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Abstract: Problem statement: Diphenylhydantoin (phenytoin) is an antiepileptic drug that generates 
hyperplasia in some tissue by stimulating Epidermal Growth Factor (EGFR) and Platelet-Derived 
Growth Factor beta (PDGFR-β) receptors and by increasing serum levels of basic fibroblast growth 
factor (bFGF, FGF2 or FGF-β). Neural stem cells in the adult brain have been isolated from three 
regions: the Subventricular Zone (SVZ) lining the lateral wall of the lateral ventricles, the Subgranular 
Zone (SGZ) in the dentate gyrus at the hippocampus and the Subgranular Zone (SZC) lining between 
the hippocampus and the corpus callosum. Neural stem cells actively respond to bFGF, PDGFR-β or 
EGF by increasing their proliferation, survival and differentiation. The aim of this study was to 
evaluate the effect of phenytoin on proliferation and apoptosis in the three neurogenic niches in the 
adult brain. Approach: We orally administrated phenytoin with an oropharyngeal cannula for 30 
days: 0 mg kg−1 (controls), 1, 5, 10, 50 and 100 mg kg−1. To label proliferative cells, three injections 
of 100 mg kg−1 of BrdU was administrated every 12 h. Immunohistochemistry against BrdU or 
Caspase-3 active were performed to determine the number of proliferative or apoptotic cells. 
Results: Our results showed that phenytoin induces proliferation in the SVZ and the SGZ in a dose-
dependent manner. No statistically significant effects on cell proliferation in the SCZ neither in the 
apoptosis rate at the SVZ, SGZ and SCZ were found. Conclusion: These data indicate that 
phenytoin promotes a dose-dependent proliferation in the SVZ and SGZ of the adult brain. The 
clinical relevance of these findings remain to be elucidated. 
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INTRODUCTION 

 
 Diphenylhydantoin (5-Ethyl-3-Methyl-5-
Phenylhydantoin) also known as phenytoin is an 
effective anticonvulsant in tonic-clonic epilepsy 
(Cornacchio et al., 2011). Voltaged-gated channels are 
involved in the epilepsy pathophysiology (Abuhamed et 
al., 2008). The primary target of phenytoin in 
depolarizing neurons is voltage-dependent sodium 
channels, where phenytoin blocks sodium influx, 
reducing neuronal excitability and limiting the spread 
of electrical activity of seizures (Shaw et al., 2007). 
Other mechanisms possibly contributing to the 
antiepileptic activity of phenytoin include a suppression 

of sodium action potentials by stimulating the sodium 
pump, inhibition of calcium influx in neurons, blockage 
of ionotropic receptors for glutamate and enhancement 
of GABA neurotransmission (Escueta and Appel, 1971; 
Kaindl et al., 2006; Yang et al., 2007). Thus, its safety 
profile and ease of use make phenytoin an attractive drug 
for the seizure prophylaxis and the control of status 
epilepticus. Some of side effects of phenytoin include 
gingival hyperplasia (Eyer et al., 2008), hypertrichosis 
(hirsutism) (Vivard et al., 1989), acne (Jenkins and 
Ratner , 1972), cerebellar atrophy (Ohmori et al., 1999), 
hyperglycemia (Yang et al., 2007) and others. 
 Recent evidence indicates that phenytoin promotes 
proliferation of primary progenitors in several tissues, 
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such as: skin (Swamp et al., 2004), heart (Zhou et al., 
2006), bone (Lau et al., 1995) and oral mucosa (Arya 
and Gulati, 2012; Sano et al., 2004). Phenytoin-induced 
tissue hyperplasia seems to be mediated by increasing 
levels of connective tissue growth factor 
(CCN2/CTGF), transforming growth factor β1 (TGF-
β1) (Kantarci et al., 2007; Kuru et al., 2004), mRNA of 
Platelet-Derived Growth Factor (PDGF-β) (Dill et al., 
1993; Iacopino et al., 1997), Fibroblast Growth Factor 
type-2 (FGF-2) (Saito et al., 1996; Sasaki and Maita, 
1998; Turan et al., 2004) and Epidermal Growth Factor 
Receptors (EGFR) (Modeer and Andersson, 1990; 
Soory and Kasasa, 1997). 
 In the adult mammalian brain, there are neural stem 
cells that produce new neurons and oligodendrocytes 
(Mackay-Sim, 2010). These multipotent progenitors are 
located in restricted regions: the Subventricular Zone 
(SVZ), lining the lateral wall of the lateral ventricle 
(Garcia-Verdugo et al., 1998), the Subgranular Zone 
(SGZ) located in the dentate gyrus at the hippocampus 
(Seri et al., 2004) and the Subcallosal Zone (SCZ), 
lining between the hippocampus and the corpus 
callosum (Seri et al., 2006). Neural stem cells and 
intermediate progenitors in these regions express a wide 
variety of tyrosine kinase receptors, such as PDGFRα, 
EGFR, TGFβ receptor, FGFR and others (Danilov et 
al., 2009; Doetsch et al., 2002; Frinchi et al., 2008). 
Proliferation of neural stem cells is modulated by 
tyrosine kinase receptors (Aguirre et al., 2007; 2010; 
Ayuso-Sacido et al., 2010; Balu and Lucki, 2009; Ming 
and Song, 2005). Thus, neural progenitor cells may be a 
pharmacological target for phenytoin effects. The aim of 
this study was to analyze whether phenytoin promoted 
proliferation or apoptosis in the SVZ, the SGZ and the 
SCZ. Our findings indicate that phenytoin induces a 
dose-dependent proliferative effect in the SVZ and SGZ. 
No changes were observed in apoptosis. These results 
may be of clinical relevance because neural stem cells 
have been successfully isolated in the adult human brain 
(Sanai et al., 2004) and phenytoin is a drug commonly 
used in epileptic patients. 
 

MATERIALS AND METHODS 
 
Animal care and tissue processing: All animal 
procedures followed the Committee on Animal 
Research guidelines in the University of Colima. Adult 
(P60) Balb/C mice were sacrificed by an overdose of 
pentobarbital (100 mg kg−1 body weight) before 
transcardial perfusion. For light microscopy analysis, 
mice (n = 5 per group) were perfused with 4% 
Paraformaldehyde (PFA) dissolved in 0.1M phosphate 
buffer and the brains were post-fixed overnight at 4°C 

in the same fixative. Then, 40-µm thick coronal 
sections were cut with a vibratome.  
 
Phenytoin administration: 5, 5-Diphenylhydantoin 
(Sigma, Cat. No. D4505) re-suspended in distilled 
water (vehicle) or vehicle alone were orally 
administrated for 30 days with an oropharyngeal 
cannula. We used the following doses (n = 5 animals 
per dose): 0, 1, 5, 10, 50 and 100 mg kg−1. 
 
Bromodeoxiuridine (BrdU) administration: BrdU is 
a synthetic thymidine that incorporates into DNA 
during the S-phase of the cell cycle (Cameron and 
McKay, 2001; Falconer and Galea, 2003; Taupin, 
2007). To label all progeny derived from the SVZ, SGZ 
and SCZ precursors, we injected 3 doses of 100 mg 
kg−1 i.p. BrdU every 12h (Cameron and McKay, 2001; 
Gonzalez-Perez et al., 2011) before animals’ sacrifice.  
 
Immunohistochemistry (IHC): Sections were then 
incubated in pre-warmed (at 37°C) 2 N HCl for 30 min. 
Then, a single wash with 0.1 M borate buffer (pH = 
8.5) for 10 min was utilized to neutralize HCl. Then, 
samples were rinsed (10 min×3) in 0.1 M buffer 
Phosphate Buffer Saline (PBS). After peroxidase 
inactivation with 30% H2O2 for 30 min, sections were 
blocked in 0.1M PBS containing 0.1% Triton-X and 
10% of normal goat serum for 1 h at room temperature, 
sections were incubated overnight at 4°C in primary 
antibodies diluted in blocking solution. The following 
primary antibodies were used: rat monoclonal to BrdU 
(1:500; Accurate Chemical OBT0030) or mouse IgG 
anti-Caspase-3 active (Casp3; Imgenex IMG-144A) 
dilution 1:800. Sections were washed in 0.1M PBS, 
incubated in blocking solution with the appropriate 
biotinylated secondary antibody (1:200; Vector 
Laboratories, Burlingame, CA) for 1 h at room 
temperature, incubated in ABC peroxidase kit (Vector 
Laboratories, Burlingame, CA) for 1 h and revealed 
with 0.03% diaminobenzidine and 0.01% H2O2. 
Controls in which primary antibodies were omitted 
showed no detectable staining. 
 
Quantification: To quantify the number of BrdU-
positive or Casp3-positive cells, we analyzed at least 
ten 40-µm sections randomly selected, 160-µm apart (n 
= 5 animals per group). For SVZ quantifications, the 
number of BrdU+ or Casp3+ cells was quantified 
within 100 µm from the ependymal layer along the 
ventricle per every section. For SGZ quantifications, 
the number of immuno-positive cells found along the 
dentate gyrus was quantified in every section. The SCZ 
is a caudal extension of the SVZ that is no longer 
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associated to an open ventricle (Seri et al., 2006). For 
SCZ quantifications, the number of labeled cells around 
the ependymal cell layer was counted in all SCZ 
cavitations per each section. All the quantifications 
were made under a Zeiss microscope (Axio Observer 
D2, Germany) using a 100X oil-immersion objective 
(area of the microscopic field = 0.025 mm2). All 
quantifications were done by a researcher ‘blinded’ to 
group assignment. All data were expressed as means ± 
standard deviation. We used one-way ANOVA 
followed by the Tukey’s post-hoc test. The p<0.05 
value was chosen to determine significant differences.  
 

RESULTS 
 
 Phenytoin administration was well-tolerated and no 
side effects were observed at any of doses used throughout 
the study. We recorded the weight gain during phenytoin 
administration (Fig. 1) and did not find significant 
differences between the control-vehicle group vs. the 
phenytoin groups (ANOVA-Tukey, P = 0.63). This 
suggested that the potential sedative effects of phenytoin 
did not change the body development of animals. 
 
The subventricular zone: To characterize the effect of 
different concentrations of phenytoin on SVZ 
precursors, we delivered different doses of phenytoin 
(0, 1, 5, 10, 50 and 100 mg kg−1) and administrated 3 
injections of 100 mg kg−1 of BrdU before sacrifice. 
After 30 days of phenytoin administration, we found no 
statistically significant differences in the number of 
BrdU+ cells in the group of 1 mg kg−1 of phenytoin 
(22.00±0.55 cells per field) as compared to the control 
group (16.62±2.07 cells per field) (Fig. 2). However 
statistically significant differences were found with 
the doses of 5 mg kg−1 (27.58±1.56 cells per field), 10 
mg kg−1 (28.42±2.09 cells per field), 50 mg kg−1 
(27.42±2.11 cells per field) and 100 mg kg−1 of 
phenytoin (24.90±1.11 cells per field; p<0.05, 
ANOVA-Tukey’s test) as compared to controls. 
Interestingly, upon 10 mg kg−1 of phenytoin no further 
changes in proliferation were observed. 
 To analyze the apoptosis rate in the SVZ, we 
quantified the number of CASP3+ cells in this region. 
In all cases, we did not find statistically significant 
differences among groups: the control group (5.27±1.36 
cells per field), 1 mg kg−1 (5.06±0.96 cells per field), 5 
mg kg−1 (5.37±0.82 cells per field), 10 mg kg−1 
(5.30±1.22 cells per field), 50 mg kg−1 (6.83±1.85 cells 
per field) and 100 mg kg−1 of phenytoin (13.14±3.45 
cells per field; ANOVA-Tukey). Taken together these 
data suggests that phenytoin promotes proliferation of 
SVZ neural progenitors in a dose-dependent manner 
without changing the apoptosis rate in this region. 

 
 
Fig. 1: Weight gain curve upon phenytoin 

administration. No statistically significant 
differences were found between the control-
vehicle group vs. the phenytoin groups 
(ANOVA-Tukey, P = 0.63). The lines represent 
the mean ± standard deviation of each group 

 
The subgranular zone: To characterize the effect of 
different concentrations of phenytoin on SGZ precursors, 
we orally delivered 0, 1, 5, 10, 50 and 100 mg kg−1 of 
phenytoin per day and administrated BrdU before 
sacrifice. At day 30th, we quantified the number of BrdU+ 
cells in the dentate gyrus in the hippocampus (Fig. 3). We 
found an increase in the number of BrdU+ cells in the 
SGZ with the dose of 10 mg kg−1 of phenytoin 
(5.87±0.34 cells per field) as compared to controls 
(4.01±0.26 cells per field; p<0.05, ANOVA–Tukey). 
Interestingly, no significant differences were observed 
with the doses of 1 mg (4.62±0.39 cells per field), 5 mg 
kg−1 (4.46±0.32 cells per field), 50 mg kg−1 (4.04±0.24 
cells per field) 100 mg kg−1 (4.39±0.20 cells per field) 
of phenytoin. We then quantify the number of 
CASP3+ cells in the SGZ. Our findings indicate that 
there are not statistical significant differences among 
groups: the control group (0.04±0.01 cells per field), 1 
mg kg−1 (0.08±0.02 cells per field), 5 mg kg−1 
(0.07±0.02 cells per field), 10 mg kg−1 (0.05 ± 0.02 
cells per field), 50 mg kg−1 (0.05±0.01 cells per field) 
and 100 mg kg−1 of phenytoin (0.09±0.02 cells per 
field; ANOVA-Tukey). These results suggest that only 
the dose of 10 mg kg−1 of phenytoin promotes 
proliferation of SGZ progenitors and that this drug did 
not change the apoptosis rate in this region. 
 
The subcallosal zone: We finally characterize the 
effect of different concentrations of phenytoin on 
SCZ neural precursors. At day 30th, we quantified the 
number  of    BrdU+   cells  in   the   SCZ   (Fig. 4).  
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(a) (b) 

 
Fig. 2: BrdU+ cells in the adult SVZ in mice after 30 days of phenytoin or vehicle administration (A). The 

quantification of BrdU+ cells is summarized in the graph (B). The bars represent the mean ± standard 
deviation. Arrows indicate some BrdU+ cells. V: ventricle; (*) p = 0.05 ANOVA-Tukey; (**) p = 0.01 
ANOVA-Tukey. Scale bar = 200 µm 

 

   
(a) (b) 

 
Fig. 3: BrdU+ cells in the adult SGZ after 30 days of phenytoin or vehicle administration (A). The quantification of 

BrdU+ cells is summarized in the graph (B). The bars represent the mean ± standard deviation. Arrows 
indicate some BrdU+ cells. (*) p = 0.05 ANOVA-Tukey. Scale bar = 100 µm 

* 
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(a) (b) 

 
Fig. 4: BrdU+ cells in the adult SCZ after 30 days of phenytoin or vehicle administration (A). The quantification of 

BrdU+ cells is summarized in the graph (B). The bars represent the mean ± standard deviation. Arrows 
indicate some BrdU+ cells. No statistically significant differences were found among groups (ANOVA-
Tukey). Scale bar = 10 µm 

 
We did not find significant differences in the number of 
BrdU+ cells among groups: the control group (8.4±0.76 
cells per field), 1 mg kg−1 (7.8±0.82 cells per field), 5 mg 
kg−1 (7.37±0.31 cells per field), 10 mg kg−1 (7.45±1.50 
cells per field), 50 mg kg−1 (6.04±0.47 cells per field) and 
100 mg kg−1 of phenytoin (7.88±0.48 cells per field). The 
analysis of CASP3+ cells in this region did not show 
statistical significant differences: the control group 
(0.04±0.02 cells per field), 1 mg kg−1 (0.03±0.01 cells 
per field), 5 mg kg−1 (0.04±0.02 cells per field), 10 mg 
kg−1 (0.03±0.01 cells per field), 50 mg kg−1 (0.04±0.03 
cells per field) and 100 mg kg−1 of phenytoin 
(0.01±0.01 cells per field; ANOVA-Tukey). Taken 
together, our data suggest that phenytoin cannot induce 
changes in proliferation and apoptosis of the SCZ 
neural progenitors. 
 

DISCUSION 
 
 In this study, we show that: (1) Different doses of 
phenytoin did not alter weight gain in adult mice; (2) 
Phenytoin induces proliferation in the SVZ and the 
SGZ in a dose-dependent manner; (3) Phenytoin has no 
significant effect on the proliferation rate in the SCZ; 
and (4) No statistically significant changes on the 
apoptosis rate in any of the analyzed regions are 
induced by phenytoin. Taken together, these data 
indicate that phenytoin promotes proliferation in the 
main neurogenic niches of the adult brain in vivo 
without changing the apoptosis rate. 

 As described above, our findings indicated that 
different doses of phenytoin did not alter weight gain. 
Similar findings have been reported in Sprague 
Dawley® rats (Mowery et al., 2008). However, another 
report indicated that phenytoin administration at early-
postnatal stages reduced food intake and weight gain 
(Mowery et al., 2008). These changes were reversible 
when phenytoin supplementation was suspended or 
when administrated at older development stages 
(Mowery et al., 2008; Okada et al., 1997; 2001). 
Hence, this evidence suggests that the metabolism of 
phenytoin or its cellular receptors vary according to the 
age stages (Ogura et al., 2002). 
 In our study, we quantified the number of BrdU+ 
cells along the SVZ. BrdU is a reliable proliferation 
marker that incorporates DNA during S phase and can 
be detected by immunohistochemistry (Kee et al., 2002; 
Taupin, 2007). The protocol and dose of BrdU 
administration used in this study has shown to reduce 
the false positive and lacks significant side effects 
(Cameron and McKay, 2001). Our findings indicated 
that the phenytoin-induced proliferative effect is 
observed from the dose of 5mg kg−1, but it reaches a 
plateau at 10 mg kg−1 of phenytoin in the SVZ. 
Interestingly, in the SGZ this drug shows proliferative 
effects only with 10 mg kg−1 of phenytoin. Proliferative 
effects of phenytoin have been described in several 
tissues, such as: Skin (Swamy et al., 2004), 
cardiomyocytes (Zhou et al., 2006), bone (Lau et al. 
1995), bone marrow stem cells (Ohta et al., 1995) and 
oral mucosa (Sano et al., 2004). These effects seem to 
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be mediated by increasing c-jun levels and suppression 
of p44/42, which indicates that phenytoin can modify 
MAPK signaling pathway (Zhao et al., 2003).  
 In addition, proliferative effects of phenytoin can 
be mediated by increasing levels of growth factors and 
cytokines (Okada et al., 2001), which modify the 
proliferation rate, apoptosis, migration and 
differentiation of neural stem cells (Alvarez-
Palazuelos et al., 2011; Gonzalez-Perez et al., 2010). 
Oral administration of phenytoin in patients has 
shown to increase levels of osteocalcin, also known as 
Bone Gamma-Carboxyglutamic Acid-Containing 
Protein (BGLAP) (Koyama et al., 2000; Lau et al., 
1995) and basic Fibroblast Growth Factor (FGF-2) 
(Saito et al., 1996; Sasaki and Maita, 1998; Turan et 
al., 2004). Other molecules associated with the 
phenytoin-induced proliferation are: bone 
morphogenetic protein 4 (BMP-4), endothelin 1 and 
Transforming Growth Factor β (TGF- β); (Koyama et 
al., 2000; Nakade et al., 1996; Sano et al., 2004).  
 Phenytoin is also a competitive binding agonist of 
the Epidermal Growth Factor Receptor (EGFR) 
(Grenader et al., 2007) and increases the expression of 
EGFR (Modeer and Andersson, 1990). EGFR are 
highly expressed in the SVZ precursors (Doetsch et al., 
2002) and control proliferation and migration of neural 
precursors in the adult SVZ (Gonzalez-Perez, 2010; 
Gonzalez-Perez et al., 2009). EGFR mitogenic effects 
are mediated through MAPK, Akt and IP3 downstream 
pathways (Gonzalez-Perez and Alvarez-Buylla, 2011; 
Jorissen et al., 2003). PI3K/AKT is involved in 
survivor and matures of oligodendrocytes in the early 
development of the central nervous system (Flores et 
al., 2008). Activation of EGFR activates PI3K/Akt 
signal transduction pathway that positively regulates 
Glycogen Synthase Kinase 3β (GSK-3β) (Zhang et al., 
2002). In addition, EGFR stimulation of SVZ adult 
precursors promotes oligodendrogenesis and arrests 
neurogenesis (Gonzalez-Perez, 2010; Gonzalez-Perez 
and Alvarez-Buylla, 2011; Gonzalez-Perez et al., 
2009). Since EGFR signaling has been related to brain 
tumor progression (Jorissen et al., 2003), the role of 
phenytoin in tumorigenesis remains to be elucidated. 
 This study indicates that cell proliferation in the 
dentate gyrus were only noticeable with the dose of 10 
mg kg−1 of phenytoin, whereas no significant 
differences were observed in the SCZ. Interestingly, in 
our study higher doses of phenytoin induced no 
proliferation in neuronal SGZ precursors. We 
hypothesize that regional differences may be due to 
different levels of EGFR expression in the neural 
precursor of the SGZ and SCZ as compared to the SVZ 
(Seri et al., 2004; 2006). Therefore, phenytoin may be 
exerting some differential proliferative effect on these 
regions. Dual effects of phenytoin have been previously 

described that, at certain doses, it reduce cerebral 
monoamines (Vazquez et al., 2003). On this regard, 
serotonin modulates the proliferation of SGZ precursors 
(Sahay and Hen, 2008; Warner-Schmidt and Duman, 
2006). Therefore, high doses of phenytoin can reduce 
the levels of serotonin (Okada et al., 1997) that, in turn, 
decrease cell proliferation into the SGZ. Remarkably, 
another anticonvulsant drug, magnesium valproate, 
has shown either proliferation or apoptosis, depending 
on the dose used on microglial cells and neuronal 
precursors (Dragunow et al., 2006). Phenytoin also 
increases the levels of Adrenocorticotropic Hormone 
(ACTH) and corticosterone (Okada et al., 2001), 
probably mediated by the P450 cytochrome enzyme 
system (Putignano et al., 1998), which reduce 
proliferation of SGZ precursors (Gonzalez-Perez et 
al., 2011; Nichols et al., 2005). Therefore, high levels 
of glucocorticoids induced by phenytoin may also 
modify the proliferation rate of neural precursors in 
the dentate gyrus.  
 In addition, our data indicate that phenytoin did not 
induce changes in the number of CASP3+ cells in any 
of the analyzed regions, which suggest that the increase 
in the number of BrdU+ cells is not due to a reduction 
in apoptosis rate. Similar findings have been reported in 
epithelial cells from oral mucosa (Kantarci et al., 2007). 
However, other anticonvulsants have shown to induce 
apoptosis in microglia, which suggest that apoptosis 
induction is probably related to intrinsic drug 
metabolism (Dragunow et al., 2006). 
 There are several questions that remain to be 
elucidated, such as: (1) what kind of cell types 
proliferate in the SVZ and the SGZ; (2) Do these cells 
remain in the brain parenchyma; (3) Do they 
differentiate in the brain parenchyma; If so, (3) Do they 
play a functional role into the brain. In addition, it 
would be interesting to test the phenytoin in 
experimental models of disease (Anderson et al., 2008; 
Jqamadze et al., 2012). Therefore further studies are 
needed to address these questions 
 

CONCLUSION 
 
 Phenytoin induces cell proliferation of neural 
precursors in the SVZ in the forebrain and the SGZ in 
the dentate gyrus in a dose-dependent manner, without 
changing apoptosis rates of these neurogenic niches. 
Whether phenytoin may promote proliferation in the 
human brain remains to be elucidated 
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