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Abstract: We describe a Bayesian adaptive design for early phase cancer 

trials of a combination of three agents. This is an extension of an earlier 

work by the authors by allowing all three agents to vary during the trial and 

by assigning different drug combinations to cohorts of three patients. The 

primary objective is to estimate the Maximum Tolerated Dose (MTD) 

surface in the three-dimensional Cartesian space. A class of linear models 

on the logit of the probability of Dose Limiting Toxicity (DLT) are used to 

describe the relationship between doses of the three drugs and the 

probability of DLT. Trial design proceeds using conditional escalation with 

overdose control, where at each stage of the trial, we seek a dose of one 

agent using the current posterior distribution of the MTD of this agent 

given the current doses of the other two agents. The MTD surface is 

estimated at the end of the trial as a function of Bayes estimates of the 

model parameters. Operating characteristics are evaluated with respect to 

trial safety and percent of dose recommendation at dose combination 

neighborhoods around the true MTD surface. 
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Introduction 

Early phase cancer trials are designed to study 
safety and tolerability of cytotoxic and biologic agents 
and recommend the Maximum Tolerated Dose (MTD) 
for use in future phase II studies. These trials enroll 
patients with late-stage cancer who became refractory 
to all standard and conventional therapy (Roberts et al., 
2004) and the dose allocated to the next cohort of 
patients depends on the dose levels given to all 
previous patients and their Dose Limiting Toxicity 
(DLT) status. 

It is well known that combining cytotoxic and 

biologic drugs lead to targeting various signaling 

pathways. This strategy helps in reducing tumor 

resistance to chemotherapy, an event that is experienced 

by a significant proportion of advanced stage cancer 

patients. The majority of phase I trials use drug 

combinations of several agents. However, most of them 

are designed to estimate the MTD of a single drug for 

fixed dose levels of the others. Such designs may 

recommend a single safe dose for the combination but it 

may not be the optimal combination with respect to 

treatment efficacy. A motivating example is a recent 

phase Ib trial combining the drugs momelotinib, 

capecitabine and oxaliplatin in patients with relapse or 

refractory metastatic pancreatic cancer. Three dose levels 

for momelotinib were selected and two dose levels for 

each capecitabine and oxaliplatin were pre-specified by 

the clinicians and the 3+3 algorithm was used with pre-

determined dose levels escalation. This approach is 

clearly inefficient since it may produce at most one MTD 

and this MTD may not be the optimal efficacious dose. 

In this manuscript, dose levels of two or more drugs are 

allowed to vary during the trial. The goal is then to 

determine a subset of dose combinations that will 

produce the same DLT rate. 

Denote by Aj, j = 1,…, K the K drugs under study and Si 

ϲ R
+ 

be the set of all possible doses of drug Aj. Let x = 

(x1,…, xK) be a dose combination and S = S1×…× SK. Let: 

 

( ) ( )Prob DLT | dose = x = F x,ξ  (1.1) 

 

Be a dose-toxicity model with F a known link 

function and ξ ∈ R
d
 an unknown parameter. By 

definition, the MTD is the set Γ of dose combinations x 

that produce the same DLT rate θ: 
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{ }: ( , )S FΓ θ= ∈ =x x ξ  (1.2) 

 

The DLT rate θ depends on the seriousness of 

treatment related toxicities with typical values selected in 

the interval [0.2, 0.4]. A dose finding trial is a sequential 

dose allocation design used to estimate the set Γ 

efficiently while minimizing the number of patients 

exposed to highly toxic doses. Model based designs for 

estimating one or more than one MTD or have been 

proposed by many authors in the last decade (Thall et al., 

2003; Wang and Ivanova, 2008; Yuan and Yin, 2008; 

Yin and Yuan, 2009a; 2009b; Braun and Wang, 2010; 

Wages et al., 2011a; 2001b; Shi and Yin, 2013; 

Tighiouart et al., 2014; Riviere et al., 2014; Mander and 

Sweeting, 2015; Tighiouart et al., 2016). Except for the 

methods in (Thall et al., 2003; Tighiouart et al., 2014; 

Tighiouart et al., 2016), these designs do not extend to 

the case of continuous dose levels and it is not clear how 

they perform when the number of dose combinations is 

high. In this article, we extend the design proposed in 

(Tighiouart et al., 2014) by exploring the safety and 

tolerability of three drugs with continuous dose levels. 

The algorithm in (Tighiouart et al., 2014) is further 

extended by enrolling cohorts of three patients receiving 

different dose combinations determined according to 

Escalation with Overdose Control (EWOC) criteria 

(Babb et al., 1998; Tighiouart et al., 2005; Tighiouart and 

Rogatko, 2010). 

The manuscript is organized as follows. In section 

2, we describe the Bayesian model and the adaptive 

trial design for assigning dose combination to each 

cohort. In section 3, we present the operating 

characteristics of the proposed method with respect to 

safety of the design and efficiency of the estimate of 

the MTD. Section 4 contains some final remarks and 

discussion of possible extensions. 

Materials and Methods 

Dose-Toxicity Model 

Let A, B and C be cytotoxic agents and suppose that 

the doses of these agents are continuous and 

standardized to be in the interval [0, 1]. We consider the 

dose-toxicity model of the form: 

 

0 1 2 3
Prob( 1| , , ) ( )zx y z F x y xyzδ β β β β η= = + + + +  (2.1) 

 

where, δ is the binary indicator of DLT, δ = 1 if a patient 

given the dose combination (x, y, z) has DLT within one 

cycle of therapy and δ = 0 otherwise, x is the dose level 

of agent A, y is the dose level of agent B, z is the dose 

level of agent C and F is a known cumulative 

distribution function. 

We assume that the three drugs are synergistic so 

that η > 0. We further assume that that the probability 

of DLT increases with the dose of any one of the agents 

when the other two are held constant. A necessary and 

sufficient condition for this property to hold is to 

assume βk > 0, k = 1, 2, 3. The MTD is any dose 

combination (x*, y*, z*) such that: 

 
* * *,Prob( 1| , ) .zx yδ θ= =  (2.2) 

 

It follows from (2.1) and (2.2) that the MTD is the set 

of dose combinations: 

 
* * * * * * *

1 * *

0 1 2

* *

3

( , , ) : 0 , , 1,

( )

x y z x y z z

F x y

x y

Γ θ β β β
β η

−

 ≤ ≤
 

= − − − 
= + 

 (2.3) 

 

We further reparameterize model (2.1) in terms of 

ΓA|00, the MTD of drug A when the level of drugs B 

and C are at their lowest available doses, ΓB|00, the 

MTD of drug B when the level of drugs A and C are at 

their lowest available doses, ΓC|00, the MTD of drug C 

when the level of drugs A and B are at their lowest 

available doses, ρ0, the probability of DLT at the 

minimum available doses of agents A, B and C 

corresponding to x = y = z = 0 and the interaction 

parameter η. This reparameterization is convenient to 

clinicians since prior information on ρ0, ΓA|00, ΓB|00 and 

ΓC|00 may be available from other trials. In this 

manuscript, we will assume that 0 < ΓA|00, ΓB|00, ΓC|00 < 

1, i.e., the MTD of each agent when the other ones are 

held at their minimum available doses in the trial is 

within the range of available doses in the trial. It 

follows that: 

 
1

0 0

1 1

1 0 |00

1 1

2 0 |00

1 1

3 0 |00

( )

( ( ) ( )) /

( ( ) ( )) /

( ( ) ( )) /

A

B

C

F

F F

F F

F F

β ρ

β θ ρ Γ

β θ ρ Γ

β θ ρ Γ

−

− −

− −

− −

 =


= −


= −
 = −

 (2.4) 

 

The MTD in (2.3) becomes: 

 

( )( )
( )( )

* * * * * * *

1 1 * *

0 |00 |00

1 1 * *

0 |00

( , , ) : 0 , , 1,

( ) ( ) 1 / /

( ) ( ) /

A B

C

x y z x y z z

F F x y

F F x y

θ ρ Γ ΓΓ

θ ρ Γ η

− −

− −

 ≤ ≤
  − − −=  = − +  

 (2.5) 

 

Let Dn = {(xi, yi, zi, δi), i = 1,…, n} be the data after 

enrolling n patients in the trial. Let G(θ, ρ0) = F
−1

(θ) − 

F
−1

(ρ0). The likelihood function for the model 

parameters is: 
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( )

( )

0 |00 |00 |00

0 |00 |00 |00

1

1

0 |00 |00 |00

( , , , , | )

( , , , , ; , , )

1 ( , , , , ; , , )

i

i

A B C n

n

A B C i i i

i

A B C i i i

L D

H x y z

H x y z

δ

δ

ρ Γ Γ Γ η

ρ Γ Γ Γ η

ρ Γ Γ Γ η

=

−

=

× −

∏  (2.6) 

 
where: 

 

0 |00 |00 |00

1 0 0
0

|00 |00

0

|00

( , , , , ; , , )

( , ) ( , )
( )

( , )

A B C i i i

i i

A B

i i i i

C

H x y z

G G
F x y

F
G

z x y z

ρ Γ Γ Γ η

θ ρ θ ρ
ρ

Γ Γ

θ ρ
η

Γ

− + + 
 =  
+ +  
 

 (2.7) 

 

Prior and Posterior Distributions 

Equation 2.4 implies that 0 <ρ0<θ since βk> 0, k 

=1,2,3. We assume that ρ0, ΓA|00, ΓB|00, ΓA|00 and η are 

independent a priori with ρ0/θ ~beta(a0, b0), ΓA|00 ~ 

beta(a1, b1), ΓB|00 ~ beta(a2, b2), ΓC|00 ~ beta(a3, b3) and η 

~ gamma(a, b) with mean E(η) = a / b and variance 

Var(η) = a / b
2
. Under lack of prior information about the 

probability of DLT at the minimum dose combination 

(0,0, 0) and the MTDs of agents A, B and C when used as 

single agents, we take ak = bk = 1, k = 0, 1, 2, 3 which 

corresponds to a uniform prior for ρ0in [0, θ] and uniform 

priors for the parameters ΓA|00, ΓB|00, ΓC|00 in [0, 1]. 

Following the work in (Tighiouart et al., 2014), we 

specify a diffuse prior distribution on the interaction 

coefficient η as follows. To select the prior mean for η, 

substitute the prior mean values of ρ0, ΓA|00, ΓB|00, ΓC|00 in 

place of these parameters in (2.5) and consider the MTD 

surface passing through the four points with coordinates 

(0, E(ΓB|00), 0), (E(ΓA|00), 0, 0), (0, 0, E(ΓC|00)) and 

(E(ΓA|00)/6, E(ΓB|00)/6, E(ΓC|00)/6). The prior mean of η is 

solution to the equation: 

 

 

( )
( )

( )

|00 |00

0

|00 |00

|00

0 |00

|00 |00

1 ( ) / 6 / ( )
( , ( ))

( ) / 6 / ( )
( ) / 6

( , ( )) / ( )

( ) ( ) ( ) / 36

A A

B B

C

C

A B

E E
G E

E E
E

G E E

E E E

Γ Γ
θ ρ

Γ Γ
Γ

θ ρ Γ

η Γ Γ

 −
 
 − =

+

 (2.8) 

 

It follows that: 

 

( )1 1

0

|00 |00 |00

108 ( ) ( ( ))
( )

( ) ( ) ( )A B C

F F E
E

E E E

θ ρ
η

Γ Γ Γ

− −−
=  (2.9) 

 

The idea here is to draw the MTD surface Γ0 

passing through the points of average MTDs (E(ΓA|00), 

0, 0), (0, E(ΓB|00), 0) and (0, 0, E(ΓC|00)) when the 

interaction coefficient is 0 (see the red surface in Fig. 1). 

 
 
Fig. 1. MTD surface when the interaction parameter η = 0 (red) 

and when the interaction parameter η = 790 (blue). The 

green line stretches from the minimum dose 

combination (0, 0, 0) to the centroid of the MTD surface 

shown in red 

 

Then, draw a line passing through (0, 0, 0) and the 

centroid of the MTD surface Γ0 (see the green line in 

Fig. 1). MTD surfaces passing through the points of 

average MTDs (E(ΓA|00), 0, 0), (0, E(ΓB|00), 0) and (0, 0, 

E(ΓC|00)) will cross the green line as η increases. 

Among these surfaces, we select the one passing 

through the midpoint M of the green line with 

coordinates (E(ΓA|00)/6, E(ΓB|00)/6, E(ΓC|00)/6). This 

surface is shown in blue in Fig. 1. The value of η 

corresponding to this MTD surface is found by solving 

Equation 2.8 and the solution is selected as the prior 

expected value for η and is given by (2.9). A large 

variance is selected for this prior. 

Using Bayes rule, the posterior distribution of the 

model parameters is proportional to the product of the 

likelihood and prior distribution: 

 

( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

00

1 1 2

2 3 3

0 |00 |00 |00

0 |00 |00 |00

1

1

0 |00 |00 |00

111

0 0

1 1 1

|00 |00 |00

1 1 1

|00 |00 |00

( , , , , | )

( , , , , ; , , )

1 ( , , , , ; , , )

1

1

1 1

i

i

A B C n

n

A B C i i i

i

A B C i i i

baa b

a b a

A A B

a a a

B C C

D

H x y z

H x y z

e

δ

δ

η

π ρ Γ Γ Γ η

ρ Γ Γ Γ η

ρ Γ Γ Γ η

η ρ ρ

Γ Γ Γ

Γ Γ Γ

=

−

−−− −

− − −
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∝

× −

−

× −

− −

∏

 (2.10) 
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The software Win BUGS (Lunn et al., 2000) and 

JAGS were used to estimate features of the posterior 

distribution of these parameters and estimate the operating 

characteristics of the adaptive design described below. 

Trial Design 

Dose escalation or de-escalation is designed by 

treating successive cohorts of three patients. For each 

cohort, each patient receives a dose of one agent 

determined using EWOC while holding the other two 

agents constant. For example, if agents A and B are held 

constant at levels x and y, respectively, the dose of agent 

C is z such that the posterior probability that z exceeds 

the MTD of agent C given A = x and B = y equals to a 

feasibility bound α. The algorithm proceeds as follows: 

 

1. Each patient in the first cohort of three patients 

receives the same dose combination (x1,y1, z1) = (0, 

0, 0). Let D3 = {(x1, y1, z1, δ1), (x2, y2, z2, δ2), (x3, y3, 

z3, δ3)} 

2. In the second cohort of three patients, patient 4 

receives dose (x4, y1, z1), patient 5 receives dose (x2, 

y5, z2), patient 6 receives dose (x3, y3, z6), where x4is 

the α-th percentile of 
1 1| , 3( | )A B y C z Dπ Γ = = , the posterior 

distribution of the MTD of drug A given that B = y1, 

C = z1, y5 is the α-th percentile of 
1 1| , 3( | )B A x C z Dπ Γ = =  

and z6 is the α-th percentile of 
1 1| , 3( | )C A x B y Dπ Γ = = . 

These posterior distributions are easily obtained 

from the MCMC output since ΓA|B = y, C = z, ΓB|A = x, C = z 

and ΓC|A = x, B = y can be expressed explicitly in terms 

of the model parameters ρ0, ΓA|00, ΓB|00, ΓC|00 and η 

3. In the i-th cohort of three patients, patient 3i -2 

receives dose (x3i-2, y3i-4, z3i-3), patient 3i -1 receives 

dose (x3i-5, y3i-1, z3i-3), patient 3i receives dose (x3i-5, 

y3i-4, z3i), where 

| , | ,3 4 3 3 3 5 3 3

1 1

3 2 3 3 3 1 3 3( | ), ( | )
A B y C z B A x C zi i i i

i i i ix D y DΓ ΓΠ α Π α
= = = =− − − −

− −
− − − −= =

and 
| ,3 5 3 4

1

3 3 3( | ).
C A x B yi i

i iz DΓΠ α
= =− −

−
−=  Here, 

| ,

1 ( | )
A B y C z iDΓΠ α

= =

− denotes the inverse cdf of the 

posterior distribution | ,( | )A B y C z iDπ Γ = =
 

 4. Repeat step 3 until n patients are enrolled to the trial 

or the following stopping rule holds 

 

Stopping Rule 

Since 0 < ρ0< θ, the posterior probability of DLT at 

the minimum dose combination is always bounded by 

the target probability of DLT θ. Therefore, ad hoc 

stopping rules are necessary for trial conduct and are 

discussed with the clinician. For example, a decision to 

suspend accrual to the trial and revise the dose range 

available in the trial may be made if 2 or 3 DLTs are 

encountered in the first cohort of patients treated at the 

minimum dose combination (0, 0, 0). 

At the conclusion of the trial, the MTD surface is 

estimated using (2.5) as: 

 

( )( )
( )( )

* * * * * * *

1 1 * *

0 |00 |00

1 1 * *

0 |00

( , , ) : 0 , , 1,

ˆ ˆ ˆˆ( ) ( ) 1 / /

ˆˆ ˆ( ) ( ) /

A B

C

x y z x y z z

F F x y

F F x y

Γ θ ρ Γ Γ

θ ρ Γ η

− −

− −

≤ ≤

= − − −
=

− +

 
 
 
 
 

 (2.11) 

 

where, 0 |00 |00 |00
ˆ ˆ ˆˆ ˆ, , , ,A B Cρ Γ Γ Γ η  are the posterior medians 

given the data Dn. 

Simulation Studies 

Simulation Set Up and Scenarios 

We evaluate the performance of this method by 

deriving the operating characteristics assuming a 

logistic link function F(u) = (1 + e
–u

)
–1 

for the true and 

working model. Operating characteristics under model 

misspecification will be investigated in future work. 

The target probability of DLT is fixed at θ = 0.33 and 

the trial sample size is n = 60 patients. We considered 

8 scenarios for the true MTD surface and the 

corresponding parameters (ρ0, ΓA|00, ΓB|00, ΓC|00, η) are 

found in Table 1. These scenarios reflect different 

locations for the true MTD surface in the Cartesian 

space with varying distances from the minimum dose 

combination. 

We used uniform priors for ρ0, ΓA|00, ΓB|00, ΓC|00 to 

reflect a lack of prior knowledge about the toxicity 

profiles of the three agents and using (2.9), the prior 

mean for η is E(η) = 790. We took a large prior variance 

for η, Var(η) = 790 and for each scenario, we simulated 

m = 1000 trials. In all simulations, we used a single 

MCMC chain to summarize posterior estimates after 

discarding the first 5000 samples and another 5000 

updates to estimate features of the posterior distributions 

of the model parameters. No thinning of the MCMC 

chains were used and convergence was assessed using 

the package CODA in R. 

Design Operating Characteristics 

For each scenario, we present an estimate of the 

MTD surface: 

 

( )( )
( )( )

* * * * * * *

1 1 * *

0 |00 |00

1 1 * *

0 |00

( , , ) : 0 , , 1,

( ) ( ) 1 / /

( ) ( ) /

A B

C

x y z x y z z

F F x y

F F x y

θ ρ Γ ΓΓ

θ ρ Γ η

− −

− −

 ≤ ≤
  − − −=  = − +  

 (3.1) 

 

where, F(·) is the logistic function and 

0 |00 |00 |00, , , ,A B Cρ Γ Γ Γ η
 
are the average posterior medians 
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of the parameters ρ0, ΓA|00, ΓB|00, ΓC|00, η from all m = 

1000 trials. For trial efficiency, we present the 

pointwise average relative minimum distance from the 

true MTD surface to the estimated MTD surface d(x, y, z) 

as described in (Tighiouart et al., 2014; 2016) for two 

drugs. For l = 1,…,m, let Γl be the estimated MTD 

surface and let Γtrue be the true MTD surface. For 

every point (x, y, z) ∈ Γtrue, let: 

 

{ }
( )

* *

( )

( , , )

1/ 2
2 2 * 2

( , , ):( , , )

( ' )

( ) ( ) ( )min
l

l

x y z

x y z x y z

d sign z z

x x y y z z
Γ∗ ∗ ∗ ∗

∗ ∗

∈

= −

× − + − + −  (3.2) 

 

where, z΄ is such that (x, y, z΄) ∈ Γl. This represents the 

minimum relative distance of the point (x, y, z) on the 

true MTD surface to the estimated MTD surface Γl. If 

the point (x, y, z) is below Γl, then ( )

( , , )

l

x y zd  is positive. 

Otherwise, it is negative. Let: 

 

1 ( )

( , , ) ( , , )

1

m
l

x y z x y z

l

d m d−

=

= ∑  (3.3) 

 

This is the pointwise average relative minimum 

distance from the true MTD surface to the estimated 

MTD surface which can be interpreted as the pointwise 

average bias in estimating the MTD. The last measure of 

efficiency we consider is: 

 

( )1 ( )

( , , )

1

| | ( , , )
m

l

x y z

l

m I d p x y z−

=

≤ ∆∑  (3.4) 

 

where, ∆(x, y, z) = (x
2
 + y

2
 + z

2
)

0.5
. This is the point 

wise percent of trials for which the minimum distance 

of the point (x, y, z) on the true MTD surface to the 

estimated MTD surface Γi is no more than (100×p)% 

of the true MTD. This can be interpreted as the point 

wise percent of MTD recommendation for a given 

tolerance p. 

Results 

Trial Safety 

Table 1 shows that the average percent of DLTs 

varies between 16 and 33% across all 8 scenarios. 

This average DLT rate tends to be lower when the true 

MTD curve is farther away from the minimum dose 

combination, consistent with the results drug 

combinations with two agents (Tighiouart et al., 

2014). Table 1 also shows that the percent of trials 

with an excessive number of DLTs as defined by a 

DLT rate exceeding θ + 0.1 is essentially 0. Based on 

these results under these scenarios, we conclude that 

the trial design is safe. 

Table 1. Operating characteristics summarizing trial safety 

 Average % Trials: % Trials: 

Scenario  DLT rate DLT rate 

(ρ0, ΓA|00, ΓB|00, ΓC|00, η) % DLTs > θ + 0.05 > θ + 0.10 

(1) 24.04 0 0 

(0.02,0.3,0.8,0.7,400) 

 (2) 28.78 0.9 0 

(0.02,0.4,0.4,0.4,500) 

 (3) 27.75 0.2 0 

(0.02,0.9,0.3,0.3,300) 

 (4) 16.1 0 0 

(0.02,0.9,0.9,0.7,300) 

 (5) 32.78 8.6 0.4 

(0.02,0.3,0.3,0.3,300) 

 (6) 28.83 0.7 0 

(0.02,0.3,0.3,0.7,350) 

 (7) 22.71 0 0 

(0.02,0.5,0.5,0.8,400) 

 (8) 24.76 0 0 

(0.02,0.7,0.5,0.3,500) 

 

Trial Efficiency 

We discuss only the first 4 scenarios due to space 

and manuscript length considerations. Figure 2a 

shows the plot of the true(red) and estimated (blue) 

MTD surface under scenario 1 as described by its true 

parameter values in Table 1. The estimated MTD 

surface was obtained using (3.1). We can see that the 

estimated MTD surface is close to the true MTD 

surface except at the edge along drug A. Figure 2b 

shows the contours of the average bias varying from -0.03 

to 0.04 for all combinations (x, y) such that (x, y, z) 

belongs to the true MTD surface. This shows that the 

average bias is negligible throughout all dose 

combinations on the MTD surface and that the 

average bias tends to increase as we approach dose 

combination (0.3, 0, 0). Figure 2a and c shows the 

contours of the pointwise percent selection for 

tolerances p = 0.1, 0.2. Using a tolerance of p = 0.1, 

the percent selection tends to be low around the 

middle part of the true MTD surface (30%) and 

increases as we move away from the center but 

decreases again around the edge defined by dose 

combination (0.3, 0, 0). When using the tolerance p = 

0.2, the percent selection is very high across all the 

dose combinations on the true MTD surface (80% or 

higher). This can also be seen from the 3-dimensional 

plots of the pointwise percent selection under the four 

scenarios in Fig. 7 with percent selection varying 

between 70 and 100% for essentially all dose 

combinations. Similar conclusions can be made for 

scenarios 2, 3 and 4 shown in Fig. 3-5. These scenarios 

also show  that  the pointwise  average  bias is higher 

at the edges of the surface when the true MTD surface 

is  close  to  the  minimum dose combination (0, 0, 0).  
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 (a) (b) 
 

 
 (c) (d) 
 
Fig. 2. (a) True (in red) and estimated (in blue) MTD surface. The dots represent the dose combinations from the last simulated trial, green 

indicating no DLT and pink DLT, (b) dose combination contours for selected values of the pointwise average bias, (c) dose 

combination contours for selected values of the pointwise percent selection with tolerance p = 0.1 and (d) with tolerance p = 0.2 
 

 
 (a) (b) 
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 (c) (d) 
 
Fig. 3. (a) True (in red) and estimated (in blue) MTD surface. The dots represent the dose combinations from the last simulated trial, green 

indicating no DLT and pink DLT, (b) dose combination contours for selected values of the pointwise average bias, (c) dose 
combination contours for selected values of the pointwise percent selection with tolerance p = 0.1 and (d) with tolerance p = 0.2 

 

 
 (c) (d) 
 

 
 (c) (d) 
 
Fig. 4. (a) True (in red) and estimated (in blue) MTD surface. The dots represent the dose combinations from the last simulated trial, green 

indicating no DLT and pink DLT, (b) dose combination contours for selected values of the pointwise average bias, (c) dose 

combination contours for selected values of the pointwise percent selection with tolerance p = 0.1 and (d) with tolerance p = 0.2 
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 (a) (b) 
 

 
 (c) (d) 
 
Fig. 5. (a) True (in red) and estimated (in blue) MTD surface. The dots represent the dose combinations from the last simulated trial, 

green indicating no DLT and pink DLT, (b) dose combination contours for selected values of the pointwise average bias, (c) dose 

combination contours for selected values of the pointwise percent selection with tolerance p = 0.1 and (d) with tolerance p = 0.2 
 

 
 (a) (b) 
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 (c) (d) 

 
Fig. 6. True (in red) and estimated (in blue) MTD surface for scenarios 1−4. The dots represent the dose combinations from the last 

cohort of three patients from all m = 1000 simulated trial, green indicating no DLT and pink DLT 

 

 
 (a) (b) 
 

 
 (c) (d) 
 
Fig. 7. Three dimensional plots of the pointwise percent selection using a tolerance p = 0.2 for scenario 1 (top left), scenario 2 (top 

right), scenario 3 (bottom left) and scenario 4 (bottom right) 
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Figure 6 shows the true and estimated MTD surface 

under scenarios 1-4 along with the last dose combinations 

assigned to the last cohort of 3 patients from all 1000 

simulated trials. After viewing these graphs from several 

angles, we found that the last dose combinations tend to 

cluster around the true MTD curve. Based on these 

results and others from scenarios not shown here, we 

conclude that the design is practically safe and relatively 

efficient in general in recommending the MTD surface 

estimate using the tolerance p = 0.1. 

Conclusion 

The purpose of this manuscript was to extend the 

two-drug combination early phase trial design of 

Tighiouart et al. (2014) by using three agents and 

treating successive cohorts of three patients with 

different combinations for better exploration of the 

dose combination space. We showed that this is 

feasible using sample size of n = 60 patients under 

some scenarios for the true MTD surface. To the best of 

our knowledge, this is the first method geared towards 

estimating the MTD surface of three drugs based on 

continuous dose levels of the agents under 

consideration. The sample size used in our simulations 

is arbitrary and it corresponds to the previously used 

sample size of n = 40 for drug combinations of two 

agents (Tighiouart et al., 2014; 2016). Operating 

characteristics using a smaller sample size will be 

investigated in future work. We note that this sample 

size is conservative compared n = 60 for drug 

combinations of two agents studied in (Yin and Yuan, 

2009a; 2009b). We also note that the priors used are 

vague and in practice, prior information about each 

agent can be used to calibrate the priors on ρ0, ΓA|00, 

ΓB|00, ΓC|00 and similar operating characteristics may be 

obtained with a smaller sample size. The use of 

continuous dose levels is very common in clinical 

oncology research (Boodman, 2010). The method we 

presented is model based and the design alternates the 

use of single agent EWOC conditional on the dose level 

of the other agents. The dose-toxicity model we used 

only includes a three-way interaction term since 

including two-way interactions will result in three extra 

parameters. We plan to study the operating 

characteristics of this method under model 

misspecification where the DLT responses are 

generated from a class of models that include all two-

way interaction terms in addition to the three-way 

interaction term. Prior information about toxicity data 

from each drug when used as single agents can be 

easily accounted for in the model but it is not required 

otherwise. We used vague priors for these parameters 

and proposed an ad hoc method to place a weakly 

informative prior distribution on the interaction term 

between the three drugs. 

The assumption that the MTDs ΓA|00, ΓB|00 and 

ΓC|00are within the range of doses available in the trial 

may be too restrictive, especially if agents any of these 

agents were never used as single agents in human phase I 

trials. We plan to relax this condition using alternative 

model reparameterizations as in Tighiouart et al. (2016) 

in our future work. We also plan to study the 

performance of the proposed design when the true model 

does not belong to the class of dose-toxicity models in 

(2.1). Finally, we plan to assess the performance of the 

method when the doses of the three agents are 

discretized as in (Tighiouart et al., 2016) and compare it 

to the method of (Yin and Yuan, 2009b) after modifying 

the last step of the algorithm to allow estimation of more 

than one MTD. 

Since the proposed method gives an estimated MTD 

surface, innovative phase II designs are needed to 

identify dose combinations on this surface with desirable 

level of efficacy. This can be established by constructive 

an adaptive design treating consecutive small cohorts of 

patients and update the efficacy surface as the treatment 

response is resolved. Such approach is under work in 

two-drug combinations and some preliminary results can 

be found in (Tighiouart et al., 2015). 
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