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Abstract: Cure model is a useful model for analyzing failure time data 

when there is evidence of long-term survivors. In traditional cure models, 

it is assumed that the cured or uncured status in the censored set cannot be 

distinguished. However, in many occasions, data of some diagnostic 

procedures, with some sensitivity and specificity, may have provided 

partial information about the cured or uncured status in the censored set. 

Failure to use such data would be wasteful and result in efficiency loss. 

Wu et al. in 2014 proposed an extended cure model. It incorporates such 

additional diagnostic information into traditional Proportional Hazards (PH) 

cure model analysis. In this work, we extended a semi-parametric 

Accelerated-Failure-Time (AFT) cure model to incorporate the additional 

diagnostic information because AFT model may be more appropriate than 

PH models in some applications and it provides intuitive and easy-to-

understand interpretation through postulating direct relationship between 

failure-times and covariates. Through simulations, we showed that the 

proposed extended semi-parametric AFT cure model provided more efficient 

and less biased estimations than traditional semi-parametric AFT cure 

model; higher efficiency and smaller bias were associated with higher 

sensitivity and specificity of the diagnostic procedures. The proposed 

method was illustrated using a clinical data example. 

 

Keywords: Cure Model, Expectation-Maximization (EM) Algorithm, 

Accelerated Failure Time (AFT), Relative Efficiency, Sensitivity and 

Specificity 

 

Introduction 

A cure model is a useful model for analyzing failure 

time data when there is evidence of long-term survivors. 
It is assumed that in traditional cure models the cured 
and uncured status in the censored set cannot be 
distinguished. However, in many practices, some 
diagnostic procedures may provide partial information 
about the cured or uncured status with some sensitivity 

and specificity. Traditional cure models do not take 
advantage of this additional information. Recently,    
Wu et al. (2014a; 2014b) proposed a method, called the 
extended cure model, which incorporated such additional 
diagnostic cured status information into the traditional 

Proportional Hazards (PH) cure model analysis. 

However, in many applications, semi-parametric AFT 
cure models may be of interest itself and/or may be more 
appropriate because it does not need the PH assumption 
and can directly model time to event instead of hazard. 
In this work, we extended the method of Wu et al. 
(2014a) to AFT cure models. 

For traditional cure models, both the Cox PH and AFT 
cure models have been extensively studied. Let T denote a 
non-negative random variable for the failure time of 
interest, x and z the covariate vectors, π(z) the individual’s 
uncured probability depending on z and f (t|x, z) and S(t|x, 
z) the density and the survival function for T, respectively. 
Assume that fu(t|x) and Su(t|x) are the uncured individual’s 
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probability density function (pdf) and the survival 
function depending on x. We can express the mixture cure 
model as f(t|x, z) = π(z) fu(t|x) or: 
 

( ) ( ) ( ) ( )| , | 1 .
u

S t x z z S t x zπ π= +  −    (1) 

 
Logistic regression is commonly used to model the 

“incidence” part π(z), although other links or non-linear 

regression models can also be used. Parametric, semi-

parametric, or non-parametric models could be used for 

the “latency” part Su(t|x). The parametric approach 

includes the following commonly used distributions: 

Exponential (Jones et al., 1981; Ghitany and Maller, 

1992), Weibull (Farewell, 1982; 1986), Lognormal (Boag, 

1949; Gamel et al., 1990), Gompertz (Cantor and Shuster, 

1992; Gordon, 1990a; 1990b), Extended generalized 

gamma (Yamaguchi, 1992) and Generalized F distributions 

(Peng et al., 1998). The non-parametric approach, Kaplan-

Meier estimation method, is used without adjusting for the 

covariate vector x as done in Taylor (1995). The semi-

parametric approach includes the Cox PH model (Kuk and 

Chen, 1992; Peng and Dear, 2000; Sy and Taylor, 2000) 

and semi-parametric AFT models (Li and Taylor, 2002; 

Zhang and Peng, 2007). Although a parametric cure 

model can achieve the greatest efficiency in estimation 

when its distributional assumption is satisfied, in practice, 

it can be challenging to justify the assumption. A semi-

parametric model does not require a distributional 

assumption, but may lose efficiency in estimation, 

compared to a parametric model when a distribution can 

be correctly identified. 
In this work, our main focus is on the evaluation of 

the performance of the proposed extended 
semiparametric AFT cure model that incorporates the 
additional diagnostic information. We performed 
extensive simulations and demonstrated that, compared 
to the traditional AFT model, the extension provided 
more efficient and less biased estimations and higher 
efficiency and smaller bias were associated with higher 
sensitivity and specificity of the diagnostic procedures. 
Finally, we applied the extended semi-parametric AFT 
cure model to a data example from a pediatric bone 
fracture study where the Kaplan-Meier curves show that 
there is a clear cure indication in this dataset (Fig. 1A), 
suggesting the appropriateness to use a cure model for 
the analysis. The application of the proposed method 
showed that the efficiency gain may change the 
significance (p-values) of some effects after the 
additional cure information was incorporated. This 
paper was organized as follows. In Section 2, we 
extended the traditional semi-parametric AFT cure 
models to incorporate the additional cure information. 
In Section 3, the extended cure models were evaluated 
through extensive simulation studies. In Section 4, we 
illustrated the use of proposed extended models by a data 
example from a pediatric bone fracture study. Discussion 
was given in Section 5. 

Accelerated Failure Time Cure Models with 

Sensitivity and Specificity 

Model Specification 

Let {(ti, δi, xi, zi), i = 1,2,...n} be a data set. Here ti 

denotes the i
th
 patient’s observed survival time. δi is 

the censoring indicator, which is 0 if ti is censored and 

1 if uncensored (i.e., observed). xi and zi are two 

covariate vectors. Assume that β and γ are the 

parameter vectors for xi and zi, respectively. If the 

data set is modeled by the semi-parametric AFT cure 

model specified in (1): 
 

( ) ( ) ( )

( )

exp / 1 exp ,

log ,

i i i

i i i

z z z

t x

π γ γ

β ε

 ′ ′= + 

′= +
 (1) 

 
where, the error term εi has the pdf fε and survival function 

Sε that have no particular parametric forms. It is noted that 

fu(ti|xi)= fε (log(ti) - β'xi)/ti and Su(ti|xi) = Sε (log(ti) - β'xi). 

Assume O0 = {(ti, δi, xi, zi), i = 1,2,...,n} and ( )0
,θ β γ′ ′ ′= . 

We can express the observed likelihood as: 

 

( ) ( ) ( )

( ) ( ) ( ){ }

0 0

1

1

; |

| 1 .

i

i

n

o i u i i

i

i u i i i

L O z f t x

z S t x z

δ

δ

θ π

π π

=

−

 =  

 × + − 

∏
 (2) 

 

Assume that for censored patients, the result di from a 

diagnostic procedure is also observed, which is 1 if 

patient i is diagnosed as cured; 0 otherwise. A diagnostic 

procedure usually is associated with certain sensitivity 

and specificity. Sensitivity measures the proportion of 

actual positives that are identified correctly (e.g., the 

percentage of sick people identified correctly as sick). 

Specificity measures the proportion of negatives that are 

identified correctly (e.g., the percentage of healthy 

people identified correctly as healthy). Suppose the 

diagnostic procedure result does not depend on time, i.e., 

di does not depend on ti. Assume the diagnostic 

procedure has a specificity of 1−p1 and a sensitivity of 

p0. We will have p0 ≥ p1 for a validated diagnostic 

procedure. Although p0 and p1 might be modeled, they 

are assumed to be independent of any covariates for 

simplicity. Let ( )0 0 1
, ,p pθ θ′ ′=  and O1 = {(ti, δi, xi, zi, di), 

i = 1,2,...,n}. For uncensored patients (δi = 1), the 

contribution to the likelihood is the same as that in (2); 

while for censored patients (δi = 0), with the 

independence assumption of di and ti, the contribution is 

( ) ( )
1

0 0
1 1

i
d

di

i
p p zπ

−

 − −   if they are cured and the 

contribution is ( )
1

0 1
1

i
d

di
p p

−

− π(zi)Su(ti|xi) if they are 

uncured, so the observed likelihood is: 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1
1

1 1

1
1

1

0 0

1 |
; | .

1 1

i

i
i

i

i
i

d
d

n
i u i i

o i u i i
d

di

i

p p z S t x
L O z f t x

p p z

δ

δ π

θ π

π

−

−

−

=

 −  =   
  + − −  

∏  (3) 

 

The diagnostic procedure results are not available for 

all the censored subjects, so let ηi = 1 denote the i
th
 

subject’s diagnostic result available and ηi = 0 her/his 

result unavailable. Thus we can write the observed 

likelihood as: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )

( )

( ) ( ) ( )( )
( )( )

1

1
1

1 1

1

0 0

1 1

; |

1 |

1 1

| 1 ,

i

i i

i
i

i
i

i i

n

o i u i i

i

d
d

i u i i

d
d

i

i u i i i

L O z f t x

p p z S t x

p p z

z S t x z

δ

δ η

δ η

θ π

π

π

π π

=

−

−

−

− −

 =  

 − 
× 

+ − −  

 × + −
 

∏

 (4) 

 

where, O = {(ti, δi, xi, zi, ηi, di), i = 1,2,...,n}. It is noted 

that Equation (4) reduces to Equation (2) except for a 

constant multiplier when p0 = p1, which means that if 

both (1-specificity) and sensitivity are the same, the 

likelihood functions without and with the diagnostic 

information are the same. In practice, we want both 

sensitivity and specificity to be high and p0 ≠ p1. The 

“incidence” part π(z) of the mixture model is modeled by 

logistic regression. The “latency” part fu(t|x) and Su(t|x) 

of the mixture model is modeled by the semi-parametric 

AFT model. To estimate the extended semi-parametric 

AFT cure model parameters in (4), we adapt the 

Expectation-Maximization (EM) algorithm of Peng 

(2003) to our extended AFT model. Details of the EM 

procedure are provided in the following section. To 

implement the EM algorithm and obtain the parameter 

estimates, one can apply the method of Li and Taylor 

(2002) or Zhang and Peng (2007), as shown in the 

simulation studies. 

EM Algorithm for Estimation of the Extended Semi-

Parametric AFT Cure Model 

Assume that ci is the indicator of the i
th
 patient’s cured 

status, which is 1 if s/he is not cured (susceptible) and 0 if 

s/he is cured, where although ci is a latent variable, 

because δi = 1 implies ci = 1, it is partially observed. The 

conditional distributions of di are as follows: 

 

( ) ( )

( ) ( )
0

1

| 0, 0 ,

| 1, 0 .

i i i

i i i

d c Bernoulli p

d c Bernoulli p

δ

δ

= = ∼

= = ∼

 

 

Let c = {ci, i = 1,...,n}. The complete log-likelihood 

can be written as: 

( ) ( )

( )( ) ( )( ) ( ){ }

( )( ) ( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )( )

1

1

1 1

1

0 0

1

; , log ; ,

log 1 1 1 log 1

log | 1 log |

log 1 log 1 1

log 1 log 1 1 1 ,

c c

n

i i i i i

i

n

i i u i i i i u i i

i

n

i i i i i

i

n

i i i i i

i

O c L O c

c z c z

c f t x c S t x

d p d p c

d p d p c

θ θ

π δ π

δ δ

δ η

δ η

=

=

=

=

=

 = + − − − 

 + + −  

 + + − − − 

 + + − − − − 

∑

∑

∑

∑

ℓ

 (5) 

 
where: 
 

( )
( )( )

( )

( )( )

log
| |

log ,

i i

u i i u i i

i

i i

f t x
f t x and S t x

t

S t x

ε

ε

β

β

′−
=

′= −

 

 

according to the AFT model. Because of (1-ci)(1-δi) = 1-ci 

and ciδi = δi, one can further simplify ℓc(θ; O, c) in (5) to: 

 

( ) ( ) ( ) ( ){ }

( ) ( ){ }

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1

1 1

1

0 0

1

1 2 3 0 1

; , log 1 log 1

log | log |

log 1 log 1 1

log 1 log 1 1

; , ; , , ; , .

n

c i i i i

i

n

i u i i i u i i

i

n

i i i i i

i

n

i i i i

i

c c c

O c c z c z

h t x c S t x

d p d p c

d p d p c

O c O c p p O c

θ π π

δ

δ η

η

γ β

=

=

=

=

   = + − −   

   + +   

 + + − − − 

 + + − − − 

= + +

∑

∑

∑

∑

ℓ

ℓ ℓ ℓ

  (6) 

 
Here: 

 

( )
( )
( )

( )
( )

| log
|

| log

u i i i i

u i i

u i i i i i

f t x f t x
h t x

S t x t S t x

ε

ε

β

β

′−
= =

′−

 

 

is the hazard function of the failure time of uncured 

patients: 

 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( )

1

1

2

1

3 0 1 1 1

1

0 0

1

; , log 1 log 1 ,

; , log | log | ,

, ; , log 1 log 1 1

log 1 log 1 1 .

n

c i i i i

i

n

c i u i i i u i i

i

n

c i i i i i

i

n

i i i i

i

O c c z c z

O c h t x c S t x

p p O c d p d p c

d p d p c

γ π π

β δ

δ η

η

=

=

=

=

   = + − −   

   = +   

 = + − − − 

 + + − − − 

∑

∑

∑

∑

ℓ

ℓ

ℓ
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Equation (6) shows that the complete log-likelihood 

function can be separated into three parts: the first part 

ℓc1(γ, O, c) contains only the “incidence” parameter 

vector γ for the covariate vector z, the second part ℓc2(γ, 

O, c) contains only the “latency” parameter vector β for 

the covariate vector x and the third part ℓc3(p0, p1, O, c) 

contains only the specificity parameter 1-p1 and 

sensitivity parameter p0. Therefore, we can maximize 

separately the three parts given c and carry out the EM 

algorithm in the following steps. 

Initial value: Let θ
(0)
 be an initial value to start the 

EM algorithm. 

E-step: The E-step is to calculate the expectation of 

the complete log-likelihood function ℓc(θ), conditional 

on the observed data and θ
(r)
 the estimate of θ at the r

th
 

iteration. That is, calculate the following conditional 

expectation: 

 
( ) ( )( ) ( )( )| , 1| , ,
r r r

i i i
w E c O P c Oθ θ= = =  

 

which is the estimate of the i
th
 patient’s uncured 

probability at the r
th
 iteration. Because: 

 
( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 0

1| 1, 0, ,

|

| 1

|
1

| 1

r

i i i

r r r

i u i i

i
r r r r r

i u i i i

r r

i u i i

i
r r r

i u i i i

P c d O

z S t x p

z S t x p z p

z S t x

z S t x z

δ θ

π
η

π π

π
η

π π

= = =

=
 + −
 

+ −
 + −
 

 

 

and: 

 
( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 1

1| 1, 0, ,

| 1

| 1 1 1

|
1 ,

| 1

r

i i i

r r r

i u i i

i
r r r r r

i u i i i

r r

i u i i

i
r r r

i u i i i

P c d O

z S t x p

z S t x p z p

z S t x

z S t x z

δ θ

π
η

π π

π
η

π π

= = =

−
=

 − + − − 

+ −
 + − 

 

 

one can express ( )r
i

w as: 

 
( ) ( )( )

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 0

1

1 0

1| ,

|
1

| 1

| 1
1 1

| 1 1 1

|
1 1 .

| 1

r r

i i

r r r

i u i i

i i i i
r r r r r

i u i i i

r r r

i u i i

i i i
r r r r r

i u i i i

r r

i u i i

i i
r r r

i u i i i

w P c O

z S t x p
d

z S t x p z p

z S t x p
d

z S t x p z p

z S t x

z S t x z

θ

π
δ δ η

π π

π
δ η

π π

π
δ η

π π

= =

= + −
 + −
 

−
+ − −

 − + − −
 

+ − −
 + −
 

 (7) 

M-step: The M-step is to maximize the expected 

complete log-likelihood function with respect to θ to 

obtain θ
(r +1)

, which is the sum of the following three 

functions: 

 
( )( )

( ) ( )( ) ( )( ) ( ){ }

1

1

| ,

log 1 log 1 ,

r

c

n

r r

i i i i

i

w O

w z w z

γ

π π

=

 = + − − ∑

ɶℓ

  (8) 

 
( )( )

( ) ( ) ( ){ }

2

1

| ,

log | log | ,

r

c

n

r

i u i i i u i i

i

w O

h t x w S t x

β

δ
=

   = +   ∑

ɶℓ

 (9) 

 
( )( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

3 0 1

1 1

1

0 0

1

, | ,

log 1 log 1 1

log 1 log 1 1

r

c

n

r

i i i i i

i

n

r

i i i i

i

p p w O

d p d p w

d p d p w

δ η

η

=

=

 = + − − − 

 + + − − − 

∑

∑

ɶℓ

 (10) 

 

for w
(r)
 = ( ){ }, 1,...,

r

i
w i n= . 

Because Equation 8 is the log-likelihood function of a 

logistic regression model for values arising from a 

Bernoulli distribution with the response probability π(zi) 

= exp(γ'zi) / [1+ exp(γ'zi)], the usual optimization 

methods such as the Newton-Raphson method can be 

used to maximize this log-likelihood function, which can 

be carried out in most standard logistic regression 

packages to obtain the estimate of γ. 

For Equation 9, the maximization of ( )( )2
| ,

r

c
w Oβɶℓ  

involves the joint estimation of β and Sε. This 

maximization can obtain the estimates β
(r+1)

 and ( )1r

S
ε

+

 e 

by using the grid search method of Li and Taylor (2002). 

One can also use the linear programming approach to 

obtain β
(r+1)

 first by minimizing the gradient of a convex 

function. After β
(r+1)

 is obtained, ( )1r

S
ε

+

 can be estimated 

based on the residuals as done in Zhang and Peng 

(2007). 

For Equation (10), ( )1
0

r

p
+

and ( )1
1

r

p
+

 can be obtained 

explicitly. The following is the updating formula: 
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( )( )( )
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( ) ( )
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n
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n r
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i
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i
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n
r
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r
i
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i

i

d wd w

p
ww

d wd w

p
w

w

δ η

δ η

δ η
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η δ

η δ

η δ

η δ

= =+ =

= =
=

= =+ =

= =

=

−
− −

= =

−
− −
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= =

−
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It is noted that there is no need to estimate p0 and p1 

if the sensitivity and specificity are known externally 

from the diagnostic procedure. 

Iteration: The algorithm is iterated until ||θ
(r+1)

-θ
(r)
|| 

is sufficiently small. 

Although the method of Louis (1982) may be used to 

estimate the variance of the EM estimators, we follow 

Peng’s suggestion (Peng, 2003) to use the bootstrap 

method to estimate the variance of the estimated 

parameters. 

Evaluations of the Extended Semi-

Parametric AFT Cure Model 

Simulation Setup 

To assess the performance of the extended semi-

parametric AFT cure model, we compared the following 

three models through extensive simulations: (i) The 

traditional semi-parametric AFT cure model without 

diagnostic information, (ii) the extended semi-parametric 

AFT cure model incorporating diagnostic information 

with unknown sensitivity and specificity and (iii) the 

extended semi-parametric AFT cure model incorporating 

diagnostic information with sensitivity and specificity 

known a priori. In estimating model parameters, we 

adapted the approaches of Li and Taylor (2002) (LT) and 

Zhang and Peng (2007) (ZP) and compared the 

performances between these two methods. 

To mimic the pediatric bone data, we first generated 

ci according to the incidence model with evenly 

distributed three-level covariate TRT and two-level 

covariate SEX: 

 

( ) ( ) ( ) ( )0 1 2 31 2
log .

i i i

i TRT TRT SEX Male
it I I Iπ γ γ γ γ

= = =

= + + +  (11) 

 

Here πi is the i
th
 subject’s uncured probability. The 

true parameter values were γ0 = 0.25, γ1 = -0.1, γ2 = 0.5 

and γ3 = -0.1. Survival data were simulated for the 

latency part, according to the Weibull AFT model: 

 

( ) ( ) ( ) ( )1 2 31 2
log ,

i i i

i iTRT TRT SEX Male
t I I Iβ β β ε

= = =

= + + +  (12) 

 

with the true parameter values as β1 = 0.2, β2 = -0.3, β3 = 

0.1 and the baseline survival function as S0(t|k, h) = exp[-

(ht)
k
]. Four different sets of shape and scale parameters 

(h,k) were considered: 

 

( ) ( )

( ) ( )

1 1, 2; 2 2, 2;

2 1
3 , 3; 4 , 4,

3 3

h k h k

h k h k

= = = =

= = = =

 (13) 
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 (B) 
 
Fig. 1: K-M curve for PPC and baseline Weibull probability density functions; (A). Kaplan-Meier (K-M) curve for time to PPC by 

treatment and gender; (B). Curves of baseline Weibull probability density function f0(t|k,h) = h0(t|k,h)exp[- 0

t∫ h0(u|k,h)du] = 

kh(ht)k-1 exp[-(ht)k] 
 

(see these four baseline Weibull pdf shapes in Fig. 1B). 

We set the maximum survival time to 6 and simulated the 

censoring time from uniform (0,6). As a result, the 

expected censoring rate of the four parameter sets was 

14.8% when h = 1, k = 2; 7.4% when h = 2, k = 2; 22.3% 

when 
2

3
h = , k = 3; 45.3% when 

1

3
h = , k = 4. After ci 

and the censoring status were determined, di was 

simulated from the following Bernoulli distributions: 
 

( ) ( )

( ) ( )
0

1

| 0, 0 ,

| 1, 0 .

i i i

i i i

d c Bernoulli p

d c Bernoulli p

δ

δ

= = ∼

= = ∼

 

 
True sensitivity of 70% and 100% and true specificity 

(1-p1) of 100% were used. Simulations with 100% 

subjects having available diagnostic information were 

performed for all settings described above. For each 

simulation configuration, 200 subjects were simulated 

and a total of 1,000 simulation runs were performed. In 

each simulation run, the variances of estimated 

parameters were based on 1,000 bootstrap samples. 

Simulation Results 

Figures 2 to 4 show the performance of regression 

parameter estimates in terms of bias, Mean Squared 

Error (MSE) and Relative Efficiency (RE) to the 

traditional semi-parametric AFT cure model, 

respectively. From the top to the bottom in each figure, 

the odd rows are for the models with known sensitivity 

and specificity, while the even rows are the models 

with unknown sensitivity and specificity. Numbers 1 to 

4 correspond to the four different parameter 

combinations of the baseline Weibull distribution in 

Equation (13). Subscripts “LT” and “ZP” indicate the 

use of LT and ZP estimation methods, respectively, in 

fitting the extended semi-parametric AFT cure model 

incorporating diagnostic information with known 

sensitivity and specificity. Subscripts of “LTu” and 

“ZPu” are for the estimation methods of the same 

model incorporating diagnostic information with 

unknown sensitivity and specificity. In using the LT 

approach, we applied the non-linear minimization 

method to obtain the parameter estimates, implemented 

by nlm function in R, instead of the grid search 

approach in their original method. 

LT Estimation Method for the Extended Semi-

Parametric AFT Cure Model 

Simulation results of the extended semi-parametric 

AFT cure model compared to the traditional method 

(“CL”), all adapting the LT method, are presented in the 
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first two rows of Figures 2 to 4. Notice that results for (h, 

k) = 
1
,4

3

 
 
 

 are not shown because of excessively large 

bias and MSE. Further investigation of this case is 

shown in Table 1 and discussed later. In Figure 2, the 

bias of the latency parameter estimates is large, likely 

due to the use of non-monotonic estimation function in 

Equation (12) of Li and Taylor (2002). RE gain slightly 

increases with censoring rate (e.g., ‘1’, ‘2’ Vs. ‘3’ in 

Figure 4). RE gain is more when sensitivity and 

specificity are known than that when they are unknown. 

Because the baseline Weibull distribution with 

1
, 4

3
h k

 
= = 

 
 has a high censoring rate of 45%, a 

possible explanation for the large bias, especially in the 

latency part, may be due to the use of the zero-tail 

completion in estimating the survival functions. In 

Table 1, we explored the effect of exponential-tail 

completion for the case when the baseline Weibull 

distribution 
1
, 4

3
h k

 
= = 

 
 is used. Compared to the zero-

tail completion, the exponential-tail completion does not 

improve much. 

ZP Estimation Method for the Extended Semi-

Parametric AFT Cure Model 

Simulation results of the extended semiparametric 
AFT cure model compared to the traditional method 
(“CL”), all using the ZP method, are presented in the 
third and fourth rows of Figures 2 to 4 for unknown and 
known sensitivity and specificity, respectively. Instead 
of using linear programming suggested by Zhang and 
Peng (2007), the non-linear minimization is 
implemented by nlm function in R to search for 
parameter estimates. 

In general, the bias and MSE of the extended model 

is smaller than those of the traditional method. RE of the 

extended model is increased with sensitivity and 

censoring rate. Moreover, the RE curves of the γ1 

estimate for parameter set 4 
1
, 4

3
h k

 
= = 

 
are not shown 

because of large value (> 3). The gain in RE and 

reduction in MSE and bias are larger with known 

sensitivity and specificity than with unknown sensitivity 

and specificity. The improvement is quite significant 

especially for parameter set 4
1
, 4

3
h k

 
= = 

 
. 
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Fig. 3: Mean squared error (MSE) 
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Table 1: Simulation results for models with baseline Weibull hazard 
1
, 4

3
h k

 
= = 

 
 - assume known sensitivity and specificity, zero- 

and exponential-tail completions (Using Li and Taylor’s estimation method)  

    p0 for Extended Model 

    ------------------------------------------------------------------------------- 

    Zero Tail Completion Exponential Tail Completion 

  True Classic --------------------------------- ---------------------------------- 

 Statistics Parameter Model 0.7  1  0.7  1 

β1  Mean  0.2  -3.91  -0.86  0.05  -0.86  0.05 
 Bias   -4.11  -1.06  -0.15  -1.06  -0.15 
 SD   9.66  3.08  0.21  3.05  0.26 
 MSE   110.19  10.60  0.07  10.42  0.09 
β2  Mean -0.3  0.16  -0.05  -0.09  -0.06  -0.08 
 Bias   0.46  0.25  0.21  0.24  0.22 
 SD   3.37  0.38  0.14  0.44  0.16 
 MSE   11.60  0.21  0.06  0.25  0.075 
β2 Mean  0.1  -1.58  -0.23  0.02  -0.24  0.02 
 Bias   -1.68  -0.33  -0.08  -0.34  -0.08 
 SD   17.67  0.98  0.15  1.19  0.17 
 MSE   315.22  1.06  0.03  1.52  0.04 
γ0  Mean  0.25  2.06  0.34  0.26  0.36  0.26 
 Bias   1.81  0.09  0.01  0.11  0.01 
 SD   5.09  0.48  0.29  0.47  0.29 
 MSE   29.17  0.24  0.08  0.24  0.08 
γ1  Mean  -0.1  -1.45  -0.46  -0.12  -0.47  -0.12 
 Bias   -1.35  -0.36  -0.02  -0.37  -0.02 
 SD   6.09  0.82  0.37  0.81  0.37 
 MSE   38.94  0.80  0.14  0.80  0.14 
γ2  Mean  0.5  1.59  0.64  0.50  0.63  0.49 
 Bias   1.09  0.14  -0.002  0.13  -0.01 
 SD   6.68  0.54  0.37  0.53  0.37 
 MSE   45.83  0.30  0.14  0.30  0.14 
γ3  Mean  -0.1  -0.59  -0.23  -0.13 -0.24  -0.13 
 Bias   -0.49  -0.13  -0.03  -0.14  -0.03 
 SD   3.46  0.52  0.31  0.52  0.31 
 MSE   12.22  0.29  0.10  0.29  0.10 

 

Comparison of ZP and LT Methods for Estimation 

of the Extended Semi-Parametric AFT Cure Model 

To compare the simulation results between the 

estimation methods of ZP and LT, we first consider the 

bias. Overall, the point estimates are consistent for the ZP 

method, while the LT method is more likely to produce 

non-consistent estimates, especially when the baseline 

Weibull distribution with parameter set 4 
1
, 4

3
h k

 
= = 

 
, 

which produced highest censoring rate, is used. 

As for the RE gains in the parameter sets 1 to 3, the 

ZP and LT methods are similar. Parameter set 4 is not 

compared because of the large bias using LT method. 

In conclusion, based on our simulation results, the ZP 

method provides better estimations than the LT method 

for the extended semi-parametric AFT cure model. 

Real Example: Pediatric Bone Data 

This was a retrospective clinical study that 157 (75 

girls and 82 boys) children’s charts were reviewed to 

identify the incidence of premature physeal closure 

(PPC) following physeal fractures of distal end of 

tibia (Leary et al., 2009). Sixteen out of these 157 

children were identified as having PPC. Children were 

considered cured if the symmetric Harris growth 

arrest line was observed or closure of the growth plate 

was seen radiographically. As a result, ninety-six 

children were considered cured. Because the 

remaining 45 children’s diagnostic cured statuses 

could not be determined, their diagnostic cured 

statuses were considered unavailable. 

As shown in the Kaplan-Meier curve of the time to 

PPC (Figure 1A), there is a clear cure indication in this 

data set. The semi-parametric AFT cure model was used 

for the data analysis as an illustration. The ascertainment 

of cure using the symmetric Harris growth arrest line or 

closure of the growth plate was considered definitive, so 

it was treated as a diagnostic procedure with known 

100% sensitivity and specificity. We included the factor 

of treatment methods (Cast and non-Cast) and gender in 

the survival portion and the cure portion of the semi-

parametric AFT cure model. 
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Table 2: Comparisons of applications of semi-parametric Accelerated Failure Time (AFT) cure model without and with diagnostic 

information to pediatric bone data 

 Traditional cure model (without diagnostic information) Extended cure model (with diagnostic information) 

Survival Portion: 

Effect  log(TR*)  SE  p-value  log(TR)  SE  p-value 

Male  -0.000  0.784  >0.999  0.134  0.509  0.793 
Cast  -0.223  0.731  0.760  0.151  0.453  0.739 

Logistic Portion: 
Effect  log(OR)  SE  p-value  log(OR)  SE  p-value 

Intercept  -0.650  1.834 0.723  -1.189  0.508  0.020 
Male  -0.718  3.791  0.850  -0.344  0.475  0.469 
Cast  -0.074 4.382  0.987  -0.896  0.510  0.079 

*: Ratio of survival times 

 

Table 2 shows the analysis result of fitting the semi-

parametric AFT cure model with and without the 

diagnostic information included to the pediatric bone 

data. The ZP method was used to estimate the 

semiparametric, traditional and the extended 

semiparametric AFT cure model parameters. During the 

bootstrapping step, if the point estimate had an absolute 

value over 1,000, the bootstrap sample was treated as not 

converged. The estimates of the parameters in the 

survival portion showed different signs, while the 

pvalues suggested non-significant conclusions. The 

standard errors from the extended semi-parametric AFT 

cure model were much smaller. The 2-sided p-value for 

logistic intercept was 0.723 in the traditional model and 

this changed to a significant p-value of 0.020 in the 

extended model. Notice that the p-value for the Cast 

factor in the logistic portion was also much smaller in 

the extended model. These comparisons between the 

traditional and extended models were consistent with the 

findings in the simulation results. 

Discussion 

Othus et al. (2012) advocated cure models for 

analyzing survival data when there is evidence of long-

term survivors. It is assumed that in traditional cure 

models the cured or uncured status in the censored set 

cannot be distinguished. However, in many studies, there 

are diagnostic procedures available to provide further 

information about whether a subject is cured. Wu et al. 

(2014a) proposed a method, called the extended PH cure 

model, which incorporated such additional diagnostic 

cured status information into the traditional cure model 

analysis. In this work, we extended their approach to 

semi-parametric AFT cure models because the AFT 

model does not need the PH assumption and can directly 

model time to event instead of hazard. In this work, we 

have demonstrated the implementation of the extended 

semi-parametric AFT cure model and showed that the 

extended model has the potential to improve the 

estimation efficiency of the traditional model. 
We performed extensive simulations to evaluate the 

performance of the extended semi-parametric AFT cure 

model. The simulations showed that the extended model 

provided more efficient and less biased estimations when 

the ZP estimation method was used. In contrast, the LT 

estimation method performed less satisfactorily. In using 

the ZP estimation method, a large efficiency gain was 

noted when the censoring rate was high. This may be 

because when the censoring rate is high and so is the set 

of subjects with undetermined cured or uncured status, 

adding additional diagnostic data can provide more 

information and improve statistical efficiency. In the 

data example, fitting the extended semi-parametric AFT 

cure model to pediatric bone data shows a significant 

efficiency gain, indicated by smaller standard errors, 

compared to those from the traditional model. 

Conclusion 

The proposed extended semi-parametric AFT cure 

model provides an alternative approach to 

incorporating additional diagnostic information about 

cure. Failure to use such data would be wasteful and 

result in efficiency loss. It is highly recommended that 

when additional cure information is available it should 

be incorporated into the model. In addition, when 

designing and conducting studies, it is useful to devise 

cure diagnostic procedures to collect additional cure 

status information. 
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