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Abstract: Problem statement: The common assumption in non-randomized Phase II clinical trials is 
a homogeneous population with homogeneous response. This assumption is at odds with many trials 
today; a heterogeneous response due to the existence of subgroups. Approach: In order to examine the 
effects of heterogeneity on the trial outcome, a systematic platform is developed to quantify the range 
and classes of possible response heterogeneity using a mixed model approach.  Five recent methods 
developed to handle heterogeneity, stratified analysis, beta-binomial models, Bayesian hierarchical 
models and regression models are compared and contrasted using a set of performance criteria to 
provide clinicians with scenarios where each method is applicable. Results: All methods require a 
priori information on the subgroup composition, a limiting factor in most trial conduct. The Bayesian 
methods require the least amount of assumptions, provide a methodology to share information across 
subgroups and allow partial subgroup outcomes, but require substantial computational resources and 
time. The stratified methods provide a simple improvement over the standard phase II Simon design, 
but lack the methodology to allow for partial subgroup stopping. Conclusion: The heterogeneity 
model provides a useful tool to model data under a heterogeneity assumption.  The proper handling of 
heterogeneous populations under a Phase II design is a contentious debate; ignoring this fundamental 
assumption may lead to incorrect trial outcomes.  New methods need to be developed which can 
include the heterogeneity structure in the trial design and allow for partial hypothesis testing.   
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INTRODUCTION 

 
 Phase II clinical trials are generally single arm 
trials designed to estimate a response rate, π, for an 
experimental treatment. The most common type of trial 
design is the Simon 2-stage design (Ye and Shyr, 2007) 
with the primary assumption of a homogeneous 
population. In a Simon design, the number of responses, 
R, is assumed to follow a binomial distribution with 
variance Var[R] = π (1-π). When the response does not 
comply with the assumption of homogeneity, such that 
Var[R]>>π(1-π), the response is considered to be 
heterogeneous. Using methods that rely on the 
homogeneity assumption when heterogeneity is true can 
lead to biased inferences (Russek-Cohen and Simon, 
1997), incorrect early stopping of the trial (Thall et al., 
2003) or a subsequent failure of the Phase III trial 
resulting in a substantial loss of resources (Tuma, 2008). 
In many clinical trials, the possibility of response 
heterogeneity is handled in a less than optimal manner by 
applying methods that ignore the true data structure to 

force an assumption of response homogeneity. 
Complexity in design and analysis, lack of information 
on new methods and novelty of the heterogeneity 
methods seem to be the overriding motivations for the 
current practice of ignoring patient heterogeneity (Tuma, 
2008; Wathen et al., 2008). 
 Standard practice in clinical trials to handle 
heterogeneity has been to conduct multiple trials 
(Wathen et al., 2008; London and Chang, 2005) or 
average the response profile to a response rate (Tuma, 
2008; Wathen et al., 2008; Ayanlowo and Redden, 
2008). The advantage of both methods is that they are 
simple and standard software exists to analyze the 
results; though there are several disadvantages. The first 
method, multiple trials, inflates the sample size by 
conducting multiple trials; a strain on trial resources. 
Due to possible low patient accrual in one or more 
trials, trials may not be completed; losing valuable 
information on the treatment efficacy over the entire 
population. Conducting multiple trials ignores a 
fundamental assumption of the motivation for a single 
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trial; all patients share a common disease state. It can be 
assumed that the response rate in one subgroup will be 
correlated with the response rate other subgroups.  
 The second method, averaging, ignores the 
distribution of the response profile, the population 
subgroup proportions; possibly causing lack of 
association between the value of the test statistic and 
the trial outcome. Additionally, Phase II trials 
incorporate stopping boundaries to allow for the early 
termination of trial due to futility by conducting the 
trial in stages. By averaging the response profile, 
stopping boundaries are global, one boundary for the 
entire trial. This ignores the possibility of treatment 
futility in some subgroups and not others or the 
difference in futility bounds that may exist.  
 We develop a model to quantify heterogeneity and 
then apply this model to five methods that are currently 
available for handling patient heterogeneity, under a 
single trial design, to provide clinicians with a set of 
criteria to decide which method is applicable to a 
problem 
 

MATERIALS AND METHODS 
 
Heterogeneity model: Response heterogeneity in a 
population can be modeled by deconstructing the 
response rate into subgroups to form a response profile, 
π = (π1, π2,…,πg), composed of g subgroups where πi 

is 
the response rate for the ith subgroup and there exists 

i i 'π ≠ π  for some i i '≠ ; in contrast, i i 'π = π  for all i i '≠  

in a homogeneous population. The resulting subgroup 
model provides the basic platform to compare the 
recent methodology for heterogeneous responses.  
 Let ( )T T1 T 2 T gπ , , ,= π π π… be the vector of subgroup 

responses for i = 1,2,…,g subgroups where πTi is the 
response  rate  in  subgroup i for treatment T = {S,E}. 
T = S denotes the known standard/historical treatment 
response and T=E denotes the hypothesized 
experimental treatment response. In addition, let the 
baseline historical response rate for the historical 
response profile be denoted by: 
 

( )*
S Si

g
arg minπ = π  

 
 Furthermore, let ηi be the prognostic response 
heterogeneity between subgroup i and the baseline 
historical response, τi 

be the predictive heterogeneity in 
treatment effect over the baseline treatment effect: 
 

( )*
Ei

g
argminδ = δ  

where, δEi 
are the treatment effects for each subgroup, 

such that: 
 

* *
T i S i i( )I(T E)π = π + η + δ + τ =  (1) 

 
Where: 
0≤πTi≤1 = A subgroup mixture model for heterogeneity 
I(⋅) = A membership indicator. The historical 

response heterogeneity 
ηi = A fixed prognostic effect while the treatment 

heterogeneity 
τi = A predictive random effect 
 
 Using Eq. 1, the classification of response 
heterogeneity rests on the structure of the historical 
response profile and the treatment effect profile. To 
quantify the range of response heterogeneity, three 
classes, Historical Response Heterogeneity (HRH), 
Assumed Response Heterogeneity (ARH) and General 
Response Heterogeneity (GRH), are constructed. For all 
i i '≠ : 
 

Si Si ' E i E i '

i i ' i i ' i i '

  and  

where and 0 such that 

π ≠ π π ≠ π

η ≠ η τ = τ = δ = δ
 (2) 

 
defines the HRH class and:  
 

Si Si ' E i E i '

i i ' i i ' i i '

  and   

where  0 and  such that 

π = π π ≠ π

η = η = τ ≠ τ δ ≠ δ
 (3) 

 
defines the ARH class. In both classes, experimental 
treatment response rates are unique. The third class, 
GRH, relaxes the unique response constraint. A mixture 
of prognostic and predictive heterogeneity can result in 
non-unique experimental responses. The etiology of 
each subgroup’s heterogeneity is the basis for the 
subgroup construction and is assumed to be unique. 
GRH is defined as follows. There exists some i i '≠  for 
which: 
 

Si S i ' E i E i '

i i ' i i ' i i '

 and   

where , and  such that 

π ≠ π π ≠ π

η ≠ η τ ≠ τ δ ≠ δ
 (4) 

 
 In Eq. 3, a known covariate exists for which a prior 
historical response profile can be constructed. The prior 
distribution of historical response rates, given the 
historical covariate, is hypothesized to be consistent in 
the current trial. Heterogeneity in the experimental 
response profile is attributed to the different known 
historical response rates, Si Si 'π ≠ π . The treatment 
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effects are homogeneous across the subgroups, i i 'δ = δ . 

In contrast to HRH, the heterogeneity in Eq. 3, is 
quantified through heterogeneous treatment effects, 

i i 'δ ≠ δ , where the estimated historical response rates 

are homogeneous, Si Si 'π = π . The heterogeneity is 

measured by the inequality of the treatment effects 
between subgroups due to a covariate-treatment 
interaction as opposed to the inequality of historical 
rates as in (2).  
 The general form of response heterogeneity, GRH, 
is a composite of both of the previous classes of 
response heterogeneity. The general form (4) occurs 
when both the historical response rates and treatment 
effects are hypothesized to be heterogeneous. For 
example, under a three subgroup model, historically 
gender, (M,F), leads to different historical response 
rates, S1 S2 SMπ = π = π  and S3 SFπ = π  where SM SFπ ≠ π . A 

biomarker present in males is hypothesized to lead to a 
further differentiation of response rates, male biomarker 
present and male biomarker absent, resulting in the 
following three possible response models: 
 

E1 E 2 E 3

S1 S2 S3 E1 E 2 E3

E1 E 2 E 3

  

 and   

  

π ≠ π ≠ π
π = π ≠ π π ≠ π = π
π = π ≠ π

 

 
 The prognostic heterogeneity differs between 
gender, 1 2 3η = η ≠ η , with a predictive heterogeneity 

only affecting the males, 1 2τ ≠ τ  and 3 0τ = . The first 

possible experimental response model results in three 
unique response rates. While the remaining two models 
result in two unique response rates with the effect of the 
male biomarker, absent or present, providing the same 
experimental response rate as for females. When no 
information is known about the structure of the 
heterogeneity, it is appropriate to assume a general 
class structure.  
 
Heterogeneity methods: Five methods have been 
developed to handle response heterogeneity in Phase II 
clinical trials. The methods proposed by London and 
Chang, unconditional stratified and conditional 
stratified methods, account for subgroups with a binary 
response, similar to a stratified log-rank test for time-to-
event data, under a k-stage design (London and Chang, 
2005). Given a known covariate with g subgroups for 

stages j 1,2, ,m, ,k= … … , let 
m g

m ijj 1 i 1
R R

= =
=∑ ∑  be the 

sum of responses across all subgroups up to an 
intermediate stage m where Rij is the sum of responses 
for the ith subgroup in the jth stage. The total sample 

size across k stages is denoted 
k g

ijj 1 i 1
N N

= =
=∑ ∑ . 

Furthermore, let the sampling weights be proportional 
to the true population profile, then the general form of 
the test statistic for the unconditional stratified method 
is: 
 

( )( )
( )

m g

ij ij S ij 1 i 1

m
m g

ij Si S ij 1 i 1

R N
K  

N (1 )

= =

= =

− π
=

π − π

∑ ∑

∑ ∑
 (5) 

 
 Sample size computation and critical value 
determination are completed using an iterative 
simulation algorithm with set percentages of Type I and 
II errors spent in each stage (London and Chang, 2005). 
Prognostic and/or predictive heterogeneity is modeled 
through the choice of simulation parameters using 
model (1). A set of stopping boundaries, 

( ) ( ) ( )( )1 1 2 2 kl ,u , l ,u , , u… , where ( )1 1l ,u are the futility 

and efficacy boundaries for stage 1 respectively, are 
constructed to maintain the target Type I and II errors 
for the trial. The final result is a sample size and test 
statistic(s) based on the estimates for the true 
population proportions of each subgroup, the sampling 
weights.  
 Since the true population proportions of the 
subgroups are not usually known in practice, a second 
form the test statistic was proposed, the conditional 
stratified method. The sample size and outcome of the 
trial are conditioned on the sampling weights, as 
opposed to the true proportions, of each subgroup. 
Conditioning Eq. 5 on: 
 

i1 i1 im im

1 1 m m

N n N n
, ,

N n N n

       
= =       

       
…  

 

it can be seen that both 
m g

ij Sij 1 i 1
n

= =
π∑ ∑  and the 

denominator of (5) are constants given ( )i1 im Sin , ,n ,π… . 

The sum of responses up to the immediate stage m is 
asymptotically equivalent to Km and the rejection region 
of the null hypothesis can be expressed as 

m mR r> where rm 
is the critical value of the test statistic 

for the mth stage. The general form of the test statistic 
for the mth stage of the conditional method is: 
 

( ) im im im

1m gm m

im im

g im r n r
m m 0i 0ii 1

r , , r r ; im
0 r n

n
P R r (1 )

r
−

=
+ + =

≤ ≤

 
= = π − π 

 
∑ ∏
…

 (6) 

 
 The final test statistic for k stages is the sum of 
independent random variables: 
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1 2 m kR R R R+ + + + +… …  

 
 In contrast to the unconditional method, many 
solutions exist to (6) by varying each of the subgroup 

sampling weights through im im

m m

N n

N n

   
=   

   
under the 

Type I and II error constraints. This allows for a wide 
range of possible accrual scenarios and results in a 
similar output as the initial output, before making the 
selection of the minimax and optimal solutions, of the 
Simon (1989) designs.  
 The third method, the beta-binomial distribution 
has been previously proposed as a model that can 
account for heterogeneity in binary outcome models 
(Dragalin and Fedorov, 2006). To allow for an increase 
in variation of the response over the binomial, a 
subgroup composition is assumed for the responses 
where response rates are allowed to vary, i ~ beta(a,b).π  

Then i1 iR |π , has a binomial distribution. The marginal 

of R1 is a beta-binomial with probability function: 
 

( ) 1 1 1 1
1 1

1

n beta(r a,n r b)
P R r

r beta(a,b)

  + − −= =  
 

 

 
 The mean and variance are: 
 

[ ] [ ]1 1 1 1 1E R n  and Var R n (1 ) 1 (n 1)
1

 ρ= π = π − π + − + ρ 
 

 

where, 
a

a b
π =

+
. The parameter ρ is the correlation 

between the response rates and quantifies the excess 
heterogeneity in the response profile above the binomial 
distribution. If ρ = 0, then the variance of R1 degenerates 
into the binomial variance. After estimation of the 
parameters (a,b), the sample size and test statistics can be 
calculated based on the type of difference to be detected 
(Hendriks et al., 2005). It should be noted that the 
estimation of the parameters does not require subgroup 
source knowledge, prognostic or predictive, about the 
heterogeneity; only the estimated amount of variation. 
 To implement Phase II designs from the frequentist 
perspective, a fixed response rate, whether a single rate 
or response profile, is specified. Alternatively, a 
Bayesian design incorporates a level of uncertainty in 
the fixed rate by assuming that the response is random 
through the use of prior and hyper-prior distributions. A 
primary design principle of this approach is that the 
parameters of the response are not independent, but 
correlated similar to the beta-binomial distribution 

(Lee, 2009). One such model is the Bayesian 
Hierarchical Model (BHM) which assumes a hyper-
parameter distribution for the priors, ψ, to model the 
heterogeneity and correlation of the parameters. The 
joint distribution of all parameters is constructed by 
combining the data likelihood, prior and hyper-prior 
distributions: 
 

( )

�

g

i i ii 1
hyperpriordata prior

likelihood

f R,π,ψ l(R | π)p(π |ψ)p(ψ)

l(R | )p( |ψ) p(ψ)
=

=

 
 

= π π 
 
 

∏
����������

 

  
with trial decision making using the posterior 
distribution: 
 

f (R,π,ψ)d
P(π | R)

f (R,π,ψ)d d

ψ
=

θ ψ
∫
∫

 

 
 Due to the intractability and high dimension of 
the posterior, MCMC methods are used to compute 
the posterior probabilities for each stage of the trial 
(Gilks et al., 1996). The fourth heterogeneity method, 
Bayesian normal-binomial hierarchical model used in 
Thall et al. (2003) is based on the logit model (Collet, 
2003) and is constructed such that: 
 

( )
( )

iid
2

i i

2 2 2 2
1 1 2 2

logit ~ N( , ) 

with , ,  ~ N( , ) and ~ N( , )

θ = π µ σ

ψ = µ σ µ υ ϕ σ υ ϕ
 (7) 

 
 The subgroups are assumed to be exchangeable 
implying no a priori prognostic difference in response 
rates. The heterogeneity is assumed to be predictive. 
 One advantage in using the Bayesian approach is 
the existence of within subgroup stopping boundaries 
allowing for partial subgroup efficacy/futility as 
opposed to a global boundary, e.g., Simon or London 
and Chang methods. As such, a set of identical within 
subgroup stopping boundaries, due the exchangeability 
of the subgroups, are constructed for each stage of the 
trial. Once all the patients in subgroup i are evaluated, 
futility and efficacy stopping boundaries are applied for 
this subgroup: 
 

E i SiP( | data) lπ > π <  (8) 

 
and 
 

E i SiP( | data) uπ > π ≥  (9) 
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using the data from all subgroups to determine if a 
particular subgroup portion of the trial should be 
stopped or continue accrual until the next decision point 
using an appropriately small value for l and a large 
value for u. The values for the boundaries are usually 
chosen to give good operating characteristics when 
compared to a frequentist design. Each subgroup has an 
identical stopping boundary similar to running multiple 
simultaneous trials with the conditioning allowing the 
sharing of information across subgroups and 
minimization of resources by using the data from all 
subgroups to determine individual subgroup outcomes.  
 The fifth method, Bayesian normal-binomial 
regression model or BANCOVA model, was proposed 
by Wathen et al. (2008). To compare the model with 
the earlier heterogeneity notation, the model was 
reparameterized. The model: 
 

( ) { }g

T g i ii 1
logit ( ) I(T E) I(G g)

=
π θ = ξ + η + τ = =∑  (10) 

 
is constructed with 1 0η =  for interpretational 

convenience. It should be noted that the ranges of the 
parameters are not consistent between the heterogeneity 
model (1) and the model (10) which the models mean 
response rate on the logit scale. Model (10) has no 
assumption on the structure of the variance as in model 

(7), where ( )
iid

2
i ilogit ~ N( , )θ = π µ σ  is assumed, modeling 

the mean response as opposed to both the mean and 
variance of the response.  
 The prognostic effect of subgroup g compared with 
the baseline subgroup, e.g., subgroup 1, is ηg and the 
predictive effect for subgroup g is τg. To construct the 
hyper-parameters for each of the priors, Thall et al. 
(2003) and Wathen et al. (2008) developed an algorithm 
assuming small variances for historical priors and large 
variances for experimental priors by equating the 
moments of a beta distribution to a normal distribution. 

For the complete hyperparameter algorithm and the 
logic for their assumptions (Wathen et al., 2008).  
 Once the priors have been computed, the posteriors 
are constructed using MCMC methods. Subgroup-
specific stopping boundaries are then constructed 
similar to (8) and (9) where the subgroup specific 
stopping boundaries (li,ui) are subgroup dependent on 
the prognostic effect as opposed to the BHM model 
where the boundaries are identical. 

 
RESULTS 

 
 Five methods, including the standard Simon 
design, were compared using a set of performance 
criteria, type of trial design, classes of applicable 
heterogeneity, types of stopping boundaries applicable, 
allowance of partial efficacy/futility, effect under lack 
of heterogeneity, sample sizes computation, robustness 
under parameter misspecification and computational 
time. A summary of the comparison criteria and results 
are in Table 1.  
 The class of heterogeneity that is accounted for 
in each method varies and should be the starting 
point in deciding the appropriateness of a method for 
a given problem. The conditional stratified method 
can accommodate all three classes of heterogeneity, 
while the unconditional method relies heavily on 
accurate estimates of the true population proportion 
of each subgroup in order to handle ARH or GRH. 
The beta-binomial distribution is able to account for 
all three heterogeneity types. The Bayesian methods 
do not need estimates of the subgroup proportions, 
but are designed to only accommodate certain classes 
of heterogeneity. The hierarchical method is 
designed to accommodate ARH, while the 
BANCOVA method is designed to accommodate 
HRH, ARH and GRH.  

 
Table 1: Comparison of methods under different criteria to handle patient heterogeneity; Simon 2 stage design, Unconditional stratified (UC), 

Conditional stratified (C), Beta-binomial, Bayesian normal-Binomial Hierarchical Model (BHM), and Bayesian binomial-normal 
regression model (BANCOVA)  

 Analysis method 
 --------------------------------------------------------------------------------------------------------------------------------------- 
    UC C Beta  Normal-B 
Criteria Simon stratified stratified binomial Normal-B BHM BANCOVA 
Type of trial k-stage k-stage k-stage k-stage group Group Group 
Heterogeneity type None  HRH HRH HRH   HRH 
   ARH ARH ARH ARH ARH 
  GRH GRH GRH   GRH 
Require subgroup knowledge No Yes Yes No Yes Yes 
Stopping boundary Global Global Global Global, subgroup Subgroup Subgroup 
Partial efficacy No No No Yes Yes Yes 
Sample size specified Yes Yes Yes Yes Upper bound Upper bound 
Robust No No Yes Yes Yes Yes 
Lack of heterogeneity No effect No effect No effect No effect Minimal effect Moderate effect 
Computational time Minimal Minimal Moderate Minimal Extensive Extensive 



Am. J. Biostatistics 1 (1): 9-16, 2010 
 

14 

 Two types of stopping boundaries exist, global and 
subgroup. The Bayesian methods allow for subgroup 
specific stopping boundaries while the stratified and 
beta-binomial methods use global boundaries. In 
addition, the BANCOVA model allows for unique 
subgroup stopping boundaries further refining the 
boundaries based on the prognostic data from 
individual subgroups.  
 The type of trial may also play a part in the 
selection of an appropriate model for a particular 
problem. The stratified methods are k-stage trials. The 
usual number of stages for this type of trial is 2-3 stages 
with unequal sample sizes in each stage derived from 
the operating characteristics of the method (Chow et al., 
2007). The Bayesian methods are group sequential with 
a length of usually greater than 3 stages with an equal 
sample size in each stage (Todd, 2005). To reduce the 
time necessary to complete a Bayesian group sequential 
trial, the trial is usually a modified group sequential; 
instead of waiting until all patients has been evaluated, 
after a set number of patients, the unevaluated patients 
are assumed to be positive responses and Eq. 8 is 
computed. If P(πEi>πSi|data)<1 where the data includes 
the unevaluated assumed positive patients, this gives an 
early determination of futility and can allow the early 
stopping of the subgroup without waiting until all 
patients have been evaluated speeding up the trial 
conduct time. The beta-binomial can be used in either a 
k-stage or group sequential context. 
 For the stratified and beta-binomial models, sample 
size computation is performed before the trial 
commences. A minimum sample size is derived from 
the standard binomial sample size calculation and then 
iteratively increased until the power and size 
requirements are met using the test statistic for the 
stratified methods or a formula is used in the case of the 
beta-binomial model. For the Bayesian methods, a 
target range is specified with a minimum and maximum 
sample size (Thall et al., 2003; Wathen et al., 2008). 
The trial is conducted by splitting the maximum sample 
size into sequential groups with decisions made at the 
end of each group sequence up to the maximum sample 
size. If the maximum sample size is reached and there 
is not sufficient evidence to reject the null hypothesis in 
a subgroup, the experimental treatment is considered 
inferior in that subgroup; though no evidence is 
presented that this choice of sample size selection 
minimizes the false positive and false negative rates.  
 The robustness of all of the methods relies on the 
parameters estimates of the methods. The stratified 
methods are contingent on correctly specifying the 
proportion of each of the subgroups in the population 
through the sampling weights. If this estimate is biased, 

additional patient resources will need to be accrued 
after trial commencement to meet the original power 
and size constraints. The conditional stratified method 
allows for a greater flexibility due to the multiplicity of 
possible solutions. The beta-binomial model relies on 
having an accurate estimate for the parameters of the 
beta distribution on which the heterogeneity is 
constructed. Inaccurate estimates will mitigate the 
performance of the model. The Bayesian methods rely 
on estimates for the hyper-priors; though the use of the 
proposed algorithms mitigates the bias in the 
hyperpriors. The advantage of the Bayesian methods 
over the Frequentist methods is that they do not rely on 
estimates for the proportion of each subgroup. As such, 
they are more robust to model misspecification. 
 While the purpose of this study is to advocate 
control for possible heterogeneity in the population, 
there will be cases where the heterogeneity is 
appropriately accounted for in the analysis but it not 
actually present. The strength of any heterogeneity 
method under a heterogeneous population must also 
maintain strength under population homogeneity. The 
three Frequentist methods are robust under lack of 
heterogeneity; the test statistics degenerate into the 
standard binomial form test statistic for a homogeneous 
population. The Bayesian methods lose a small amount 
of power under lack of heterogeneity (Wathen et al. 
2008).  
 The last criterion in method performance is 
computational time. As with other statistical methods, 
the sensitivity and flexibility of a method is contrasted 
with the computational time necessary to attain the 
desired characteristics. The unconditional stratified and 
beta-binomial methods use the least computational 
time. The conditional stratified method has an increase 
of time due to the multiplicity of the solutions. The 
Bayesian methods require substantial computational 
time due to the intractability of the posterior 
distribution. Thall et al. (2003) and Wathen et al. 
(2008) suggest the use of distributed processing 
systems to speed up the necessary time (Thall et al., 
2003). This increase in trial resources should be 
balanced when considering a Bayesian method. This 
increase in computational cost and complexity may be a 
motivating factor in why the majority of clinical trials 
today are Frequentist in nature (Lee and Feng, 2005). 
 

DISCUSSION 
 
 To our knowledge, broadly speaking, five methods 
currently exist for handling response heterogeneity. 
Each method was developed to address a specific type 
of heterogeneity by optimizing trial resources through 
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the use of a single trial, an advantage of using any of 
the five methods over conducting multiple trials. All the 
methods require one fundamental assumption, the 
known existence of subgroups before the trial.  
 The stratified methods of London and Chang were 
developed to handle a combination of prognostic and/or 
predictive heterogeneity for unbalanced subgroups 
using a single test statistic; rejecting or accepting the 
hypothesis of mean treatment efficacy over the entire 
population, a global hypothesis. The beta-binomial 
method was developed to allow for unidentified 
heterogeneity in correlated responses. The Bayesian 
hierarchical method of Thall et al. (2003) was 
developed to account for predictive heterogeneity in 
unbalanced subgroups using identical subgroup 
hypotheses. The BANCOVA method of Wathen et al. 
(2008) and Thall et al. (2003) was developed to account 
for both prognostic and predictive heterogeneity under 
subgroup specific hypotheses. In both of the Bayesian 
methods, the overriding motivation is to allow partial 
treatment efficacy across the subgroups, an aspect 
lacking in the stratified methods.  
 The heterogeneity model provides a critical 
component for the comparison of methods.  The 
primary factor in deciding which method is applicable 
is determining which class of heterogeneity the data is 
assumed to follow.  The conditional stratified and 
BANCOVA models are the most robust to 
heterogeneity.  The beta-binomial method does well 
under all three heterogeneity classes but suffers an 
identifiability problem with the source of heterogeneity; 
individual components of the heterogeneity are not 
explicitly modeled resulting in a tradeoff clinically, a 
loss of information on the source of the heterogeneity. 
 A drawback of the unconditional stratified method 
is the reliance of the test statistic an accurate estimates 
for the sampling distribution of the subgroups.  If 
patient accrual does not match the sampling estimates, a 
chronological bias is introduced into the test statistic(s) 
and the resulting test outcome is not valid (London and 
Chang, 2005; Srivastava et al., 2007). The conditional 
stratified method is more robust to accrual divergences 
removing the estimation bias by solving for multiple 
solutions.  The Bayesian methods do not suffer from the 
issue of accurate sampling estimation, but suffer from 
the identification of subgroups issue which is an 
inherent problem in all of the contrasted methods. 
 Subgroup specific stopping boundaries allow for 
individual subgroup stopping boundaries similar to 
conducting multiple trials while a global stopping 
boundary only allows all subgroup trial termination 
similar to conducting an averaged response trial. An 
optimal heterogeneity method would incorporate the 

structure of the response profile, e.g., the subgroups, 
into the hypothesis testing.  The stratified methods only 
include global boundaries while the Bayesian methods 
include subgroup boundaries; homogeneous boundaries 
for the hierarchical model and possibly unique 
boundaries for the BANCOVA model. 
 The third critical comparison between methods is 
sample size.  The stratified methods and beta-binomial 
method determine a fixed sample size before trial 
conduct while the Bayesian methods rely on a 
maximum estimate for sample size.  If expected accrual 
can accommodate this maximum sample size, say 100 
patients, then the Bayesian methods are applicable.  If 
expected accrual is determined to be much smaller, say 
50, then the Bayesian methods may be precluded as a 
suitable method.  
 

CONCLUSION 
 
 Each method has a list of strengths and possible 
weaknesses under different classes of heterogeneity. No 
method currently exists that optimizes the complete set 
of comparison criteria in this study. The stratified 
methods require smaller sample sizes, are only 
moderately computationally complex and are robust 
under no heterogeneity. The disadvantage of the 
unconditional form over the conditional form is the 
need to accurately estimate population proportions 
through sampling weights. A disadvantage of both 
methods is the lack of subgroup specific stopping 
boundaries. While the Bayesian methods, Bayesian 
hierarchical model and BANCOVA, require a larger 
sample size under a non-informative prior and more 
computational time, they allow the use of subgroup 
specific stopping boundaries refining patient efficacy 
characteristics. The beta-binomial distribution model 
provides a model for a middle of the road alternative to 
the other methods. It works under all three classes of 
heterogeneity, is computationally moderate and the 
necessary sample size is comparable to the stratified 
methods, but lacks the etiology of heterogeneity 
information of the other methods.  
 The limiting factor in the application of all the four 
main methods, stratified and Bayesian, is the a priori 
knowledge of the existence of subgroups. Each of the 
four methods is dependent on knowledge of the 
distribution of subgroups. If no knowledge is known 
about the existence of subgroups, none of the methods 
will be able to provide adequate inferences.  In contrast, 
the beta-binomial does not need information on 
subgroups, but lacks the ability to differentiate the 
source of the heterogeneity, an important clinical aspect 
of the trial.  
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 Methods need to be developed that can be applied 
to a problem without any knowledge of the existence of 
heterogeneity that maintain the desirable attributes of 
each of the compared methods, subgroup etiology, 
sharing of resources across subgroups, while 
maintaining the desirable attributes of a Simon design, 
high probability of early termination in the first stage 
and small sample sizes, if heterogeneity does not exist.  
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