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Abstract: Problem statement: Logistic regression, perhaps the most frequenigduregression
model after the General Linear Model (GLM), is exdiwely used in the field of medical science to
analyze prognostic factors in studies of dichotosnoutcomes. Unlike the GLM, many different
proposals have been made to measure the explaamidion in logistic regression analysis. One @f th
limitations of these measures is their dependentythe incidence of the event of interest in the
population. This has clear disadvantage, espeacidign one seeks to compare the predictive abifity o
a set of prognostic factors in two subgroups obpytation.Approach: The purpose of this article is
to study the base-rate sensitivity of severahfRasures that have been proposed for use in logisti
regression. We compared the base-rate sensitifithiieen R type parametric and nonparametric
statistics. Since a theoretical comparison waspogsible, a simulation study was conducted for this
purpose. We used results from an existing datasstnulate populations with different base-rates.
Logistic models are generated using the covariaieies from the dataseResults: We found
nonparametric R measures to be less sensitive to the base-ratorapared to their parametric
counterpart. Logistic regression is a parametril nd use of the nonparametrié Ray result
inconsistent results. Among the parametricnieasures, the likelihood ratio® Bppears to be least
dependent on the base-rate and has relatively isupaterpretability as a measure of explained
variation. Conclusion/Recommendations: Some potential measures of explained variation are
identified which tolerate fluctuations in base-redasonably well and at the same time provide a goo
estimate of the explained variation on an undegyaontinuous variable. It would be, however,
misleading to draw strong conclusions based onltherconclusions of this research only.
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INTRODUCTION variable is dichotomous, logistic regression masi¢he
most popular choice. In most instances, interest il

The Search for R analogs in logistic regression: determining how well the model predicts the proligbi
Prediction of future outcomes based on a giverobet of group membership with respect to the dependent
covariates is a key component of regression arglysi  variable. Unlike the OLS regression, more than zedo
Ordinary Least Squares (OLS) regression analyisés, t of R? measures have been suggested for the logistic
predictive accuracy of a linear model is often jedg regression model (Mittlbock and Schemper, 1996;
using the R statistic. This statistic has several Menard, 2000; DeMaris, 2002; Liao and McGee, 2003).
mathematically equivalent definitions and multiple But the best form of Ris not clear yet. Mittlbock and
interpretations such as the proportion of variatiothe  Schemper (1996) reviewed 12 measures of explained
dependent variable explained by the regressors, wariation for logistic regression, Menard (200 and
measure of the strength of relationship between th®eMaris (2002) seven, with some overlap. Other@msth
covariate(s) and the response and the squardthve proposed adjusted? Ranalogs (see, Liao and
correlation between the observed and the predicteMcGee, 2003; Mittlbock and Schemper, 2002), for
response. This statistic is usually not used agasore exmaple). Recommendations based on various
of goodness-of-fit as other tools are better suitethat researches were different as different criteriaewesed
purpose (Hosmeet al., 2011). When the outcome to evaluate the Ranalogs.
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Kvalseth's sixth criteria for a “good™Rtatistic for ~ R?*measures in logistic regressionwWe present some
the linear model (Kvalseth, 1985) requires ah R of the R measures which have been proposed in the
measure to be comparable across different modtdd fi literature to estimate explained variation in ldigis
to the same data. Menard (2000) extended thisrierite regression. Consider n observations Xy on a binary
requiring an R measure to be comparable not onlyresponse variable y and a covariate vector x;=.{).
across different predictors but also across differe The relationship between y and x is modeled by a
dependent variables and different subsets of tteseila  logistic model Eq. 1:

With the help of an empirical example Menard (2000)
demonstrated that’Rneasures in logistic regression are Pr(y,
sensitive to the incidence of the event of intereghe '
population. Even if the coefficients associating
particular variables to the outcome are the same iwheref is a (pr1)-dimensional parameter vector. We
differlen_t popyl;;;ttig_r;fs, the y(;’;tlue of the? Efgé) denote the estimates from a logistic regression by
opulations with different incidence rates ten Sy — . By = 1= oo NN
giffperent. This phenomena is sometimes referrethas Prey _%l).‘ =) .and _ Priy __l)_ y= 2 O /).
“base-rate” problem (Menard, 2000). For logistic model with binary y it can be showratth
~ Having an R measure that depends on they=r, the mean of conditional probability of success
incidence of the response has disadvantage if ®ne o 51 possible combinations of the covariate ealu
seeking to compare the predictive ability of two
different sets of prognostic factors or to comptre  Qrdinary Least Squares R(R2.): It is a natural
same set of factors in two subgroups of a popuiatio . - T
extension of the coefficient of determination in ®L

in two different populations. If a%measure depends on X . o i
the underlying incidence of the disease under stoely ~ '€9ression to the case of a binary y and is giyeled 2:

the R values for these two cases could differ because . .

of the difference in the underlying incidence arat n R2 =1->"(y, -7 ) /D (y - V) (2)
because of different predictive abilities. This = =

phenomena is illustrated with the help of an eroglri . ) 2, - )
study in the following subsection. Gini's Concentration R“(R%): Gini's concentration

measure c(m=1-Y 3, m'is proposed as a measure of

b €y

=1x)=m (x e px

An empirical example: The data used in this example ] i .
are a subset of the Framingham Heart Study wittflispersion of a nominal random varialléhat assumes
known values of the covariates (age, systolic bloodhe integral values j, k j < s, with probability g
pressure, serum cholesterol, current cigarette srgok (Haberman, 1982). If the outcome variable is bipary
status and diabetic status). A logistic model vitte  C(m) reduces to & (1-1), wherertis the probability that
ten-year incidence of Coronary Heart Disease (CHD)=1. The Gini's Concentration’s the given by Eq. 3:
was estimated and thirteen differerftélﬁeasures were

calculated. Table 1 presents estimated Ror each of 2 A N (A ) TRl

the thirteen R measEres. The measures are larger forRG -t ;Tﬁ =R vyl ®)

the female group than the male group, with onlgw f

exceptions. If we had performed OLS regression, w&he Likelihood Ratio R*(R?): Let L, be the
would claim that we are able to predict CHD betfer |ikelihood of the model containing only the intepte
women than in men. However, women developed CHDypq |, pe the likelihood of the model containing all loét
at only half the rate that men did and if our measu regiciors, The quantity =-2logLy represents the SSE
are affected by the underlying rate of diseasen the g, the full model and = -2logL, represents the SSE of
would be misleading to make such a claim. the model with only the intercept included, analtigthe

For a more detailed examination of the effectef t total sum of squares (SST) in OLS. Thus the likelh
base-rate on potential measures of explained vajan _ . L )
ratio R for a logistic model becomes Eq. 4:

we conducted a simulation study.

The purpose of this article is to study the bage-r
sensitivity of several Rmeasures in logistic regression. R} =1-log(L, )/log(L,) (4)
We use an actual dataset to simulate populatiotis wi
different base-rate. Logistic models are generagdg R2 pBased Upon Geometric Mean Squared

actually occurring covariate values. The organizabf 2. . : :
the study is as follows: We introduce thé iReasures Improvement (R},) - In the linear regression model with

to be examined. Simulation methods and simulatiotormally distributed errors with zero mean and camts
results are discussed. Summary and concluding ksmarvariance it can be shown that® Re1-(Lo/Ly)”"
are given. (DeMaris, 2002).

12



Am. J. Biostatistics 2 (1): 11-19, 2011

Table 1: Male and female’Rrom a single cohort study
R? R%.s R R? R? R? R2 R, ACU LS T R? R?

Females
(7t=0.058) 0.060 0.060 0.062 0.110 0.048 0.138.047 0.151 0.756 0.003 0.029 0.512 0.043
Males
(Tt=0.119) 0.040 0.040 0.048 0.059 0.042 0.080.041 0.097 0.686 0.006 0.029 0.372 0.043

Since the method of maximum likelihood is the priyna squared correlation between y andits sample fitted
method of parameter estimation in the logisticvalue according to the model. The same idea is
regression, it seems quite natural to extend tiEept  extended to the case of logistic regression andrthe
of explained variation to the logistic regressiefting.  analog is obtained by squaring the correlation
Maddala (1983) and Magee (1990) proposed thoefficient between y and as Eq. 9 (Maddala, 1983):
following R? analog Eq. 5:

[Zinﬂyiﬁ _nyzlz
nyd-y)> 5 @ -yy

R’ =[corr(y,mf = (9)

R? =1- ef[ln(mﬂn(u)}
2 =

=1 /L, " (5)

Since l< Ly, R;must be less than one. The Squared Spearman's Rho {Z): Spearman's Rho is

maximum attainable value fag? in Eg. 5 is maxR%)  simply the Pearson's product moment correlation
=1-(Ly)*". Nagelkerke (1991) proposed adjustimg between ranks of y and. If we denote the rank_ of z by
R(z) and mean of the ranks of both variables by

by its maximum1- 5", to produce Eq. 6: R=(n+1)/2 then Spearmansis given by Eq. 10:

R} :1—(1L—j/L'Z;,—y) (6) . 2RRO)-RRE)-R) 10)
T 2 AR -RIZLRE)-RY

Contingency Coefficient R (R2): Aldrich and Nelson

(1984) proposed an’Ranalog based on the modzHi- Spearman's Rho is very close to Pearson's product
squared statistics G = -2log (Ly/Ly). It is a variant of moment correlation in normally distributed samples.

the contingency coefficient and is given by Eq. 7: For notational consistency, we will us to denote
squaredd hereafter.
R2 =G, / (G, + n). (7
Squared Kendall's ts (t2andt?): Kendall (1990)
R? has the same mathematical form of the squareduggested three possible coefficients, which he
contingency coefficient and as such cannot equaflesignated as,, 1, andt.. Only the first two of these
one, even for a model that fits the data perfectlycoefficients are considered for our simulation gtud
because of the addition of the sample size in théendall's % and r; are defined respectively as Eq. 11
denominator. Because of this limitation, Hagle andand 12:
Mitchell (1992) proposed to adjusR? by its

maximum to produce Eq. 8:

_ ZiqSign(){ -y )signfy -7 )
E n(n-1)/2 (11)
R%, =R% /max(R,) )
And:

. = -2ylogy+ (-7)logl-"Y)] | o
Where, M (R abiogys - yoa v 10 - 2SOy -y )SOnG -7 )

(12)

y=YIy, /n is the sample proportion of cases for which ’ \/isigrf (y ‘Y)Z<,- sigrt -7 )
y=1.

1ifz>0
Squared Pearson correlation @2): In linear  \here, sign(z) is defined as sign (z)& if z=0
regression R is mathematically equivalent to the -1 if z>0.
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Squared Somers'd:Under the hypothesis that y causeswhere,m(x) denotes conditional probability of disease
or predictsit, Somers (1962) proposed to ugg and in the diseased. The last equality follows becaishe

for the hypothesis thatt causes of predicts y, the independence of the conditional probabilities ia tivo

proposed coefficient ig .. The coefficients are defined groups. Thus AUC. represents the_ probability that a
o randomly chosen diseased subject is correctly rated

respectively as Eq. 13 and 14: ranked with greater suspicion than a randomly chose
non-diseased subject.

«isign - signgt -
Ay = L Zg(ﬁ,gn)z( ()M ?y@) iR (13) MATERIALS AND METHODS
Simulation study: Consider a response variable Y and
_ > gsign(y — y )sign -7 ) 14 a covairate vector X = (XXz,... X )". Let us further
= > sigr @ — 11 ) (14) " consider m different populations or m subsets @f th

same population and assume that each of the ctasria
X1,X2,...Xp has the same effect on the outcome variable
Y in all populations (i.e. fixed effect across the
populations) but each population has different
proportions of successes (Y = 1). Using the lagist
model, the odds of success i fr =1, 2,..., m)
population is given by Eq. 16:

with sign (z) defined as above. Somers' d's pemndtir
pairs tied on y only, in directional (asymmetric)
hypotheses in which y causes or predigéts and to
penalize for pairs tied ort only, in hypotheses in
which & causes or predicts y. Kendalltg is the
geometric average of both asymmetric Somers' d, i.e
1, =./d,d,. . Because of this relationship, which is the ®©(x) =e*" +B'x,r=1,2,...,n (16)
same as the relationship between the classical
regression coefficients and the product momen
correlation (f= b, by), it is often viewed as an analog
of a regression rather than a correlation coefiiiciEor
notational consistency, we will us®? to denote
squaredd,;, , hereafter. This gives? =¥ +log(t). It follows that for a
given t>1, 1 (x) > (x) . Wheren® = p© (Y = 1) is
Area Under ROC Curve (AUC): Suppose that the the base-rate in thd" population. Therefore, by fixing
population under study can be divided into two sub-the odds ratio to some constant t > 0, it is pdsdib
populations based on the status of the outcomeblari find a g, which can be used to generate new Y* with odds

Y: D (diseased) if Y = 1 an@ (not diseased) if Y = 0. of success t times the odds success in the origgital

The odds ratio of'] population relative to the"
bopulation is then given by Eq. 17:

R=¢&" - =t>0 (17)

Let F (.) and K (.) be the CDFs oft(x), the conditional To design our simulation study, we elected to take
probability of the outcome of interest, in D amd,  advantage of naturally occurring covariate valugs b
respectively. LettOR be such that: employing existing dataset to generate true lagisti

regression models. The data was a subset of the

Y={l if n(x) zc, Framingham Heart Study data and consisted of 4,123

0 otherwise Men and women examined at a baseline examination

and followed for 10 years. During the next 10 years
For a given value of c, the sensitivity and 370 (about 9%) developed Coronary Heart Disease
specificity of a classification model are defined a (CHD). Males were twice as likely to develop CHD as
sensitivity = Pr f(x)=c| Y=1)=1-F (c) and specificity = females (6.0% for females, 12.7% for males). We
Pr ((x) < ¢ |Y = 0 = k{(c) respectively. The ROC curve Simulated the logistic models as below.

is then obtained by plotting 1(€) against 1-Kc) for  gimyiation algorithm: (i) Fit a logistic model to the

all possible values of c. The area under RT curve o o Bor3 8
is then given by Eq. 15: original data that specifiesp(x) =e” =" | where x
= age in years x systolic blood pressure (mmHg) X
AUC :I*w (1-F (0)d(= E () serum cholesterol (mg/dL),x male gender (0 = female,
- ! ° 1 = male), % = Cigarette smoker (0 = no, 1 = yes) apd X
= [ PIm (x)> ¢,m, = clde (15) = diabetic (0 = no, 1 = yes). Computé iReasures and
= Pl (x) > T, (X)] obtain the estimateg, and §'= (3,.B,....3;).

14



Am. J. Biostatistics 2 (1): 11-19, 2011

(i) Let B, be the estimate of, from a data set with [
. . e s
odds of success two times the odds of successein th 02 | BOE. ol e
.. . . A * L ,&"—‘ __‘_—~*‘_"'
original data. Substiture t = 2 igr = 22) _ b = ¢ ; G e —a-a-a-asee
® (x) _- e
e = & _0___4-:_;}_5_545_::5:_5—e—a-e—a-n—a—a
n* x A 1] =" g-Z==T "
and solve forp; . Computes (x) = _®  wherep ot P
1+ er—f}'x' g:"
is obtained in step i).
(iii) Generate y* such that: ot
0.075 0.125 0.175 0.225 0.275 0.325 0.375 0.425 0475
Base rate
. _ |1 if W (x) 2 U, where U~ Uni(0,1). —--4--R2-P --@--R2-0ls —-¢--R2-G --2--R2-L
|0 otherwise D

Fig. 1: Mean of the Parametrié Rleasures by Base-rate

(iv) Select a random sample of size n from the new
0.8 1

data, fit the regression modeb(x)=e®' 2" and | s-mmmmmeee- S e s Nl :
compute R measures. 0.6 1
(V) Repeat steps ii-iv fort = 3, 4,..., k. We used 14
in our simulation. This yielded datasets with bestes
ranging from 8.6-49.6%.

(Vi) Repeat steps ii-v 10,000 times for each of the 0.2 1

X e — K e — e — K e — e = R M K

0.4 1

Mean

e — e — A A

sample sizes 500, 1000, 2000 and 4000. However, ____*:::::::::::::‘;ZI+_>-»+«+»
sample size did not affect the average value of afny R e
the R measures. Therefore, we present only the results 0.075 0.125 0.175 0.225 0275 0.325 0.375 0425 0475
for the sample size 4,000. , —— "y
—— ACU —-A—Tau2_a—-o--Tau2_b——- R2 d —4-RZ_s
RESULTS Fig. 2: Mean of the Nonparametric’ RMeasures by
Base-rate

Simulation results: Intercorrelations of different R
measures and their correlations with the baseaste These two measures, unlike the rest of the
presented in Table 2. Squared correlation of the Rnonparametric R measures, exhibit a negative
measures with the base-rate are presented insttvevaof ~ correlation with m, which appears to be arising from
the same table. Only two of the 13 Reasures, AUC the decreasing values of AUC for very low values of
andr? , have very low (0.011) squared correlations withbase-rate, particularly in the range 0%-2%. Othsewi
the base-rater’ has some advantage over the other rand R appear to be mostly invariant with respect to the
measures in the sense of having a low squaredatiore ~ Pase-rate. All of these measure had very smaltlaran
with base-rate, but it is still substantial. deylatlons. We dld_ not find any noticeable differerin
Means of the parametric and nonparametrid€ir standard deviations (Table 3). o
measures are plotted against the base-rate irlFigd We evaluated the base-ate sensitivity of R

2, respectively. All the 9 parametric measures feiklsi ~Measures by examining the rate of change in their
monotonically increasing tendency with the base-ratMeans associated with the small changes in the- base

(Fig. 1). R2.is uniformly dominant over all other rate in the neighborhood of a given levelmfin doing

. followed he levels of so, we numerically computed derivatives of th& R
parametric measures, followed By , across the levels of 55 res with respect to the base-rate using tux"d

Tt For smalln (less than 0.2)R? appearers to be the third function available in stat® 9.1 software (Stata Base
largest measure, but aspproached to 0.5 other measuresReference Manual, 2005). We did not consider the si

come to the fore forcingr? to be the smallest’Rneasure  ©f the derivatives as we were particularly integesin
- the magnitude, rather than the direction of base-ra

for 1>0.25. The remaining six parametric measures havgensitivity of these R measures. The results are

almost identical means across the levels of presented in Fig. 3 for the parametric and in Bidor
Among the nonparametric measures, the AUGhe nonparametric Rmeasures. The marked points

statistic consistently resulted in very large mealues  represent absolute values of the numeric derivatofe

irrespective of the base-rate followed by &ie (Fig. 2).  the R measures evaluated at each levekefnployed.
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Table 2: Correlation between base-rate and vafBuseasures. The last row gives the squared cooelafiTt with each of the Rmeasures.
R? T R2 R? (25 RZ R? R? R? RZ R, ACU T L5 R?
T 1.000

R? 0.899 1.000

Rg 0.927 0994  1.000

R, 0899 1000 0994  1.000

RZ 0954 0942 0961 0942 1.000

R? 0549 0797 0754 0796 0570  1.000

RZ 0919 0996 0998 0997 0958 0.767  1.000
RZ 0848 0985 0972 0985 0880 0.882 0.977.00a

RZ 0.917 0.996 0.998 0996 0960 0.764 1.000.97® 1.000

R, 0.857 0.990 0.979 0.990 0.897 0.863 0.984.998) 0.984  1.000
ACU -0.105 0.165 0.114 0.164 -0.133 0.683 20.1 0.306 0.114 0.269 1.000

v 0.970 0.969 0.986 0969 0968 0.680 0.980.93® 0.979 0.942 0.028 1.000

T 0.927 0.994 1.000 0994 0961 0.754 0.998.97D 0.998 0.979 0.114 0.986 1.000

R? -0.105 0.165 0.114 0.164 -0.133 0.683 0.120.306 0.114 0.269 1.000 0.028 0.114 1.000
r WithTt  0.809 0.859 0.809 0911 0.302 0.844 0.718.840 0.734 0.011 0.940 0.859 0.011

Table 3: Mean and standard deviations of varicusiBasures at different base-rates (standard devsagire given in parenthesis).

Tt

R? 0.0857 0.1508  0.2036 0.2479  0.2860 0.3193 3480  0.3753 0.3992 0.4209 0.4408  0.4591 0476 0.4916
R2 00650 0.0940 0.1100 0.1220 01310 0.1360 41m1 0.1450 0.1470  0.1490  0.1500  0.1520  0.15200.1530
(0.010) (0.010) (0.010)  (0.010) (0.010) (@®PO (0.010) (0.010) (0.010) (0.009) (0.009) .0QW) (0.010)  (0.010)
RZ 00500 0.0790 0.0980 0.1130 01230 0.1310 13/ 0.1410 0.1440 0.1470 0.1480  0.1510 @150 0.1520
(0.006) (0.007)  (0.008)  (0.009) (0.009) (@PO (0.009) (0.010) (0.010) (0.010) (0.010) .0QW) (0.010)  (0.010)
R%,s 0.0640 00930 0.1100 0.1220 0.1300 0.1360 141@  0.1440 0.1470 0.1480 0.1500  0.1520 @152 0.1530
(0.010) (0.010)  (0.010)  (0.010) (0.009) (@PO (0.010) (0.010) (0.010) (0.009) (0.009) .0QW) (0.010)  (0.010)
RZ 00640 0.0930 0.1100 0.1220 01300 0.1360 41m1 0.1440 0.1470  0.1490 0.1500  0.1510  0.15200.1530
(0.000) (0.000) (0.000)  (0.000) (0.000) (@PO (0.000) (0.000) (0.000) (0.000) (0.000) .O@D) (0.000)  (0.000)

R® 00970 01050 0.1080 0.1110 0.1130 0.1140 1150 0.1160 0.1170 01170 01170 01190  0.1180.1190
(0.012)  (0.010)  (0.009)  (0.009) (0.008) (PO (0.008) (0.008) (0.008) (0.008) (0.008) .O@B) (0.008)  (0.008)
0.0550 0.0850 0.1040  0.1170 0.1270 0.1330 134D  0.1430  0.1450 0.1470 0.1490  0.1510 @150 0.1520
(0.007)  (0.008)  (0.008)  (0.009) (0.009) (®PO (0.009) (0.009) (0.009) (0.009) (0.009) .0@®) (0.010)  (0.010)

2
RV 01250 01490 0.1630 0.1730 0.1810 0.1860 1M19 0.1940 0.1960 0.1980 0.1990  0.2020  0.20100.2020
(0.015) (0.013) (0.013)  (0.013) (0.013) (@P1 (0.012) (0.013) (0.013) (0.012) (0.012) .04B) (0.013)  (0.013)

0.0540  0.0810  0.0990 0.1100 01190 0.1250 30B1 0.1330 0.1360 0.1370 0.1390  0.1410  0.140(.1410
(0.006)  (0.007)  (0.008)  (0.008) (0.008) (PO (0.008) (0.008) (0.008) (0.008) (0.008) .O@B) (0.008)  (0.008)

RS

R, 01460 01780 0.1960 0.2090 0.2190  0.2250 230. 0.2340 0.2360  0.2380  0.2400  0.2430  0.241(0.2430
(0.017) (0.016) (0.015)  (0.015) (0.014) (@P1 (0.014) (0.014) (0.014) (0.014) (0.014) .0@) (0.014)  (0.014)

AUC 07290 0.7260  0.7250 0.7250 0.7240  0.724D.724  0.7240  0.7240  0.7240  0.7240  0.7250 247 0.7250
(0.013) (0.010) (0.009)  (0.009) (0.008) (®PO (0.008) (0.008) (0.008) (0.007) (0.007) .O@F) (0.007)  (0.007)

T, 0.0050 0.0130  0.0210 0.0280 0.0340 0.0380 042  0.0440 0.0460 0.0480 0.0490  0.0500 @050 0.0510

(0.001) (0.001)  (0.002)  (0.002) (0.003) (@PO (0.003) (0.003) (0.003) (0.003) (0.003) .0@B) (0.003)  (0.003)

T, 0.0330 0.0530  0.0660 0.0750 0.0820  0.0870 091  0.0940 0.0960 0.0980 0.0990  0.1010  0.100(.1010

(0.004) (0.005)  (0.006)  (0.006) (0.006) (PO (0.006) (0.007) (0.007) (0.006) (0.006) .OQ@F) (0.007)  (0.007)

Ré 0.4580  0.4530  0.4490 0.4490  0.4480  0.4480 4480  0.4480 0.4480 0.4480 0.4480  0.4500 @448 0.4500

(0.027) (0.021) (0.019)  (0.017) (0.016) (@®P1 (0.015) (0.015) (0.015) (0.015) (0.014) .04®) (0.015)  (0.015)
16
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levels of m (Fig. 4). In addition, these two measures

%
::l;\ demonstrate almost no fluctuation (except the
0.4- A\\‘i\g\ fluctuation observed at the higher end ref which, as
S b mentioned earlier, is primarily due to the estimati

RO error) in their base-rate sensitivity far>0.2. 12, unlike
other B measures, exhibits a convex relationship

=SSN £ L L e
’\‘I:. i&gj with t. Its base-rate sensitivity remains in between that
SN °

Rate of change
(=]
%)
/
¥
] 4
ZI:

of 2, the second worst measure in terms of the base-

.
0_
0.075 0.125 0.175 0225 0275 0.325 0375 0.425 0.475 rate sensitivity, and}, .
Base rate
--&--R2-P --e--R2-0ls --6--R2-G --&--R2-L
TZeTROM ——4--RIN -4 R2C —-x—R2CS DISCUSSION

Summary and concluding remarks: The very
existence of a plethora of?Rmeasures for logistic
regression sometime creates confusion about which
measure to use in conjunction with a logistic regien

Fig. 3: Base-rate sensitivity of parametric R2 mees
by base-rate

M analysis. Researchers have suggested variousiariter
ol TSy for making judgment on these measures (for example
\\\‘ see (Mittlbock and Schemper, 1996; Kvalseth, 1985;
o e \\\ Sharma, 2006). Although the base-rate sensitivity o
g \"\\9 M these R measures has been documented (Menard,
S 02 s e - 2000; Gordoret al., 1979; Ash and Shwartz, 1999), the
z eI T N A B issue of whether this relationship to is always a
A \**Qg;,w: weakness of the Rmeasures is debated. Ash and
o I NP N g (4 Shwartz (1999) used a simple parametric model,
0',0'5 0.I125 OI.I‘S 0],225 0.5‘5 01325 0’.3'5 0,4425 014‘5 applicable to a very SPECiﬁC Situation’ to Clar“ye
Base rate effect of base-rate oR? ; and argued that it was in fact
e b B § =l ke Ry a strength rather than the weaknesxpf . Because in
Fig. 4: Base-rate sensitivity of Nonparametrfc R real-world situations the value of a diagnosti¢ teses,
Measures by Base-rate in fact, depend on the prevalence of the problerthén

population being tested (Ash and Shwartz, 1999;

The large fluctuation observed at the higher endt @  Hilden, 1991). This idea was further augmented by
attributed mainly to the error in estimating the Mittlbock and Schemper (2002). They argued thétef
derivatives at the end points. base-rate is either close to 0 or 1, then the oucs

It is evident from Fig. 3 thatrR’has a clear already pretty much determined and there is nothmuc

advantage over the rest of the parametric measares Uncertainty left to be explained. However, on ttieeo
the sense of having relatively small base-ratdand if the base-rate is large (i.e.nfis close to 0.5)
sensitivity. Like other parametric measures, itieitaa  the total variability in the dependent variablehigh
steady decrease in base-rate sensitivity witi@nd the covariates may explain more of the uncetai
increasingr, but with a considerably slower rate as  However, having an Rmeasure that depends on

compared to the other parametric measures. Thefest € incidence of the response has clear practical
the measures are in fairly good agreement with eacflisadvantages if one is seeking to compare the

other in terms of their sensitivity to the baseerat all predictivef ability |0f_a seAt Qlfl predicéo_rs irT two bgku
levels of n employed. They exhibit very high levels of groups of a population. As llustrated in the ental

base-rate sensitive at small valuesmk0.25). With examplel presenteq, the analysis could lead to
misleading conclusions. If a model, based on a

increasingt,  their  base-rate  sensitivity rapidly nanicyiar B value, shows better predictability in one

decreases resulting quite low base-rate Sens't'v'%opulation than the other, it may be simply becafse

when r is close to 0.5. _ the difference in the underlying incidence rate aot
Among the nonparametric measures, the AUC angecause of different predictive abilities of the sé

the R appear to be the least base-rate sensitive at ghredictors used. In this study we have examined the
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base-rate sensitivity of thirteer? Rype measures that Therefore, these two measures deserve serious
are reported to have potential to be used as nesisfir consideration, especially when it is reasonable to
explained variation in logistic regression analyBight  believe that a underlying latent variable existeey

of these measures are parametric and the rest apeovide valuable information thak?fails to provide,
nonparametric in nature. All of the?Rneasures are regarding the strength of relationship between the
sensitive to the fluctuations in the base-rate. Theovariates and the underlying latent variable.
magnitude of the base-rate sensitivity varies gyeat There are other potential factors whose effect on
from one measure to another. Results show thahe base-rate sensitivity of Rieasure is not studied in
nonparametric measures tend to be less base-rafige current research. It would be dangerous to draw
sensitive than the parametric measures. Four @®the strong conclusions based only on the conclusioniisf

Ta Tn, R;andri, are measures of ordinal association.research. Some potential measures of explained
Use of measures of ordinal association with a tagis variation are identified which tolerate fluctuatioim
regression model may result inconsistent beha¥ior. base-rate reasonably well and at the same timedgov
example, if a weak continuous covariate is added to a good estimate of the explained variation on
model with a strong binary covariate, the propartid  underlying continuous variable.

a explained variance, as measured by a paraméiric R

will increase slightly. But as a consequence ofirrgla ACKNOWLEDGEMENT

continuous covariate in the model, ranks that were
tied in the single covariate model are forced to
slightly different values of the predictor. This yna
result a noticeable decrease in the proportion o
explained variance, as measured by squared rar‘;{l'%I
correlation, for example.
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