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Abstract: The global two-sided test for functional means difference got 

much attention in the literary works. While the global one-sided test for 

functional means difference has not been studied. However, that could 

have some applications and implications for longitudinal trials or trials 

with functional data outcomes. This work introduced superiority and 

noninferiority hypothesis tests for functional data outcomes, which were 

viewed as a one-sided problem for functional mean differences. Two 

global tests statistic have been proposed: a test based on integral and a test 

based on supremum. The performances of the tests have been evaluated 

via a simulation example. Both tests got an estimated actual type I error 

closer to the nominal type I error. The test based on supremum got good 

estimated power in all considered cases of the alternative hypothesis, while 

the test based on integral got very poor power performances for some 

cases of considered alternative hypothesis. 

 

Keywords: Functional Data Analysis, Global Test, Non-Inferiority Test, 

Superiority Test 

 

Introduction  

Functional data analysis is becoming increasingly 
used in different applied areas such as economics, 
clinical trials, meteorology and so on. It owes its 
applicability to the development of technologies, which 
allows nowadays to store and process data with larger 
dimensions. In fact, contrary to the scalar or multivariate 
data analysis, functional data analysis itself requires 
infinite dimension. Therefore, the functional data 
analysis uses its own inference tools. Ramsay and 
Silverman (2005) provided a large overview of different 
inferential methods for functional data analysis. Such as 
in the case of scalar data, in practice, it sometimes needs 
to compare statistically two functional means on a 
continuum domain. There are basically two approaches 
to do so: An approach based on pointwise test and an 
approach based on the global test. The pointwise test 
consists of performing the test at each point of the 
domain. But, for the decision on the whole continuum 

domain, it is required to control the compound type I 
error rate. The False Discovery Rate (FDR) and Family-
Wise Error Rate (FWER) introduced by Benjamini and 
Hochberg (1995); Hochberg and Tamhane (1987) are 
respectively the main measures used to evaluate the 
compound type error. The global test consists of defining 
a scalar test statistic for the functional hypothesis testing 
on the whole continuum domain. 

In the context of functional means difference, most of 
the works in the literature using a global test are for the 
two-sided problem. Zhang et al. (2010); Zhang (2014) 
proposed a global test for two-sided means difference 
based on L

2
-Norm. Taylor et al. (2007) proposed as well 

a global test based on Sup-Norm. All those global tests 
cannot be used for the functional one-sided problem. 
Since, when the null hypothesis is rejected, the direction 
of the inequalities could not be determined. This work 
proposes global tests for the functional one-sided 
problem. The superiority and non-inferiority hypothesis 
tests with functional endpoints which are particular cases 
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of one-sided problems are introduced. This works can 
lead to some considerations for the design and the 
interpretation of some clinical trials. For example, in the 
non-inferiority or superiority longitudinal trials the 
hypothesis testing is generally performed after a fixed 
period of time which is generally the end of the follow-up 
period. However, these longitudinal data can be converted 
into functional data on the continuum follow-up period 
and then get a decision about superiority or non-inferiority 
not only at the end of the follow-up period but on the 
whole domain. That will allow more flexibility in the 
interpretation of the results of the hypothesis testing. 

The Monte-Carlo simulations methods are used for 

the assessment of the performances of the proposed tests 

for a one-sided problem in functional mean differences 

through a simulation example. The actual type I error 

rate and statistical power are therefore evaluated. 

Methods 

Formulation of Superiority and Non-Inferiority 

Hypothesis Test for Functional Data Outcomes 

Non-inferiority and superiority test with binary, 
continuous and survival outcomes have been commonly 
used in clinical trials. They got much attention and many 
works of literature and technical reports were dedicated 
to it Food and Dug Administration (2016); Committee 
for Proprietary Medicinal Products (2000). 

While, the same cannot be said for the functional 
outcomes, which are rarely considered in clinical trials. 
However, this latter could have some relevant 
applications. For example, let’s consider a longitudinal 
trial with multiple outcomes, where the purpose is the 
comparison of an experimental treatment to placebo or 
reference. Generally, the multiple outcomes data are 
collected on a discrete grid time points up to a fixed 
period of time. Then, the test (superiority or non-
inferiority) is performed with the data at the end of the 
follow-up period. The data collected before the end of 
the period are then useless for the test, however, the data 
can be modeled in the setting of functional data analysis by 
converting the data observed on the discrete grid into curves 
or functions on the whole continuum domain. Methods such 
as local polynomial kernel smoothing, P-spline, regression 
and smoothing splines, etc described in Ramsay and 
Silverman (2005) can be used for the purpose. 

Let’s assume we are interested in longitudinal trial with 

a continuous endpoint, let’s X1 and X2 the endpoints for 

control and experimental treatment respectively which are 

each observed on a discrete grid point {t1,…,tm}. Denoting 

 µ1 and µ2 the true and unknown means for X1 and X2 at the 

point tm, the superiority or non-inferiority is generally 

performed at tm, by testing the hypothesis: 
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where, ∆c is the non-inferiority margin for the 

continuous endpoints, ∆c>0. The idea of functional data 

analysis is to model scalar random variables X1 and X2 

defined on the discrete grid {t1,…,tm} by functional 

random variables F1 and F2 respectively defined on the 

continuum D = [t1, tm], with true and unknown mean 

functions f1 and f2 respectively, co-variance matrix  γ1 

and γ2 respectively. Then, instead of superiority 

hypothesis test in 1(respectively non-inferiority 

hypothesis test in 2) at the point tm, one may be 

interested on the superiority (respectively the non-

inferiority) on the whole continuum domain D. The 

functional superiority hypothesis test on 

D(respectively functional non-inferiority hypothesis 

test on D) are then formulated by: 
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where, ∆f is the non-inferiority margin for functional 

outcomes, it is defined such that ∆f(t)>0, for all t∈D. 

The inequality of two functions on D is the usual 

definition of inequality of functions, that is f1≤f2 on D 

when for all x in D, f1(x)≤f2(x). The functional 

superiority and noninferiority hypothesis tests in 

equations 3 and 4 is regarded as one-sided problem for 

functional means difference. For functional hypothesis, 

there are basically two approaches, an approach based on 

pointwise test such as in Xu et al. (2018), Sun et al. 

(2015) and Cox and Lee (2007) and a global approach 

which provide a single summarized for the testing on 

the whole continuum domain. In the framework of 

two-sided problem there are global statistic test which 

have been proposed generally based on a norm such as in 

Zhang et al. (2010); Zhang (2014) based on L
2
-norm or 

Taylor et al. (2007) based on Sup-norm. Such methods 

cannot be applied for one-sided hypothesis test, since 

that could not allow to know the direction of the 

inequality when the null hypothesis is rejected.  

Proposed Global Test Statistics 

Denoting by 
1
f̂  and 

2
f̂  the functional mean 

estimates of f1 and f2 respectively and assuming that 
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there are positive and integrable on D, let’s define the 

test following statistic: 
 

( ) ( )( )1 2

ˆ ˆ

D

G f t f t dt= −∫  (5) 

 
On the null hypothesis, the statistic G would be 

smaller, while on the alternative, it would be larger. The 

non-parametric bootstrap method which is free-

assumption can be used to estimate the distribution of 

the test statistic G on the null hypothesis 
0

H ′ . Then, 

denoting by α the nominal type 1 error, the null 

hypothesis is rejected when G>G1−α, where G1−α is the 

(1−α)-quantile estimate of the distribution of the 

statistic G. Similarly to Taylor et al. (2007), one may 

define a global test based on supremum, then let’s 

consider the following statistic: 
 

( )1 2

ˆ ˆ
D

S Sup f f= −  (6) 

 
Similarly to test statistic G, the statistic G would be 

smaller, while on the alternative, it would be larger. In 
this case, the null hypothesis is rejected when S>S1−α, 
where S1−α is the (1−α)-quantile estimate of the 
distribution of the statistic S, which also can be 
determined using non-parametric bootstrap estimate 
method. Let’s assume there is given two functional data 
set F1 and F2 with sample sizes n1 and n2, following 
description steps are used to determine G1−α and S1−α: 
 

1. From original pair of data set F1 and F2, make B 

random samples with replacement and with sizes n1 

and n2 for each respectively, then get B pairs of 

sampled data 

2. From the B pairs of sampled data, estimate statistics 

Gi or Si , i = 1…B 

3. Determine G1−α and S1−α by 
*
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Simulations 

Simulations Settings 

The performances of the proposed methods are done 
trough Monte-Carlo simulations method. Actual type I 
error rate and statistical power are evaluated according 
to the sample sizes. In all simulations, with consider equal 
sample sizes n1 = n2 = n , where n1 and n2 are the sample 
sizes of groups 1 and 2 respectively, then three cases were 
considered: n = 30(small), n = 100(medium) and n = 
1000(large). The continuum domain considered was D = 
[0,24]. In the evaluation of type I error rate, data were 
simulated on the null hypothesis, in this case, it was 

considered the common function mean for example f1 = f2 = 
30t

2
+17, represented in the Fig. 1. The statistical power was 

evaluated with the data drawn on the alternative hypothesis, 
three cases represented in the Fig. 2 were considered: 
 

• Case 1: D* = D, the function f1 was greater than f2 

on the whole domain D. Therefore, it was 

considered f1 = 30t
2
+1000 and f2 = 30t

2
+1 

• Case 2: D*⊂D, the function f1 was greater than f2 

on the proper subset D* = [12, 24] of D, f1 = 30t
2
 

and f2 = 350t +120 

• Case 3: D*⊂D, the function f1 was greater than f2 

on the proper subset D* = [22,24] of D, f1 = 30t
2
 

and f2 = 650t +220 
 

In all simulations, the nominal type I error was a = 
5%, the co-variance matrix function were assumed equal 
(γ1 = γ2 = γ), it was considered correlated data, such that 
data at two closer points were more correlated than data 
at two distant points, γ(t, s) = 80

2
exp(−0.5(t−s)

2
). 

Following are the Monte-Carlo simulations steps for the 
estimation of type I error and power: 
 
1. Simulate a pair F1 and F2 of functional data with 

equal sample size n on the domain D, with equal 
covariance function g and functional means f1 and f2 
respectively such that null hypothesis is satisfied for 
the type I error estimation (such that the alternative 
is satisfied for the power estimation) 

2. From the pair of sample F1 and F2, estimated the 
statistic G and S respectively in the Equation 5 and 
6. The bootstrap procedure described in 2.2 is used 
to get the quantiles G1−a and S1−a of the distribution 
of the statistics G and S respectively. Then, reject 
the null hypothesis hypothesis if G>G1−a or S>S1−a 

3. Repeat 1 and 2 N times and get N test decisions 

1 1
, 1,...,

i i i i
G G or S S i N

− −

> > =
α α

 

4. The type I error is then estimated by: 

1 1
1 1

ˆ ˆ .
i i i i

N N

i iG G S S
a or a

− −

= => >

= =∑ ∑1 1
α α

 The power is 

estimated with the same formulas, but with data 

generated on the alternative hypothesis at step 1 
 

The number of bootstrap replication was B = 1000 and 

the number of replicated samples was N = 10000. The R 

software programming language Team (2016) has been 

used to conduct all the simulations and codes are accessible 

in a separate file. However, the packages fda by Ramsay et 

al. (2018) and mvtnorm by Genz et al. (2018) have been 

especially useful for the simulations and the manipulations 

of functional process data. The programming codes can be 

provided on the demand of the user. 

Simulations Results 

The type I error rate and statistical power estimates 
are summarized in the Table 1 and 2 respectively. The two 
global tests with small sample sizes would be somehow 
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liberal as the actual type I error in this case is about 6% and 
6:5% for the G and S test statistics respectively. However, 
as the sample sizes get larger, the actual type I error 
estimated gets closer to the fixed nominal type I error 5%. 

The power was estimated considering some cases of 
the alternative hypothesis. Based on the considered 
example of functional means on the alternative 
hypothesis, the S statistic test got good performances with 
a power equal to 100% whatever the sample sizes. While 
the G test statistics got good performances in the cases 
where D* = D and D* = [12, 24] and very poor 
performances when the length of D* is smaller. 
 
Table 1: Estimation of the actual type I error rate according to 

the sample sizes for both proposed test statistics G 
and S respectively 

 Test statistic G Test statistic S 

nN = nR = 30 0.062 0.065 
nN = nR = 100 0.055 0.06 
nN = nR = 1000 0.051 0.54 

Table 2: Estimation of the statistical power according to the 

sample sizes and three different cases of the 

alternative hypothesis, for the both proposed test 

statistics G and S respectively 

 Test statistic G Test statistic S 

 Case 1 

nN = nR = 30 1 1 

nN = nR = 100 1 1 

nN = nR = 1000 1 1 

 Case 2 

nN = nR = 30 1 1 

nN = nR = 100 1 1 

nN = nR = 1000 1 1 

 Case 3 

nN = nR = 30 0 1 

nN = nR = 100 0 1 

nN = nR = 1000 0 1 

 

 
 
Fig. 1: Functional mean used for samples replication for actual type I error estimation. The functional means f1 and f2 are such that 

the null hypothesis is satisfied and the boundary of the null hypothesis was considered f1 = f2 
 

 
 
Fig. 2: Functional means used for samples replication for power estimation. The functional means f1 and f2 are such that the 

alternative hypothesis is satisfied and three cases are considered 
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Conclusion 

This work has introduced the superiority and non-

inferiority hypothesis test with functional data endpoints. 

Those hypothesis tests have been regarded as a one-sided 

problem in functional means difference, where the global 

test has not been addressed in the literature. Under the 

assumption of positive functional means in both groups 

comparison, two global tests statistics were proposed: a test 

based on the integral and a test based on the supremum. The 

performances of proposed tests were evaluated through a 

simulation example, by computing the actual type I error 

rate and statistical power according to the sample sizes. The 

two tests got acceptable actual type I error, especially 

when sample sizes tend to be larger. 

However, the test based on supremum got good 

power performances whatever the sample sizes and 

whatever the case of alternative, while the test based on 

integral is very poor for some cases of the true 

alternative. Therefore, in practice, one would 

recommend or prefer the test based on supremum. 

The assumption of positive mean functions in both 

treatment groups is satisfied in many practical 

situations. That is the case where higher values of the 

endpoints are preferred, when the increase of the endpoint 

corresponds to more efficiency, for example, red blood 

cells increase, CD4 count cells, etc... However, it is 

suitable to get aglobal test in a more generalized context, 

that can be addressed in future researches works. This 

pioneering work introducing non-inferiority test with 

functional data endpoint leads an interesting avenue of 

future research works especially by considering 

methodological aspects such as assay sensitivity, 

constancy assumption and non-inferiority margin which 

have been broadly studied for binary and continuous 

endpoints (Zhang, 2006; Tsong et al., 2003; Ng, 2008). 
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