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Abstract: The development of advance techniques in the multiple fields 

such as image processing, data mining and machine learning are required 

for the early detection of Alzheimer’s Disease (AD) and to prevent the 

progression of the disease to the later stages. The longitudinal and cross 

sectional images of elderly subjects were obtained from the standard 

datasets like ADNI, OASIS, MIRIAD and ICBM. The subject image 

obtained from the dataset, can be geometrically aligned to the template 

image through the process of registration. The registration techniques like 

Mutual Information Registration, Fluid registration, Rigid registration, 

Spatial Transformation algorithm for registration, Elastic Registration are 

selected based on type of transformation and similarity measures to suit the 

required application. The registered images are then subjected to the 

process of segmentation in order to segment relevant tissues or desired 

region of interest that are significant in AD detection. The different types of 

segmentation techniques such as Tissue Segmentation, Atlas based 

Segmentation, Hippocampus Segmentation and other segmentation 

techniques have been discussed. The segmented images are then subjected 

to morphometry techniques to identify the morphological changes 

developed in an abnormal image. The different types of morphometry 

techniques used are Voxel Based Morphometry (VBM), Deformation 

Based Morphometry (DBM), Shape Based Morphometry (SBM) and 

Feature Based Morphometry (FBM). But in recent years, the main focus 

of researchers is towards the FBM and SBM to overcome the 

disadvantage of group analysis that existed in VBM and DBM. Further 

the data is classified into healthy normal and AD by supervised, 

unsupervised or probabilistic methods. 
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Introduction 

The broad term neurodegenerative represents a 

group of disorder, which are characterized by the 

degeneration of structure and functions of neurons. 

Examples of neurodegenerative diseases that are 

progressive and incurable include Alzheimer’s Disease, 

Parkinson’s Disease, Amyotrophic lateral sclerosis and 

Huntington’s Disease. Alzheimer’s Disease (AD) is the 

most common neurodegenerative disease that occurs 

among the older adults. It is caused by the deposition of 

Amyloid Plaques and Neurofibrillary Tangles in the 

different regions of the brain. These pathological 

changes alter the structures and functionalities of the 

brain, leading to cognitive and behavioral impairment. 

The changed brain structure can be acquired through 

different image modalities such as Magnetic Resonance 

Imaging (MRI), Cerebrospinal Fluid (CSF), Single 

Photon Emission Computed Tomography (SPECT) and 

Fluorodeoxyglucose Positron Emission Tomography 

(FDG-PET). The image processing techniques are 

required to optimize an image, which is essential to 

improve the pictorial representation of an image and 

the machine perception and also to aid in human visual 

interpretation. The optimized image is further subjected 

to different data mining techniques in order to get into 

deeper insights of data and to mine the relevant 

information. The extracted relevant information 
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determine the changed pattern in the abnormal brain. The 

other types of data such as Demographic Information, 

Clinical Scores, Genotypic Information and Fluid 

Biomarkers are integrated with the images to improve the 

prediction of AD. 

Stages of Alzheimer’s Disease 

The progression of AD comprises of three different 

stages: 

 

 Preclinical Alzheimer’s Disease: It is a preliminary 

stage of AD, where the symptoms are not developed 

in the affected patient at the early stage. Thus the 

early state of AD is identified through the Imaging 

and the Fluid Biomarkers 

 Mild Cognitive Impairment: Mild Cognitive 

Impairment (MCI) is an intermediate stage between 

normal and AD. The MCI patients have mild 

memory and cognitive problems, however they are 

capable of executing daily activities. The two 

different types of MCI are Amnestic Mild Cognitive 

Impairment (aMCI) and non-amnestic Mild 

Cognitive Impairment (naMCI) 

 Alzheimer’s Disease: This is the most critical 

stage, where the person is incapable of 

performing day to day activities because of loss 

of memory and reduction in thinking ability and 

changes in behaviour 

 

Symptoms of Alzheimer’s Disease 

 Inability to remember recent events 

 Decreased ability to recognise others 

 Difficult to make decision on personal activities 

 Difficult to plan and execute daily activities 

 Depression 

 Changes in sleep pattern 

 Extreme periods of anger 

 Challenges in solving simple problem 

 Repetition of words 

 

Alzheimer’s Disease can be delayed by following 

an healthy diet, doing regular physical and mental 

exercises, proper sleep, stress management and 

maintaining social relationships.  

 

Motivation  

AD is the most common neurodegenerative disease that 

occurs among the elderly individuals. It has been predicted 

that millions of people can get affected in the future years. 

This motivates the researchers to focus their attention 

towards the advancement in the development of techniques 

required for accurate detection and diagnosis of AD.  

Organisation 

The paper is organized as follows: Model Architecture 

is presented in Section II. Standard Dataset that is required 

to obtain Cross Sectional and Longitudinal images is 

explained in Section III. Brain Regions Affected due to 

Alzheimer’s Disease are described in section IV. 

Segmentation Techniques are presented in Section V. 

Registration Techniques are described in Section VI. 

Morphometry Techniques are described in Section VII. 

Classification Techniques are explained in Section VIII. 

Tools available for Alzheimer’s Disease detection are 

described in Section IX. 

Model Architecture 

The Model Architecture of the survey paper is 

discussed and shown in Fig. 1: 

Dataset 

The complementary information required for AD 

detection is obtained from structural and functional 

images, that aid to determine the abnormality of the 

affected brain. The other type of information such as 

clinical, genetic, demographic are also provided along 

with the image information by several standard datasets 

like ADNI, ICBM, MIRIAD and OASIS. 

Segmentation 

Segmentation is a key step to obtain the desired tissue 
or a particular region of interest from the collected 
images. Different types of segmentation techniques like 
Tissue Segmentation, Atlas-Based Segmentation, 
Hippocampus Segmentation and other automated 
segmentation techniques are discussed. 

Registration 

The standard dataset contains multiple images for the 
same subject that is acquired at different time points and 
with different modalities. All the images are aligned to a 

common reference space through the process of 
registration. The alignment provides intra-subject and inter-
subject matching that is required to study the disease 
progression and to identify abnormal subjects. The different 
types of registration techniques such as Mutual Information 
Registration, Fluid Registration, Rigid Registration, Spatial 

Transformation Algorithm for Registration, Elastic 
Registration are discussed. 

Morphometry 

Morphometry identifies the anatomical differences 
between normal and affected population. Different 

types of morphometry techniques such as Voxel-based 
Morphometry, Deformation-based Morphometry, 
Shape-based Morphometry and Feature based 
Morphometry are discussed. 
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Fig. 1. Automatic Detection of Alzheimer’s Disease 

 

Classification 

The classification is the last step required to classify 

the subjects into different classes based on normality and 

abnormality. The different types of classification 

techniques like supervised, unsupervised and 

probabilistic methods are discussed. 

Tools 

Numerous tools such as 3D SLICER, ABEAT, 

DRAMMS, FSL, FREE SURFER, HAMMER, MIPAV, 

SPM, VBM, AIR and IMAGEJ are developed to handle 

the techniques of preprocessing, registration, 

segmentation, morphometry and classification. 

Datasets 

The standard datasets like ADNI, ICBM, MIRIAD, 

OASIS provide the clinical, demographic and imaging 

information of older adults. 

ICBM 

International Consortium Brain Mapping (ICBM) 

(Mazziotta et al., 2001), consists of demographic, 

clinical, behavioural and imaging information of the 

older adults. The demographic information includes age, 

gender, education, family history and background. 

Clinical and behavioral information includes the 

psychiatric screening, neuropsychological tasks and 

neuropsychological test. T1, T2 weighted and proton 

density are the different multispectral MRI images 

gathered for the same subject. The main aim of this 

database is to develop disease specific probabilistic atlas 

and reference system of brain for Alzheimer’s, Multiple 

Sclerosis, Schizophrenia and Stroke Disorder. 

OASIS 

Open Access Series of Imaging Studies (OASIS) 

(Marcus et al., 2007), is a dataset that provides 416 

cross-sectional subjects between the age of 18-96 Years. 

It comprises of clinically diagnostic information of 100 

older adults who are more than 60 years of age, affected 

with mild-moderate AD and it also includes 

nondemented subjects. The procedure of automatic brain 

volume computation and total intra cranial volume 

estimation are described, to indicate the usage of data in 

identification of the difference existing between Normal 

and AD. There is a free access to the dataset for 

improving the early detection of AD. 

MIRIAD 

The Minimal Interval Resonance Imaging in 

Alzheimer’s Disease (MIRIAD) (Malone et al., 2003), 

consists of T1 weighted longitudinal MRI scans with 

different sequence of intervals for the subject with mild-

moderate AD and the normal controls. Furthermore, it is 

extended with the information of Mini-Mental State 

Examination (MMSE), age and gender. The data are made 

publically available to the researchers to measure the 

longitudinal volume change in the series of MRI scans.  

ADNI 

Alzheimer’s Disease Neuro imaging Initiative 

(ADNI) (Jack et al., 2008), is a longitudinal multi site 
observational study of healthy elders, MCI and AD. It 
consists of information of different imaging 
modalities such as MRI, PET, CSF biomarker. In 
addition to these modalities, clinical and demographic 
information are added. 

BRAIN WEB 

A set of realistic simulated brain MR image volumes 
are obtained by varying specific imaging parameters and 
artifacts in MRI simulator. The parameter settings 

available for precomputed simulated database are fixed 
with three modalities, six levels of noise, three levels of 
intensity non-uniformity and five slice thickness. But the 
simulation with arbitrary parameters are executed by 
using brain web custom MRI simulations interface 
(Cocosco et al., 1997). 

Brain Regions Affected Due To Alzheimer’s 

Disease 

The neurodegenerative disease leads to pathological 
changes in the different regions of brain, even before the 
development of symptoms. So it helps in detecting the 
present condition of disease and to predict risks in later 
stages. Different regions of brain, affected due to AD are 
listed in Table 1 and the description and functionalities 

of each region are explained below: 
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Table 1. Regions affected due to Alzheimer’s disease 

Region  Location  Effects due to Alzheimer’s disease 

Hippocampus (De Leon et al., 1993) Medial temporal Lobe Shrinkage 

Amygdala (Brambilla et al., 2008) Frontal portion of temporal lobe Shrinkage 

Entorhinal cortex (Bobinski et al., 1999)  Ventromedial surface of temporal lobe Shrinkage 

Ventricle (Nestor et al., 2008) Core of the brain  Enlargement 

Precuneus, posterior cingulate gyrus Medial parietal lobe  Reduced metabolism 
 

Hippocampus 

Hippocampus (De Leon et al., 1993) is identified in the 
medial temporal lobe which are surrounded by the cortical 

regions. It is crucial for memory consolidation in the 
process of converting shortterm memory into long-lasting 
memory in the neocortex. The shrinkage of this region is 
induced more in age related problems due to its role in 
central memory. It is also affected by various disorders like 
Schizophrenia, Epilepsy, Stress and Mood disorder. 

Amygdala 

Amygdala (Brambilla et al., 2008) is closely 

associated with the hippocampus in the frontal portion of 

the temporal lobe. It connects to several cortical regions, 

receiving input from the frontal and temporal lobes and 

sending output information to limbic areas such as 

thalamus, entorhinal cortex, hippocampus and neocortex. 

It is a region which controls fear, emotion and anxiety. 

Entorhinal Cortex 

Entorhinal Cortex (Bobinski et al., 1999) is located 

below the hippocampus, in the ventromedial surface of 

the temporal lobe. It is actively involved in memory 

formation, retrieval and extinction as part of circuit 

involved. This is the first region affected in Mild 

Cognitive Impairment before developing to AD. 

Ventricles 

The location of ventricles (Nestor et al., 2008) are 

determined in the core of the brain which is composed of 

Cerebrospinal Fluid. Enlargement of lateral ventricle is 

due to various disorders such as AD, Schizhophrenia, 

Dementia and Bipolar disorder. 

Putamen 

Putamen (De Jong et al., 2008) is a paired structure 

located at the base of the forebrain. Putamen and caudate 

nucleus together form corpus striatum. The important 

functionalities of putamen are probabilistic learning, 

memory task and regulating movements. 

Thalamus 

Sensory and motor mechanisms are served by 

thalamus (De Jong et al., 2008). Atrophy of thalamus has 

also been associated with cognitive decline in 

neurodegenerative disorders such as Multiple Sclerosis, 

Huntington’s Disease and Lewy Body Dementia. 

The following papers discuss about the regions that 

are affected during different stages of AD: 

 MRI measures of the banks of superior temporal 

sulcus, the entorhinal cortex and the caudal portion of 

the anterior cingulate are useful in discriminating three 

different stages of AD (Killiany et al., 2000). The 

different stages are: Individuals with mild memory 

impairment which converts to AD in 3 years duration, 

individuals with mild memory problems without the 

advancement to AD in 3 years and normal controls. 

Using multiple MRI scans, the gray matter atrophy 

pattern observed in amnestic Mild Cognitive Impairment 

(aMCI) before 3 years of AD diagnosis is on the medial 

temporal lobes such as amygdala, anterior hippocampus, 

entorhinal cortex and fusiform gyrus. Before 1 year of 

AD diagnosis, atrophy is induced in the middle temporal 

gyrus and extended to posterior regions of the temporal 

lobe, entire hippocampus region and parietal lobe. During 

diagnosis, the atrophy of the medial temporal lobe, the 

temporoparietal association cortices and the frontal lobe are 

affected much more (Whitwell et al., 2007). 

Longitudinal studies (Teipel et al., 2003) indicate the 

decline in memory for an affected person by using time 

series data of the subject. The significant biomarkers 

observed during the diseased state are larger ventricular 

volume, decreased gray and white matter volumes in 

temporal and parietal lobes of brain. But the parietal lobe 

is an effective biomarker which shows significant 

changes when age factor is considered. 

Automatic Segmentation 

Segmentation is an important step required to obtain 

specific region of interest. Noise, limited resolution, 

partial volume effect are certain challenges to be focused 

during segmentation of medical images (Vibha et al., 

2007). Due to AD, the progressive changes are observed 

with different regions or tissues of brain. This 

distinguishable regions or tissues aids the doctor to 

decide whether the person is normal or abnormal and it 

also improves the efficiency of the computer aided 

diagnosis. Different segmentation techniques, their 

advantages and limitation are discussed in Table 2. 

The steps involved in edge detection technique are 

filtering, enhancement and detection. The performance 

of soft computing (Venugopal et al., 2009; 

Senthilkumaran and Rajesh, 2009) approaches like 

genetic algorithm (Shenoy et al., 2005) and neural 
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network show better edges than robert, sobel and 

prewitt edge detectors. 

Mumford-shah functional (Chan and Vese, 2001) is 

the new model of active contour with the techniques of 

curve evolution, for detecting the objects without the 

edges. It performs well even with noisy images by 

starting only with one initial curve. The location of 

initial curve need not be on object to be detected. 

An automatic segmentation of Hippocampus (HC) and 

Amygdalae (AG) is obtained by the fusion of Active 

Appearance Modeling (AAM) and level set shape modeling 

(Hu et al., 2011). The fusion technique is useful to segment 

the MRI images, having weak intensity contrast with their 

background. The appearance model applied on multi-

contrast images such as T2, T1 and proton density weighted 

images improve the ROI segmentation. 

An approach of image segmentation by histogram 

thresholding (Tobias and Seara, 2002) groups similar 

gray levels in an image according to predefined criteria 

and it is assessed by fuzzy Measure (Srinivasa et al., 

2005). Since the method is not based on the 

minimization of a criterion function, it improves the 

result on bimodal and multimodal histogram. But it is 

limited to images that satisfy the assumption that the 

objects and background must occupy non-overlapping 

regions of the histogram. 

A coupled surface propagation (Zeng et al., 1999) 

using level set method is proposed to obtain the 

geometric measurements of cortex (cortical surface 

curvature, cortical thickness map, cortical gray matter 

volume and cortical surface area). The advantage of the 

proposed technique: efficient computation, easy 

initialization, volumetric analysis and it has the potential 

to capture deep sulcal folds. 

The thresholding is the popular method of image 

segmentation to discriminate the object of varying 

intensity. A multilevel threshold allows the 

determination of appropriate number of thresholds as 

well as the adequate threshold values by using the 

combination of Genetic Algorithm (GA) and Wavelet 

Transform (WT) (Hammouche et al., 2008). The WT 

reduces the length of the histogram and GA determines the 

threshold values for the obtained histogram. The accuracy 

of image segmentation by thresholding is evaluated through 

the uniformity measure and the cost function. 

Tissue Segmentation 

The brain is made up of three different tissue types 

namely Gray Matter (GM), White Matter (WM) and 

Cerebrospinal Fluid (CSF) as shown in Fig. 2. In AD 

patients, atrophy of GM is more compared to WM and 

CSF. So it is necessary to perform tissue segmentation. 

Fully automated intensity-based algorithms exhibit 

high sensitivity to noise artifacts, such as intra tissue 

noise, inter tissue intensity contrast reduction and partial-

volume effects. Tissue segmentation by Constrained 

Gaussian Mixture Model (CGMM) (Greenspan et al., 

2006) outperforms EM-based segmentation algorithm of 

Van-Leemput (KVL) under varying noise. CGMM 

combines local spatial information with global intensity 

modelling, which is an alternative to Markov Random 

Field. Prior information required for tissue segmentation 

is not considered, but the intensity order of tissues in MR 

image is considered. Processing time required for the 

segmentation is correlated to the number of Gaussians 

and the number of voxels in an image. 

Brain is composed of various regions, where each 

region is formed by different types of tissue. The EM 

algorithm (Van Leemput et al., 2003) estimates missing 

parameters such as sub voxel intensity and subvoxel 

labels by utilising only the image intensity. In addition to 

this, down sampling is introduced to aggregate the 

subvoxel intensities and to develop the observed 

intensity. The estimated model parameters assign each 

voxel to a particular tissue, thereby resulting in the tissue 

classification. Using this algorithm, model parameter 

estimation is well determined in the low resolution MR 

images. Improved spatial model needs to be used as prior 

information for robust PV segmentation. 

 

Table 2. Segmentation techniques for Alzheimer’s disease detection 

Authors  Algorithm  Advantage  Disadvantage 

Coupé et al. (2011) Patch based Non local means estimator The combination of non local  

 segmentation improve the segmentation means and non linear registration 

   is to be focused in the future 

Zarpalas et al. (2014) Gradient distribution Increased dice Future focus to introduce bias 

 boundary coefficient metric correction concept and to identify 

   white matter borders 

Ribbens et al. (2014) Expectation and Improved average dice overlap To determine the optimal no of 

 maximization algorithm  clusters automatically 

Sanroma et al. (2014) Histogram Oriented gradient,  Improved Average dice ratio To evaluate on other dataset 

 SVM and majority voting 

Yazdani et al. (2016) Hybrid Segmentation  Superior performance on To improve segmentation 

  white matter tissue   of Gray Matter tissue 
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Fig. 2. Tissue segmentation for Alzheimer’s disease detection 

 
Ribbens et al. (2014) proposed unsupervised 

segmentation and construction of probabilistic atlases on 

the heterogeneous set of brain images obtained from the 

ADNI and BRAIN WEB dataset. For the given image, 

probabilistic atlas is constructed immediately after the 

segmentation and simultaneously clustered into a 

subgroup of images based on the selected atlas. This 

results in improved segmentation accuracy. The 

morphological patterns obtained for each subgroup are 

compared with the clinical data for specific diseases to 

evaluate the proposed framework. Registration of images 

to the atlases and developing automated methods for 

clustering the subgroups are to be focused in the future. 

Segmentation results are improved by incorporating 

the spatial information into membership function. The 
likelihood of a pixel belonging to a particular cluster is 
represented through the spatial function and defined by 
the squared window. Then the membership function are 
computed to obtain cluster distribution statistics 
(Chuang et al., 2006). 

A hybrid approach is developed to combine the 

advantages of region based and threshold-based methods 

on MRI brain images (Yazdani et al., 2016). The 

segmentation of MRI into three different tissues is 

achieved by combining both spatial and intensity 

information. The performance is evaluated by the 

calculation of AOM index for each tissue and the results 

indicate its superior performance in white matter tissue 

segmentation. Improvements should be focused on the 

Gray Matter tissue segmentation. 

An adaptive mean shift methodology (Mayer and 

Greenspan, 2009) classifies brain voxels into three tissue 

types. The clustering technique is based on the joint 

intensity-spatial distribution of voxels, to extract high-

density points from the feature space using multi modal 

MRI data (T1, T2, Pd). Based on intensity mode, each 

voxel is clustered to one of the tissue types. This technique 

does not consider the spatial information prior from atlas 

but performs well with non-convex clusters to produce 

convergence mode for intensity based classification. This 

shows better results on noisy and biased data and can be 

further extended to detect abnormal tissue. 

Atlas Based Segmentation 

The prior information of anatomical surfaces of the 

brain are considered as an atlas. The atlas-based 

segmentation is most suitable for images, with no well-

defined relation between regions and pixels intensities. It 

determines the morphological differences existing 

between the patient and normal brain as shown in Fig. 3. 

(Lötjönen et al., 2010). 

Atlas-based segmentation (Hartmann et al., 1999) 

approach is used for quantification of brain atrophy by 

considering cerebellum volumes in normal and chronic 

alcoholics. The technique involves the global 

transformation of an atlas volume, with the objective to 

bring it to correspondence. The deformation field 

calculated on the binary atlas volume creates intradural 

and cerebellum masks to segment the cerebellum 

structure. The similarity is assessed by kappa statistics 

between the manually delineated and automatically 

delineated cerebellum structure. 

The atlas can be single labeled image or probabilistic 

atlas (Heckemann et al., 2011). The probabilistic atlas is 

obtained through non-rigid registration of multi labeled 

images. Then warping technique is followed after 

registration, to transfer these labels of the atlas image to 

the subject image and derive the selected ROI by the 

segmentation technique. So it can be inferred that the 

atlas construction and registration methods are critically 

important for segmentation of images. 

Structural segmentation of brain through multi-atlas 

segmentation (Aljabar et al., 2009) is obtained by 

transferring multiple numbers of manually delineated 

atlases to the subject and combine them together for 

effective segmentation. Selective combination of atlases 

improves the accuracy of sub-cortical segmentation. In 

particular, the use of age-based selection atlases adds an 

advantage to multi-atlas segmentation of older subjects. 

The label fusion framework (Sabuncu et al., 2010) is 

carried out by multiple registrations between test and 

training images. After the process of registration, the 

Sum of Squared Difference metric measures the 

similarity between the registered images, before 

subjecting it to the segmentation step. It also focuses on 

hippocampal volume measurement correlating with the 

age of the person, to predict whether the subject brain is 

affected with AD or it is Normal. Accurate hippocampal 

volume measurement by local weighted voting and 

semilocal weighted fusion shows the better results than 

global weighted fusion and majority voting. The multiple 

pair wise registrations and the manipulation of the training 

data introduces computational complexity in the proposed 

label fusion algorithms. 

The selection of the best atlas (Sanroma et al., 2014) is 

performed by non rigid registration of atlas images and the 

computation of  ground-truth  ratio between the pair of 

atlas images. It is followed with the computation of 

pairwise feature for each region between pair of atlas 

images and finally with the target image. Then the 

segmentation performance is computed and ranked, to 

select the best atlas. 
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Fig. 3.  Atlas Based Segmentation for Alzheimer’s disease detection (Lötjönen et al., 2010) 

 

The new labeling techniques (Sdika, 2010) such as 

Nearest Neighbor transform with Erosion labeling 

(NNE) and Nearest Neighbor transform based labeling 

(NN) are proposed, to label complex and folded cortical 

structure. The quality of automated segmentation 

techniques are measured by Relative Overlap (RO) 

and Mean Accuracy (MA) metric and the result 

indicate improved performance of NN shown on 

cortical regions and  the increased performance of 

standard  labeling is shown on deep gray structures. 

The segmentation produced by NN is inaccurate and rough 

at the border of the structure while NNE labeling is an 

improvement over NN for the smoother segmentation.  

The evaluation of atlas selection strategies 

(Rohlfing et al., 2004) are very important in atlas-

based segmentation. Four different approaches 

considered for the atlas selection are: Registration to 

Average Shape Atlas Image (AVG), Registration to an 

Individual atlas image (IND), and Registration to all 

images from a database of individual atlas image with 

the subsequent Multi-Classifier Decision Fusion 

(MUL) and Registration to most similar image from a 

database of individual atlas image (SIM). The 

obtained segmentation results are evaluated by 

considering mean similarity index between manual 

and automatic segmented images. Among the four 

atlas selection strategies, MUL shows an improved 

performance of segmentation. 
Incorporation of statistical model is necessary to 

select the best atlas for registration (Carmichael et al., 

2005). Then the alignment of brain images to the 

standard atlas is carried out by a fully-deformable 

method, to aid the process of automated segmentation. 

Further the performance of automated segmentation is 

analyzed by various tools like AIR, SPM and FLIRT 

(Shenton et al., 1995). 

Hippocampus Segmentation 

Hippocampus (HC) is a region located in the medial 
temporal lobe of the brain and plays a vital role in the 
process of memory consolidation. So the segmentation 

of HC is necessary to study age related problems as 
shown in the Fig.4. (Carmichael et al., 2005). 

Hippocampus is an important biomarker utilized in 

the detection of various neurodegenerative disorders. 

The extraction of Gradient Distribution Boundary (GDB) 

(Zarpalas et al., 2014) is performed on the gray matter 

tissue and these boundary properties are modeled at each 

anatomical location to develop gradient based reliability 

maps. Then by using active contour model, appropriate 

image information is included for the accurate 

segmentation of Hippocampus. The increased dice 

coefficient metric indicates the accuracy of automated 

segmentation and proves its applicability in manual 

segmentation protocol. The focus is necessary to 

introduce bias correction concept and to identify the 

white matter borders within 3GDB. 

Auto Context Model (ACM) (Tu and Bai, 2010; 

Morra et al., 2008) is a technique proposed for 

hippocampus segmentation of T1 weighted MRI 

images. To acquire global shape information and 

location of hippocampus, all the brain images are 

initially registered to the template. During the training 

phase, manually labeled segmentation learns the rules 

for classification of hippocampal and non hippocampal 

region   by        using       modified      adaboost     method. 
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Fig. 4. Hippocampus Segmentation for Alzheimer’s Disease 

Detection (Carmichael et al., 2005) 
 
Then the performance of hippocampus segmentation are 

evaluated by metrics such as precision, recall, relative 

overlap, similarity index and hausdorff distance. The ACM 

segmentation shows less error prone metric when compared 

to other automated hippocampus segmentation. 

The Hippocampal measure is computed by using the 

techniques of Voxel Based Morphometry and ROI-based 

approach (Testa et al., 2004). In ROI, measurement of the 

hippocampal volume is computed on the whole 

hippocampus by using Mann-Whitney U test (Nachar, 

2008). In voxel-based approach, SPM99 is used for 

computing GM volume which aids in identifying the 

discriminative region. Both the measurement were assessed 

in the total group by computing areas under the curve of 

receiver operating characteristics. Detection of hippocampal 

atrophy by VBM analysis show better results and ROI-

based analysis show the superior performance for 

measurement of the amygdala and temporal gyri. 

Symmetric Normalization (SyN’s) (Avants et al., 

2008) is used in the volume measurements of MRI 

images. The volume measurement estimated by SYN, is 

in close association with the volume measurements 

obtained by experts labeling. Hence it is a valid 

technique chosen for normalization and anatomical 

measurements of volumetric MRI in AD patients and 

also for the elderly individuals who are at risk. In 

addition to normalization and volume measurement, SyN 

also provides a dense space–time map and 

transformation inverses of the subject image. 

A learning based wrapper method (Wang et al., 2011) is an 

effective technique to be utilized after automated 

segmentation to improve its accuracy. During segmentation, 

systematic segmentation errors are generated on training 

data and it is identified by the wrapper method with the help 

of intensity, spatial and contextual patterns of an image. 

Automated algorithm developed for the segmentation 

is evaluated by Expectation-Maximization algorithm 

(Warfield et al., 2004) for Simultaneous Truth and 

Performance Level Estimation (STAPLE) to ensure their 

suitability for the particular application. It examines the 

performance analysis of segmentation algorithm by 

calculating the accuracy and precision. 

Registration 

Image registration also known as alignment/co-

registration and it is the process of aligning different 

images of the same subject’s follow-up data  or same 

subject with different modality or different subject with 

the same disease. The target and reference image 

establish the correspondence between voxels, which aids 

to fuse information from the images and also to identify 

the location of the affected region within the diseased 

individual (Hill et al., 2001). The measure of atrophy 

over a period of time, which is very important for 

clinical trials are assessed by Serial MRI Scans 

Registration. Hence, the atrophy rate is measured by 

registering the images before and after drug treatment 

(Fox et al., 2000). Registration techniques suitable for 

multimodal images are discussed in later sections. 

An automated Mutual Information Registration 

(Wells et al., 1996; Maes et al., 1997) for multi-modal 

images is largely data independent and does not require 

preprocessing. Mutual Information Registration is 

affected by factors such as in homogeneity, geometric 

distortion and noise. 

The Fluid registration (Bro-Nielsen and Gramkow, 

1996) is performed on longitudinal MRI images, to 

compute the deformation field occurring at each voxel. 

The deformation field computed for an entire image is 

measured by a jacobian value. Voxel for expansion and 

voxel for contraction are the two images created based 

on the jacobian value. Then a group analysis is 

performed by SPM, to find the expansion of lateral and 

third ventricle in mildly affected AD and expansion of 

perihippocampal region in moderately affected AD. The 

contraction is observed in the posterior part of the 

cingulate gyrus, the inferior and lateral parts of the 

temporal lobes (Scahill et al., 2002). 

A nonlinear diffusion filter (Rexilius et al., 2001) is 

used to obtain appropriate feature points, required for an 

initial sparse estimate of the deformation field. 

Normalized Cross-Correlation (NCC) is a similarity 

measure used for finding the correspondence between 

reference and template volume. In the next step, the 

volumetric deformation across the image is inferred from 

nonrigid registration using an elastic model. 

Elastically  deforming three-dimensional atlas 

(Gee et al., 1993) locates the similar anatomical brain 

volumes across MRI images in the data set. Features 

used for matching are brain surface, ventricles, edges 

of cortical, subcortical structure, gray and white matter 

boundary. It performs well for larger and regular 

structure, but its performance is low for smaller and 

irregular structure. The accuracy of each match is 

evaluated by the amount of overlap between the 

deformed atlas and elastically mapped atlas. Future focus 

is to develop automated technique for preprocessing of 

images required for elastic registration. 
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The Spatial Transformation Algorithm for 

Registration (STAR) (Friston et al., 1995; Davatzikos, 

1998) is proposed to capture subtle morphological 

characteristics of an individual brain. As it is a 

featurebased approach, it utilizes the structural 

information such as outer cortical surface, the ventricular 

surface and the sulci. A map is formed between 

homologous features of an individual brain and the target 

brain to drive a three-dimensional elastic warping 

transformation. The advantage of this technique is that 

information present in the original, non-normalized 

images is preserved even after normalization. 

The optimum template selection method (Wu et al., 

2007) chooses the best template from a family of 

templates by using the parameters such as normalized 

mutual information and ROI. These parameters give best 

local registration accuracy for a selected template. The 

template selection is very important for highly varying 

cortical structure. The selection of multiple templates 

required for atlas-based segmentation produced 

significantly better Overlap Ratios (ORs) and more reliable 

volume estimates. Then Intraclass Correlation Coefficients 

(ICCs) is calculated to measure the difference between the 

manual tracings and the automated labeled results. 

Based on age, the local deformation of  the image varies 

significantly across patients. The local deformation cannot 

be described properly by the parameterized transformation. 

Hence, 3-D deformable objects is modeled by a B-

spline based Free Form Deformation (FFD) model 

(Rueckert et al., 1999). Then the similarity measures 

such as Squared Sum of Intensity Differences (SSD) 

and Correlation Coefficient (CC) are used to measure the 

registration quality across the different transformation 

models considered. The performance of Nonrigid 

registration (Crum et al., 2014) can be improved by 

increasing the resolution of mesh in spline based FFD. 

Rapid Alignment of Brains by Building Intermediate 

Templates (RABBIT) (Tang et al., 2009), develops a 

statistical deformation model by acquiring knowledge 

from the deformation field of the training sample. The 

development of intermediate template similar to the 

brain under registration is produced by the calculation 

and optimization of the parameters of intermediate 

deformation field. Hence RABBIT has potential to attain 

rapid and accurate deformable image registration. 

Therefore the speed of RABBIT is five times more than 

HAMMER. The high registration accuracy by 

HAMMER can be obtained through refinement of the 

intermediate templates. 

An automated Reverse Brain Masking (RBM) 

(Keihaninejad et al., 2010) measures the IntraCranial 

Volume (ICV). ICV is required for normalizing the 

regional volumes of brain. RBM uses the sum of three 

tissue probability maps to estimate the ICV probabilistic 

mask in MNI standard space. Then Intra Class 

Correlation Coefficient (ICC) is utilized to measure the 

similarity between manual and RBM based ICV 

measurement methods. The RBM shows similar 

performance to manual ICV measurement on both 1.5T and 

3T scanner and achieves higher accuracy on both normal 

and AD subjects. The conventional methods such as SPM 

and FSL are not consistent in ICV measurement across 

different scanners but RBM is more consistent and reliable. 

Brain warping techniques such as Large Deformation 

Diffeomorphic Metric Mapping (LDDMM) (Tang et al., 

2014), characterizes the variations in the brain regions 

due to neurodegenerative disease, either by the volume 

or shape analysis. It is important to detect distinct sub-

regions of hippocampus (3 Subregions- CA2, CA3 and 

Dentate Gyrus) and amygdala (4 subregions- Basolateral, 

Basomedial, Centromedial and Lateral nucleus) from 

high-resolution images. This aids in understanding the 

disease pattern associated with these structures. The 

initial momentum vectors from LDDMM are subjected 

to Principal Component Analysis (PCA). The Principal 

Components (PC) obtained for each structure is 

subjected to Linear Discriminant Analysis (LDA), to 

identify the associated biomarker in AD or MCI. The 

results obtained from this method show mild regional 

atrophy of basal ganglia structures, globus pallidus and 

atrophy in the vertices of the surfaces of the thalamus for 

both MCI and AD groups. Mild expansion in caudate 

nucleus has resulted in subjects only with AD. 

Morphometry 

Morphometry is the technique applied to find the local 

and global anatomical differences existing in the affected 

brain. This anatomical difference can be detected by 

subjecting the brain to different types of morphometric 

techniques such as Voxel Based Morphometry, 

Deformation-Based Morphometry, Shape Based 

Morphometry and Feature Based Morphometry. A brief 

discussion of these morphometric techniques are explained 

in further paragraphs and Table 3 also includes the 

advantages and disadvantages of some of the techniques. 

Deformation Based Morphometry 

A Deformation field morphometry is a technique 
based on the nonlinear transformation of source image 
onto the reference brain. The calculation of deformation 
field determines the shape of the human brain at the voxel 
level. And the local volumetric differences between the 
source and the reference image are obtained by the 
calculation of Local Volume Ratio (LVR) (Pieperhoff et al., 
2008). LVR map is generated by the combined LVRs of 
all the voxels in an image. The LVR maps of different 
source images are compared to infer the volumetric 
changes in the brain. A unified statistical framework using 
3D displacement field vector (Chung et al., 2001) was 
proposed to measure the displacement and volume 
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changes of the brain due to morphological changes 
observed in the diseased state. The rate of Jacobian change 
and local volume change at each voxel can be calculated, 
to measure growth or loss of the brain tissue. 

Voxel Based Morphometry 

Voxel-Based Morphometry (VBM) (Whitwell, 2009) 

identifies the atrophy of brain among the group of 

subjects affected with AD, through the statistical 

methods. This automated technique concentrates more 

on gray matter and indicates the region with gray matter 

loss is caused due to AD. Improvised results can be 

observed with Family Wise Error (FWE) correction and 

lenient False Discovery Rate (FDR). FWE improves the 

result for the sample with larger size and FDR is suitable 

for the smaller size. But it cannot provide reliable 

information for an individual subject. 

SPM99 package (Ashburner and Friston, 2000) is 

used to perform voxel-based morphometry, with more 

emphasis on segmenting the gray matter from the MR 

images with non-uniformity artifact. The segmented gray 

matter is smoothened using the gaussian kernel. Then the 

statistical tests are performed on the smoothened image 

to perform the comparison among different groups. 

Voxel based morphometry (Senjem et al., 2005; 

Mechelli et al., 2005) infers the structural differences 

for a group of subjects by using the gray and white 

matter volumes. It processes the entire brain, with the  

consideration of all the voxels, followed by the 

statistical test for analysis. Hence it finds its 

application in detection of various diseases such as 

AD, Schizophrenia, Parkinson’s Disease, Bipolar 

Disorder, Autism and also the enlargement of certain 

brain regions influenced for the healthy normal’s 

through the learning process. The main difficulty is in 

spatial normalization of a typical brain and images 

have to be considered from the same scanner and 

common parameters for the calculation. 

The tissue density increases during contraction of an 

image due to the atrophy of the brain. Increment or 

decrement in the tissue density is directly related to the 

volume of its respective structure. So the regional 

volume measurements and comparison are performed 

using RAVENS (Regional Analysis of Volumes 

Examined in the Normalized Space) (Davatzikos et al., 

2001) density map generated for each tissue of interest. 

Voxel based morphometry performed by RAVENS is 

better than Statistical Parametric Mapping (SPM). 

A voxel-based discriminative map (Wang et al., 

2009) aids in AD classification. The average brain atlas 

is considered as a probability map, calculated for both 

NC and AD subjects. The discriminative map is obtained 

by subtracting the probability map of an healthy control 

and patients with AD. Then the matching coefficient are 

calculated between the obtained discriminate map and 

the training input. Based on the calculation, test input is 

considered as a patient if matching coefficient value is more 

than the cut-off point of training subjects. It is an alternative 

method to volume-based classification technique. 

Voxel based morphometry detection cluster extracts 

the features like mean, standard deviation and voxel 

intensities from the GM volume. And these features are 

subjected to classification by using linear, non linear and 

the diverse adaBoost SVM (Li et al., 2005). Diverse 

Adaboost SVM is found to perform better than linear 

and non linear SVM. This method also resulted in higher 

sensitivity results for AD classification. Focus is 

necessary on feature extraction from deformation based 

morphometry (Savio et al., 2009). 

The prognosis of MCI to AD uses MRI and CSF 

biomarker for pattern classification (Davatzikos et al., 

2011). The method involves tissue segmentation and 

development of RAVENS MAP by using high 

dimensional image warping technique (Chen and 

Herskovits, 2010). Then t-statistic is used to find the 

group differences among the considered subject images. 

In addition to gray matter atrophy, white matter atrophy 

is also observed around the hippocampus and other 

temporal lobe structures. The inclusion of WM atrophy 

provides more pronounced results in early identification 

of MCI individuals who are likely to convert to AD. 

Even Spatial Pattern of Abnormalities for Recognition of 

Early AD (SPARE-AD) score (Davatzikos et al., 2009) 

is used for calculating the abnormality score for the 

subject with MCI. The positive score of SPARE-AD 

indicate AD and negative indicate Normal control, hence 

SPARE-AD score, morphological measurements and 

CSF biomarker are considered as good predictors in 

determining the future progression of MCI. 

Feature Based Morphometry 

Feature-based morphometry (Zhu et al., 2016; 

Niyogi, 2004) aims to identify distinctive anatomical 

patterns of a subset of subjects due to disease as shown 

in Fig. 5. (Diaz et al., 2010). Localized image features 

are extracted and these features are analyzed at the 

characteristic level. It fetches both local and global 

topological information from the data. The probabilistic 

model is applied to the extracted image features to 

relate them to a particular group based on the 

anatomical pattern. Hence it can be used as a biomarker 

for the classification of AD. The discriminative feature 

selection is based on Fischer criterion and obtained 

features are noise resistant. Capturing of difficult 

patterns from the AD-affected brain images can be 

improved by utilizing non linear modeling. 
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Table 3. Feature based morphometry techniques for Alzheimer’s disease detection 

Authors  Algorithm  Advantage  Disadvantage 

Liu et al. (2015) Stack Autoencoders  High level features improves Low accuracy on  

  accuracy and sensitivity testing set 

Bron et al. (2015) Feature selection Wrapper and filter methods Trade off between area under 

  improves the performance curve and complexity are criteria 

   in feature selection 

Cheng et al. (2015) Feature selection, sample  Improves the sensitivity, Improvement of prediction by  

 selection and classification accuracy aids in predicting including auxillary domain data 

  MCI conversion 

Zhu et al. (2016) Canonical Correlation  Improves the More than two modalities  

 Analyis (CCA)  accuracy to be focused 

Hu et al. (2016) Wavelet frame, linear  Discriminates MCIc Focus on feature  

 SVM for classification  and MCInc selection 

 

An increased cortical thickness (San et al., 2016) was 

found to be effective when both education and physical 

exercise were combined. Increased cortical thickness in 

prefrontal cortex, precuneus, left postcentral gyrus, 

inferior parietal region correlates with longer duration of 

exercise but not with the intensity of exercise. 

A supervised method of training Artificial Neural 

Network (ANN) (Jain et al., 1996; Cárdenas-Peña et al., 

2016) is proposed for computer aided diagnosis. The 

classification of dementia is very important because 

Mild Cognitive Impairment (MCI) is the intermediate 

stage between NC and AD, and it may or may not 

progress to AD. The features extracted from MRI scan of 

brain are volume, surface area and thickness. Affinity 

between this projected feature space and class label can 

be increased by the inclusion of Centered Kernel 

Alignment (CKA) and over-fitting is avoided by 

including the large number of subset of samples. 

A feature representation through deep learning is 

applied for brain disease diagnosis and prognosis. The 

main motivation is to extract high-level information 

hidden in the low-level features with the help of Stack 

Auto-Encoder (SAE) (Vincent et al., 2010; Suk et al., 

2015). To extract high level information, it is necessary 

to integrate both low-level and latent features to generate 

the augmented feature vector. Then the sparse learning is 

applied on this augmented feature vector, for efficient 

selection of features and to label the subjects into 

different stages of the disease. Finally features from 

different modalities are combined through Multi Kernel 

SVM. Diagnostic accuracy is improved further by the 

fusion of various features from different modalities. 

Global Gray Matter (GM) atrophy is recognized as a 

marker in AD or MCI progression. During clinical trials, 

atrophy of the entire brain are measured commonly by 

Structural Image Evaluation using Normalization of 

Atrophy (SIENA) (Smith et al., 2004) and Brain 

Boundary Shift Integral (BBSI) (Fox and Freeborough, 

1997). The proposed method also determines the Global 

atrophy by integrating Non-linear registration with 

Jacobian values (Anderson et al., 2012). The results 

inferred show that, statistical power of the proposed 

method is similar to BBSI, SIENA, but it is more than 

segmentation and subtraction of serial GM volumes. 

An automated correspondence detection algorithm i.e., 

Wavelet Based Attribute Vector (WAV) (Kumar et al., 

2009), efficiently captures the anatomical features of each 

voxel from the original MR brain images and hence it 

can be used as a morphological signature for each voxel. 

Three matching techniques of WAV: (i) using WAV 

similarity (ii) matching using statistical models of 

WAV’s and (iii) matching by incorporating shape 

constraints, are required to determine the correspondence 

between the images, by finding the similarity between 

the attribute vectors. The performance of the algorithm is 

equivalent to an expert with the incorporation of the 

shape constraint and it can be improved further by 

incorporating prior knowledge of spatial relationship of 

voxels (Xue et al., 2004). 

Multiple features extracted from Magnetic Resonance 

Imaging (MRI), Cerebrospinal Fluid (CSF), 

Neuropsychological and Functional Measures (NMs) aid 

in the prognosis of MCI (Cui et al., 2011). The minimum 

Redundancy and Maximum Relevance (mRMR) filter 

(Akadi et al., 2009) assign the ranks to the extracted 

features. Then the subset of features is subjected to Lib 

SVM for classification. The combination of MRI, CSF 

and NM results in high sensitivity and it is also used for 

calculating the conversion time from MCI to AD using 

the predictive values. 

       Large Deformation Diffeomorphic Metric Mapping 

(LDDMM) (Qiu et al., 2009) determines a surface 

deformation map, to estimate the deformation from the 

template to the surface of each subject. With reference to 

the template, Outward-deformation of subject’s structure 

is marked with positive value and inward-deformation of 

subject’s structure is marked with negative value. Based 

on the geometry of each structure, the random fields are 

calculated and it is followed by modeling to find the 

inter-relationship among the brain regions (Wold et al., 

1987). Then the principal components determine the 

group differences among AD, MCI and NC
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.  
 

Fig. 5. Feature based morphometry for Alzheimer’s Disease detection (Diaz et al., 2010) 
 

The deep learning architecture is used in the 
classification of four different stages of AD such as 
Normal Control, cMCI (Mild Cognitive Impairment 
Convertor), ncMCI (Mild Cognitive Impairment Non 
Convertor) and AD. This technique helps in diagnosis of 
a patient at particular stage by using either single modal 
or multi modal data. The gray matter volume and the 
Cerebral Metabolic Rate of Glucose (CMRGlc) are the 
features extracted from MRI and PET images. These 
extracted features are unlabeled and trained to the auto 
encoder to fuse the multimodal data and to learn high 
level features, even in the absence of one modality. The 
high level feature obtained is subjected to Softmax 
Regressor, to generate the label for a particular stage. Then 
it is followed by the calculation of stability score. The score 
aids to identify the region with highest score as an 
important biomarker and also to recognize the progressed 
state of the disease. It works better on large datasets and 
finds synergy between different biomarkers used. Accuracy 
on training set is better than test set (Liu et al., 2015). 

A robust deep learning system utilizes drop out 
technique (Li et al., 2015), which is an improvement 
over the classical deep learning. CSF biomarkers and 
volumetric features from MRI and PET images are 
subjected to PCA to reduce the dimensionality of the 
extracted features followed by stability selection 
technique. So classical deep learning with drop out 
performed better than without using dropout technique 
for the small dataset. It is necessary to use Multi Kernel 
SVM for diagnosis of AD patients. 

A denoising auto-encoder denoises the corrupted 

input and fetches the high level features like edges in an 

unsupervised way. This builds the relationship between 

denoised input and higher level features to progress the 

performance of the SVM classifier (Vincent et al., 2010). 
The direct approach (filter) and an iterative approach 

(wrapper) are the two novel feature selection methods 
(Bron et al., 2015) proposed based on p-maps. The trade-

off between Area Under Curve and Complexity are the 
criteria involved in choosing best feature selection 
method. Both the filter and wrapper approach perform 
better than SVM weight vector. 

The Domain Transfer Feature Selection (DTFS), 
Domain Transfer Sample Selection (DTSS), Domain 
Transfer Support Vector Classification are the techniques 
used in the classification of MCI (Cheng et al., 2015). 
DTFS method utilizes auxiliary domain (i.e., AD, Normal 
Control) and learns about target domain (i.e., Mild 
Cognitive Impairment, Non Mild Cognitive Impairment). 
The subset of features of both auxillary and target domain 
are extracted from multimodal data and subjected to DTSS 
feature selection, to develop cross domain kernel matrix for 
MRI, PET and CSF biomarkers. The proposed technique 
improves sensitivity, accuracy and area under curve, 
thereby correlating to the improved prediction of the MCI 
conversion. Further improvements can be obtained by 
including auxillary domain data. 

Changes in hippocampus, ventricles and whole brain 
are sensitive to AD progression but these regions are 
also sensitive even in healthy aging adults. The results 
indicate Multi- Temporal Lobe (MTL) cortical Regions 
in particular Entorhinal cortex is sensitive to the early 
stage of AD. Mixed effect regression model determines 
longitudinal volumetric change as an outcome measure 
to detect the regions, which are sensitive to drug effects 
in MCI. The results derived from the regression model 
shows that, drug treatment is effective in global and 
subregional MTL and cortical region (Holland et al., 2009). 

The statistical classification method (Fan et al., 2005) 
identifies the abnormality of the brain, by aggregating 
regional morphological features with common 
classification strategy through high dimensional template 
warping. These features are classified through Support 
Vector Machine-Recursive Feature Elimination (SVM-
RFE) classifier (Lin et al., 2012). This classifier 
performs both adaptive regional feature extraction and 
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recursive feature elimination, to retain the most relevant 
feature for classification. The need for prior information 
is eliminated by adaptive regional feature extraction 
technique and it results in high classification rate. 

Multivariate Examination (Fan et al., 2007) of brain 
abnormality, involves regional statistical feature 
extraction from the voxel wise morphometric and 
functional representation. The extracted discriminative 
features are subjected to hybrid feature selection and 
nonlinear SVM classifier. This process is carried out to 
identify the abnormalities of the brain caused by the 
prenatal cocaine exposure. Simultaneous extraction and 
selection of features from both functional and structural 
MR images result in increased classification accuracy. 

Multi-Kernel learning framework (Liu et al., 2014; 
Joshi et al., 2010) is proposed for combining their 
multimodal features such as Cerebrospinal Fluid (CSF) 
biomarkers and Magnetic Resonance Imaging (MRI) - 
Left Hemisphere Hippocampus shape, Right Hemisphere 
Hippocampus shape and ROI. Group sparsity among 
different image modalities and complementary 
information among different kernels are obtained by 
using Random Fourier Feature and L2, 1 norm 
regularization. Improved results are noted with the 
following parameters like specificity, accuracy, 
matthew’s correlation coefficient and area under ROC 
curve. This aids in identifying the important regions 
closely related to AD. The significant regions identified 
are hippocampal formation right, hippocampal formation 
left, amygdala left, precuneus right, lateral ventricle right. 

The classification of AD/MCI is proposed by 
Inherent Structure-based Multiview Learning (Liu et al., 
2015). Among the three tissues, GM tissue provides 
more information in detecting AD. This technique 
utilizes pre-defined template library and these templates 
are subjected to affinity propagation for obtaining a high 
representative data points (exemplars). Each subject to 
be classified, is nonlinearly registered to the multiple 
templates to obtain multi-view features. Then it is 
followed by multitask feature selection to fetch 
informative features on each view and subject it to 
Multiple Support Vector Machine (SVM) classification. 
Multi-class classification between AD vs Normal 
Control (NC), pMCI (Progressive Mild Cognitive 
Impairment) vs Normal, pMCI vs Stable MCI is 
performed. Improved performance is evaluated by 
considering different metrics such as classification 
accuracy, sensitivity, specificity, balanced accuracy, area 
under the receiver operating characteristics curve. To 
perform a direct comparison of a subject with two 
different templates, it is necessary that the templates 
have to be registered to a common space, followed 
region of interest partition. The classification accuracy 
can be further improved by adopting different encoding 
strategy involved in relabeling the subclasses. 

An automatic ideal Mid-Sagittal Plane (iMSP) 
extraction algorithm (Liu et al., 2004) identifies the 
potential discriminative feature present in the ROI, by 

extracting both statistical and textural features. Along 
with the intensity features, the shape features are also 
included to provide complementary information required 
for the classification. The highly discriminative features 
are ranked based on the calculation of Augmented 
Variance Ratio (AVR). This is followed by Linear 
Discriminant Analysis (LDA) (Li and Yuan, 2005) a 
feature subset selection algorithm, which is used as 
the evaluation classifier. 

Feature extracted from deformation and tensor field 
are 3D vector field that is split into seven scalar fields - 
XYZ components, theta, phi angles, the determinant of a 
jacobian matrix. Along with the deformation and tensor 
field, four levels of voxel neighborhood are also 
considered as the features. It is followed by statistical 
parameter calculation for each neighborhood that 
includes minimum, maximum, mean, variance, 3rd and 
4th moments. The selection of feature as a biomarker for 
the classification of disease is performed by the 
calculation of augmented variance ratio. The augmented 
variance ratio searches for the discriminative feature 
subspaces and corresponding anatomical regions that 
aids in AD prediction (Liu et al., 2007). 

Computer-aided diagnosis of AD is performed to 
identify the region which is distinguishable in Normal 
and AD patients by using two multivariate approaches 
(Segovia et al., 2012). The first approach utilizes 
Gaussian Mixture Model (GMM) for modeling the ROI. 
The number of features obtained is equal to the number of 
Gaussians, where each Gaussian is varied by its height and 
density. The feature reduction is achieved by choosing the 
Gaussian of higher heights that corresponds to be a region 
of differentiation. GMM achieves better classification by 
subjecting the obtained features to the linear and nonlinear 
classifier. Partial Least Square (PLS) is incorporated as a 
second approach which comprises regression, 
dimensionality reduction and classification tasks for AD. 

Multi-modal and Multi-task learning (Zhang et al., 
2012) predicts multiple variables from the multi-modal 
data that are required for the classification of AD. Both 
clinical and categorical variables (multi-modal data) are 
subjected to multi-task feature selection to identify the 
common subset of relevant features related to a disease. 
Fusion of the selected variables from multi-modal data is 
performed by multi-modal support vector machine. The 
results obtained by multi-modal and multi-task learning 
techniques, are evaluated by root mean square prediction 
error metric, that indicates improved performance over 
the traditional methods. 

The two different modalities such as MRI, PET and 
Clinical score such as ADAS-Cog and MMSE are 
subjected to Canonical Correlation Analysis (CCA), for 
Joint Clinical Scores Regression and Multiclass AD 
status Identification (JRMI) (Zhu et al., 2016). The 
performance is evaluated by the Correlation Coefficient 
(CC) and Root Mean Squared Error (RMSE) metric in 
both Regression and Classification tasks. More than two 
Modalities can be considered for further improvement. 
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Different Biomarkers for AD diagnosis are CSF 
measures, MRI morphometry measures (volume of the 
hippocampus, entorhinal and retrosplenial cortical 
thickness) and FDG-PET measures (retrosplenial, 
entorhinal, and lateral orbitofrontal metabolism). These 
features are subjected to logistic regression analysis, to 
find good predictors. The combination of CSF 
biomarkers and MRI morphometry, improved diagnostic 
classification accuracy and combination of MRI 
morphometry and FDG-PET give satisfactory results in 
predicting a clinical decline in MCI (Walhovd et al., 2010). 

The wavelet-based feature extraction (Chaplot et al., 
2006) aids in the classification of MRI images as normal or 
abnormal. Representation of MRI images at various 
resolutions is obtained by the decomposition of a signal into 
hierarchical scale by wavelet analysis. The extracted 
wavelet features are subjected to Self-Organizing Maps 
(SOM) and SVM classifier. SOM is an unsupervised 
method that generates the same output for similar input 
pattern. While the SVM classifier uses linear, polynomial 
and nonlinear kernel for two-fold classification. The 
performance of SOM (Van Hulle, 2012) and SVM are 
evaluated by their classification accuracy. The accuracy of 
classifying normal and abnormal images is high with 
polynomial and nonlinear SVM compared to SOM. 

The Single positron Emission Tomography (SPECT) 
images are spatially normalized to a template. This 
enables different images to refer to the same anatomical 
location. The experts labeled normalized images with 
four labels, representing different stages of AD. The 
extraction of latent vectors from this labeled image is 
obtained through Partial Least Square (PLS) by 
considering both the variance and class labels of the 
subjected image. Random Forests (RF), an ensemble of 
decision trees (Vibha et al., 2006), bagging and majority 
voting is applied on the extracted latent vectors, to 
reduce the dimensionality and also to aid in the 
classification of AD. Generalization error induced by the 
classifier is minimized by including more number of 
trees in the random forest (Ramírez et al., 2010). 

A wavelet frame (Hu et al., 2016) is a multi-scale image 
representation approach. Features are extracted from the 
whole gray matter or gray matter images of hippocampus 
region for differen scales and direction. The extracted 
features are subjected to SVM classification to discriminate 
MCI converters and MCI nonconvertors. Feature selection 
algorithms are necessary to obtain the redundant 
information for better classification. 

Dual tree complex wavelet transform is applied on 
MRI data, to simultaneously obtain a class of new 
features. The new features include scale, directionality 
and potentially local information based on the magnitude 
of complex wavelet coefficients. Linear support vector 
machine is used to classify the subjects suffering from 
Multiple Sclerosis. High variations in decoding 
accuracy are observed for different scales and show 
the superiority for the scale with low-frequency 
information (Hackmack et al., 2012). 

Feature extraction by Two-dimensional Discrete 
Wavelet Transform (2DWT) (Zhang et al., 2011; 
Joshi et al., 2010) decomposes the images into three 
levels. At the third level, Harr wavelet feature is 

extracted. The feature vector is subjected to 
normalization and reduction in the dimension of feature 
vector through PCA. The images are then classified as 
normal or abnormal by subjecting the reduced features 
into back propagation Neural Network. 

After registration using hammer, 93 manually labeled 
ROI are obtained. The volume of ROI is extracted from 
MRI images; the average intensity of the same ROI is 
derived from the affine registration of PET image. Along 
with volume and average intensity, CSF biomarker is 
also considered as a feature. The multiple-kernel SVM 
(Zhang et al., 2009) integrates the features from multiple 
modalities of biomarkers to classify AD or MCI from 
healthy controls. The proposed technique results in high 
classification accuracy and high sensitivity for MCI 
classification of subjects (Zhang et al., 2011). 

Using Freesurfer and Morphobox tool, Volume based 

Morphometry (VolBM) are computed to the diagnosis of 

AD. As the first step in morphobox tool, labeling of the 

Total Intracranial Volume (TIV) voxels within the brain 

tissue is performed even without the use of prior 

information. In the next step, structural segmentation is 

performed by combining tissue maps with anatomical 

masks taken from a single subject template through non-

rigid registration, whereas in the case of free surfer both 

these steps are combined. Hence computation time in 

free surfer is more compared to morphobox tool. 

Multivariate volume-based classification using freesurfer 

and morphobox tool performed better than whole brain 

voxel based morphometry determined by SPM 

(Schmitter et al., 2015). 

Fully automatic intensity based inter-subject image 

registration involves global affine registration to a 

reference image followed by local affine transformation 

within volume of interest. After the registration step, the 

transformed image is subjected to PCA. PCA is a 

statistical technique, that linearly transforms the data into 

principal components, that helps to identify the patterns 

of variation among the subjects (Webb et al., 1999). 

Using only the neuropsychological measure, it is 

impossible to determine differences among the 

prodromal stage of AD and healthy aging. But including 

multiple biomarkers like MRI, PET, SPECT improves 

the prediction of different stages of Alzheimer’s Disease 

(Nestor et al., 2004; Joshi et al., 2010). 
The macroscopical anatomical differences between the 

brains of the different population are to be identified with 
the following steps. The procedure involves, mapping of the 
subject image into stereotactic space through spatial 
normalization of the brain. In the next step, normalized 
image is subjected to Multivariate Analysis of Covariance 
(MANCOVA) and Canonical Variates Analysis (CVA), 
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that helps to characterize the anatomical difference between 
the subject images (Ashburner et al., 1998). 

Volumetric texture features have better discriminative 

power than the 2D texture obtained for the slice data. So the 

features calculated for the volumetric data are Entropy, 

Energy, Contrast, Homogeneity, Sum Mean, Variance, 

Correlation, Maximum Probability, Inverse Difference 

Moment and Cooccurrence Matrices. Co-occurrence 

Matrices provide more information in the identification of 

the texture within an organ. Then the extracted volumetric 

texture descriptors are subjected to robust classifiers for the 

classification of AD or Normal (Kurani et al., 2004). 

The Spatial Gray-Level Dependence Method 

(SGLDM) (Freeborough and Fox, 1998) is used for the 

quantification of texture over the coronal slices of the 

brain region. Textural features obtained for different 

angles and different scales are subjected to the sequential 

forward selection method to derive the subset of features, 

based on the Mahalanobis distance between the control 

and patient groups. The extracted textural features are 

discriminative in AD and Normal control subjects. 

Shape Based Morphometry 

The shape based statistical analysis (Golland et al., 
2001), constitutes a warping technique to extract the 
shape parameters/shape descriptors (Fourier descriptors, 
spherical harmonic functions) and non-parametric 
models (landmark based descriptors, distance transforms 
and deformation field). Kernel-based classification 
technique (SVMs) is applied to analyze the shape 
differences present in the anatomical structure of the 
abnormal brain are shown in Fig. 6. (Kim et al., 2015). 
The main advantage of this method is to establish a link 
from the feature space to original shapes. 

The two different shape representation schemes are 
(i) A fine scale, global surface characterization using 
spherical harmonics (ii) A coarsely sampled medial 
representation (3D skeleton). The shape fetches the 
information of structural similarity or dissimilarity, which 
could not attain through volume analysis. The local and 
global parameters such as length, elongation, bending, 
width, complexity, bumpiness explains the pathological 
changes observed in neurodegeneration (Gerig et al., 2001). 

Direct Hippocampal Mapping (Costafreda et al., 
2011), models the intrinsic geometric properties of 
hippocampus to find the variations across the subjects. The 
intrinsic radial distance obtained for hippocampus in each 
subject was normalized with global head size effects. Then 
general linear modelling examines the effects of changes 
in clinical scores i.e., Mini-Mental State Examination 
(MMSE) and Consortium to Establish a Registry for 
Alzheimer’s Diseasecognitive battery (CERAD recall) on 
normalized  hippocampal volume and radial distance. The 
result infers that bilateral focal hippocampal atrophy is 
associated with subsequent decline in CERAD scores, 
while right hippocampal atrophy was linked to 
subsequent deterioration in MMSE scores. 

 
 
Fig. 6. Shape based morphometry for Alzheimer’s disease 

detection (Kim et al., 2015) 

 

MRI images of elderly subjects affected with AD 

are evaluated by creating maps of the hippocampal 

and ventricular structure. As the disease progresses, 

the change in ventricular and hippocampal volume is 

observed over a period of time. The map of radial 

atrophy is obtained for each hippocampus by 

calculating radial distances from homologous 

hippocampal surface points to the central core of the 

individual’s hippocampal surface model. Similar 

modeling steps are applied to temporal horns of the 

lateral ventricles. The statistical maps obtained for 

radial hippocampal distance and ventricular 

expansion, shows the local differences are existing 

among the structures over a period of time. The 

distribution of features in statistical maps is measured 

by permutation methods. After the measurement, it is 

inferred that, the maps of ventricular radial distance 

and left hemisphere of hippocampus link with follow 

up MMSE scores. The intra-rater and inter-rater 

reliability for the hippocampal and temporal horn 

measure asses the reliability of measures based on 

manual outlining (Thompson et al., 2004). 

A shape-based classification approach quantifies the 

shape differences of the anatomical structure caused due 

to a disorder. A snake approach computes fixed topology 

skeleton to represent the shape of a region to be 

differentiated. The topology determines the images to be 

classified under schizophrenia or normal, by adopting 

two different linear classification techniques: the fisher 

linear discriminant and the linear support vectors 

(Golland et al., 1999). 

Classification 

The extracted features or the anatomical patterns 

from the brain images are necessary to distinguish 
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them into normal or affected with AD. The 

performance of different classification techniques are 

evaluated by considering the metrics such as accuracy, 

sensitivity and specificity. The following paragraphs 

and Table 4 discuss about the classification techniques 

with their limitations and advantages. 

The accuracy of Automated Computer 

Classification Technique (ACC) is evaluated by 

considering varying acquisition parameters and image 

quality. This technique extracts Jacobian 

Determinants (JD) (Teipel et al., 2007) from dense 

deformation field and also extract Scaled Gray Level 

Intensity (SGLI) from the volume of interest. The JD 

and SGLI are more robust to varying acquisition 

parameter and image quality (Duchesne et al., 2008). 

In the absence of diagnostic information, image-

based biomarkers are extracted by semi-supervised 

pattern classification (Filipovych et al., 2011). This 

approach uses the unlabeled images of MCI and 

labeled images of normal and AD. Then Leave One 

Out (LOO) semi-supervised classification detects the 

structural patterns that separate AD from Normal and 

final label is obtained for the subject of MCI through 

the voting procedure. 

The classification of AD is improved by the 

inclusion of MCI subjects from the multimodal data 

(Zhang and Shen, 2011). In the objective function of 

Multimodal Laplacian Regularized Least Squares 

(mLapRLS), AD and Healthy Control (HC) are used 

for supervised learning. MCI together with AD and 

HC is used for unsupervised learning to inherent 

geometric structure of whole data. The accuracy, 

sensitivity, specificity can be improved further by 

considering the MCI subjects. 

Using the SPECT images, the classification of 

Alzheimer’s Disease is proposed by considering voxel 

intensities as a feature. The amount of samples used 

for classification are smaller than the dimensionality 

of an image, hence images are subsampled to 

minimize both dimension and computation time. Even 

without specific knowledge to pathology, Pseudo- 

Fischer linear Discriminant Classifier (PFLDC) shows 

improved performance (Stoeckel et al., 2004). 

Maani et al. (2014) proposed volumetric texture 

classification by computing local gradients in a 2D 

plane and 3D volume. Developing 2D and 3D kernels 

improve the speed of local gradient computation and 

also to generate the textural features. The texture 

pattern developed by this technique is robust to 

imaging artifacts and helps in evaluating tissue 

classification problem, to distinguish between old and 

young brains. In the presence of gaussian noise, it 

performs better than sobel and first order derivative of 

gaussian and it is more robust to blurriness. 

The multiple features such as volume of tissue, 2D 

and 3D ventricular shape are extracted. Mann-

Whitney U test removes the low discriminative 

features with low discriminative power and the 

dimensionality of the features is reduced further by 

PCA technique. A hybrid of Particle Swarm 

Optimization (PSO)-SVM improved the classification, 

with the increase in accuracy, sensitivity and 

specificity (Yang et al., 2013). 

The classification of individual images is based on 

categorization of a similar pattern to a particular 

group, obtained by calculation of Brain 

Morphological Signature (BMS). RAVENS a mass 

preserving framework accomplish the shape 

transformation technique to obtain ravens map by 

warping a subject image to the template and after 

transformation the tissue of different regions of the 

brain are preserved. A Ravens map is represented in a 

hierarchical way through wavelet decomposition, with 

the objective of minimizing the dimensionality of the 

image. Features derived from different tissues are 

integrated to obtain BMS, and it is subjected to non-

linear SVM classifier. By using Nonlinear SVM 

classifier, complex patterns of morphological group 

differences are identified among the subject images 

(Lao et al., 2004).  

 

Table 4. Classification techniques for Alzheimer’s disease detection 

Authors  Algorithm  Advantage  Disadvantage 

Maani et al. (2014) Local edge computation,  Robust to noise and blurriness High frequency components 

 3D gradient calculation  are not considered 

Zhou et al. (2014) FREE surfer tool, SVM  Combination of MMSE 

  and MRI improves classification Five misclassification 

Rueda et al. (2014) Sailency brain pattern  Improved equal error rate  It is secondary diagnostic

 extraction algorithm  opinion 

Li Feng et al. ( 2016) Deep learning with drop Improves the classification Future focus is  

 out for classification for the small dataset on multikernel SVM 
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The classification algorithms developed for structural 

MR images involves generating Structural Abnormality 

Index (STAND) score based on a linear SVM (Vemuri et 

al., 2008). This technique adopts voxel selection method, 

by simultaneously examining all voxels related to 

pathology and feature reduction is performed by 

preserving the tissues which showed the variation. These 

tissue densities generate a STAND score which is a 

measure of normality and abnormality of a given 

structure. Including both demographic and genotype- 

based risk factors along with STAND score improves 

overall accuracy for classification. 

Based on local frequency of an image, noise robust 

and rotation invariant texture features are extracted. 

The discrete fourier transform preserve some textural 

information in comparison to local binary function. A 

local frequency descriptor does not have an exponential 

growth of the patterns and it is more suitable for the 

images with the noise. The results show second 

frequency channel provides more information than the 

other higher frequency channels in curet and outex 

dataset for textural classification. In KTH-TIPS dataset, 

the fifth frequency channel gives more information for 

textural classification (Maani et al., 2013). 

The joint statistical representation constituting the 

space and frequency domain is proposed for textural 

classification. The multi-resolution spatial filters are 

adopted for generating multi-scale spatial maps and 

local fourier transform is applied to obtain spectral 

maps. The spatial and spectral maps are quantized into 

different levels by global thresholding. These maps 

are jointly used to obtain space-frequency co-

occurrence histogram (Song et al., 2014). 

An automated unsupervised classification approach 

is used to distinguish AD subjects from NC. All the 

MRI images are subjected to pairwise registration by 

symmetric log-domain diffeomorphic demons 

algorithm (Long and Wyatt, 2010; Vercauteren et al., 

2008). After the registration process, either the whole 

brain or the gray matter or white matter are considered 

for measuring the diffeomorphism. An affinity matrix 

is derived by the calculation of the deformation based 

riemannian distance between each pair of images. 

Then the spectral embedding of all the images is 

obtained by the calculated affinity values. Finally, the 

images are partitioned into sub-groups based on quick 

shift method. 

Classification of morphological patterns using 

adaptive regional elements (COMPARE) (Fan et al., 

2007) involves the development of tissue density 

maps, by subjecting it to warping technique. Then the 

volume of different tissues are measured to obtain the 

regions correlating to clinical variables. Then these 

regions are extracted by subjecting it to watershed 

segmentation and discriminative features are selected 

through SVM classifier. COMPARE attains high 

classification accuracy. An integrated framework is 

required to simultaneously extract and select effective 

regional features required for classification. 

The multi-view learning technique (Zhu et al., 

2015) extracts ROI and HOG (Histogram of Gradient) 

features from MRI images of brain. The extracted 

HOG feature is mapped to the ROI feature space by 

using two techniques: (i)Single-direction Mapping 

Multi-view Learning (SMML) utilizes a linear 

transformation matrix to transfer HOG features to the 

ROI feature space. (ii) In case of Directly 

Concatenating Multi-view Learning (DCML), the 

transfer is through an identity matrix. Both these 

features are subjected to SVM classifier for accurate 

identification of AD. Multiview features show better 

performance than single view features for 

classification of AD. 

High-dimensional pattern classification approach 

(Davatzikos et al., 2009) is developed by combining 

all the brain regions together and identify regional 

volumes that develop a discriminative pattern in AD 

with the highest SPARE-AD score. Then the 

correlation between SPARE-AD and clinical variable 

are examined to aid the diagnosis. 

The technique focuses on the automated method of 

Image analysis on OASIS-MIRIAD dataset (Rueda et al., 

2014), by extracting saliency pattern of the brain due 

to neurodegenerative disease. The pattern developed 

is similar to the visual analysis made by radiologists. 

This begins with the generation of feature map, by 

integrating the following features like intensity, 

contrast, orientation and edges for different scales. 

For each combination of feature and scale, fully 

connected graph are constructed based on the 

dissimilarity and closeness. Then Markov chain is 

applied on the graph. It is followed by Bottom-up 

saliency fusion of feature-scale saliency maps. With 

the linear combination of feature-scale kernel and 

learned weights, master saliency maps are developed. 

Finally, discriminative relevance maps are generated 

by the fusion of all the master saliency maps. The 

regions showing the discriminative pattern in AD are 

cingulate gyrus, Entorhinal Cortex, and subcortical 

structures such as Amygdala, Hippocampus, Putamen 

which are same as it is obtained by the clinical 

studies. The metrics considered are accuracy, 

sensitivity, specificity, balanced accuracy, F measure, 

equal error rate measure. The proposed method results 

in improved classification. 
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Tools 

Tools are associated with specific functionalites, 

that are utilised to aid the process of Alzheimer’s 

Disease detection. A brief overview of these tools are 

discussed in further paragraphs and functionalities of 

each tool are shown in Table 5. 

FSL 

Brain Extraction Tool (BET) (Smith, 2000) 

removes the non-brain tissues to increase the 

robustness of registration and to improve the 

performance of tissue segmentation. The tissue 

segmentation, bias field correction and partial volume 

effect at each voxel is performed using FAST 

(FMRIB’s Automated Segmentation Tool). This is 

followed by image registration using FLIRT 

(FMRIB’s Linear Image Registration Tool), which is 

based on intermodal cost function such as mutual 

information and correlation ratio that allows the robust 

registration of images from different modalities. After 

registration, the image is subjected to Structural Image 

Evaluation, using  Normalization of  Atrophy (SIENA). 

SIENA is an important tool used for clinical analysis, 

that involves quantitative measurement of change in 

shape and size (Smith et al., 2004). 

Free Surfer 

Zhou et al. (2014) proposed the free surfer 

technique by considering the volumetric variables and 

morphometric statistics for the classification of 

Alzheimer’s Disease and Mild Cognitive Impairment. 

The ranking of variables is performed from low to 

high based on p-value obtained from student’s t-test 

followed by the optimal selection of variables. in all 

experiments. In every iteration, the same The process 

is continued for 50 times by randomly assigning the 

variables and obtaining the average variables which 

are ranked in top three positions played a vital role in 

the classification. The volumetric variables with mini- 

mental state examination scores improve the accuracy 

in predicting the state of the disease.With respect to 

Alzheimer’s Disease, both the hemisphere of the brain 

are atrophied. For Amnestic Mild Cognitive 

Impairment (aMCI), atrophy is developed on the right 

hemisphere of the brain and atrophy is developed on 

the left side for (naMCI) Non-Amnestic mild 

cognitive Impairment. The low ranked variable is not 

significant for discriminating the state of the disease.  

3D Slicer 

3D Slicer (Fedorov et al., 2012) is used as a 

platform for research and development. It provides 

automated segmentation and registration of images in 

various application domains and also has versatile 

visualization similar to radiology workstation. It is a 

comprehensive application that can be used for 

various tasks related to both the qualitative and 

quantitative inquiry of the multimodal medical 

imaging data. It provides an extensible architecture 

for customization and development of plug-ins that 

are operable across various platforms. The supported 

platforms are: Windows, Mac OS, Red Hat Linux and 

IRIX platforms. 

Neuro Quant Software Package 

The quality checking step is performed to find MR 

imaging sequence conforms to the specification 

required for an automated segmentation and it is 

followed by the correction of gradient nonlinearity 

and B1 field inhomogeneity. In the next step an active 

contour model is used for skull stripping. After the 

skull stripping, nonlinear registration aligns volumes 

to a probabilistic atlas for labeling an anatomy in the 

elderly subject. Intraclass Correlation Coefficient 

(ICC) and Pearson Product-Moment Correlation 

Coefficient are computed to evaluate the accuracy of 

segmentation (Brewer et al., 2009). 

 
Table 5. Tools to aid Alzheimer’s disease detection 

 Data Skull Bias field Tissue    Statistical 

Tools conversion stripping correction segmentation Registration Visualization analysis Extensibility Warping 

SPM (Smith, 2000)  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  No 

MIPAV (Sdika, 2010)  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  No 

FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)  No  Yes  Yes  Yes  Yes  Yes  Yes  Yes  No 

Hammer No  Yes  No  Yes  Yes  Yes  No  No  Yes 

(https://www.med.unc.edu/bric/ideagroup/freesoftwares) 

ImageJ (https://imagej.nih.gov/ij/)  Yes  No  No  No  No  Yes  Yes  Yes  No 

Free Surfer (http://www.freesurfer.net/) Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes  Yes 

DRAMMS No  No  No  No  Yes  Yes  No  Yes  Yes 

(https://www.cbica.upenn.edu/sbia/software/dramms/) 

Brain Suite (http://brainsuite.org/) No  Yes  Yes  Yes  No  Yes  Yes  No  No 

3D Slicer (http://www.slicer.org/)  No  Yes  Yes  Yes  Yes  Yes  Yes  Yes  No
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Conclusion 

To identify sensitive biomarker and developing the 

advanced techniques are the key steps required for 

accurate detection of AD. Identification of relationship 

between neuropsychological tests and features from 

structural and functional images are necessary for 

accurate classification of different stages of AD. It is 

necessary to develop prognostic model that leads to 

accurate prediction of MCI to AD or NC to AD and it 

should be sensitive to heterogeneous dataset of MCI 

patients. Study on discover of multimodal biomarkers is 

still in progress for accurate diagnosis of AD. Numerous 

studies exclude the subjects, having incomplete 

longitudinal scores, thus the development of algorithms 

are necessary to complete the missing scores at different 

time points that aids to predict the future score required 

to investigate the present status of a patient. 
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