the demand versus supply of 

organs for transplant within USA. 

 

 

 
Fig. 6. Projectiles for the Eastern states of USA 

 

 

 
Fig. 7. Projectiles for the Central states of USA 

 

 

 
Fig. 8. Projectiles for the Mountain states of USA 

 

 

 
Fig. 9. Projectiles for the Pacific states of USA 
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Fig. 10. For Eastern US states in 2014 

 

 
 

Figure 11. For Central US states in 2014 

 

 
 

Fig. 12. For Mountain US states in 2014 
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Fig. 13. For Pacific US states in 2014 
 

A comparison (Fig. 6-9) of the conditional 

projectile, Ê y x    for the primary transplant cases 

versus the projectile, Ê x y   for the repeat transplant 

cases in all (that is, Eastern, Central, Mountain and 

Pacific) regions of the USA is made. It reveals that the 

conditional projectile of repeat transplant cases for 

given number of primary transplant cases is more 

consistent than the conditional projectile of the primary 

transplant cases for given number of repeat transplant 

cases. The consistency is captured using the 

expressions for risk. The expressions 

{ } { }
ˆ

ˆ ˆ ˆ ˆ

E y x

V E y x E V y x

  
   +   

 and 
{ } { }

ˆ

ˆ ˆ ˆ ˆ

E x y

V E x y E V x y

  
   +   

do 

respectively estimate the risk of our estimate of primary 

transplant cases and our estimate of repeat transplant 

cases. Table 1-4 for the projectiles Ê y x   and Ê x y   . 

Interestingly, the risk for projecting the number of 

primary transplant cases based on the number of repeat 

transplant cases is much smaller than the risk for 

projecting the number of repeat transplant cases based 

on the number of primary transplant cases. 
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