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Abstract: Problem statement: Reliability studies are concerned with the study of “consistency” or 
“repeatability” of measurements. Often times (but not always) the reliability coefficients are Intra-class 
Correlation Coefficients (ICC). Depending on the design or the conceptual intent of the study there are 
three types of intra-class correlation coefficients, termed intra-class correlation coefficients Case 1, 2 
and 3, for measuring the reliability of a single interval measure. While methods for sample size 
calculations for intra-class correlation coefficients in Case 1 are available and implemented in Power 
Analysis and Sample Size System (PASS); to our knowledge, no methods based on intra-class 
correlation coefficients in Case 2 and 3 are available. Objective: Develop a method for calculating the 
size of a reliability study based on intra-class correlation coefficients Case 1 and 2. Approach: A 
practical method for computing sample size using simulations was proposed. We proposed to compute 
sample size based on the expected width of the confidence interval. For a given target value of the 
intra-class correlation coefficient, the proposed method chooses the design assures a 95% confidence 
interval with average length shorter than a pre-specified value. The applicability of the proposed 
method in practice for intra-class coefficients Case 2 was supported by demonstrating three invariance 
properties of the proposed confidence intervals. Results: Tables with sample size requirements were 
derived and displayed. A program for carrying out the calculations was developed in R. The method 
was used to size a trial aimed to study the reliability of a scale that measures the cleanness of the colon 
at the time of colonoscopy. Conclusion: A simple method for sample size calculation for intra-class 
correlation coefficient Case 1 and 2 based on the average length of confidence intervals was proposed. 
The proposed was implemented by the authors in R (freely available software). Three invariance 
properties of the confidence intervals for the intra-class correlation coefficients Case 2 were studied by 
simulations. These properties are an important tool when considering the design of this type of studies. 
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INTRODUCTION 
 
 Intra-class correlation coefficients are commonly 
used in epidemiology, psychology, sociology and 
medicine as reliability coefficients. Their area of 
application, however, extends beyond these research 
fields. Reliability studies are concerned with the study 
of “consistency” or “repeatability” of measurements. 
Often times (but not always) the reliability coefficients 
are Intra-class Correlation Coefficients (ICC). 
Depending on the design or the conceptual intent of the 
study (Shrout and Fleiss, 1979) describe three types of 
intra-class correlation coefficients for measuring the 
reliability of a single interval mea-sure, which they 
term intra-class correlation coefficients Case 1, 2 and 3. 
While methods for sample size calculations for intra-
class correlation coefficients in Case 1 are available and 

implemented in PASS (Power Analysis and Sample 
Size System) (Walter et al., 1998; Winer, 1991); to our 
knowledge, no methods based on intra-class correlation 
coefficients in Case 2 and 3 are available. Available 
approaches to calculate sample size for intra-class 
correlation coefficients ρ are based on power of tests 
for hypothesis H0: ρ = ρ0 which start from the premise 
that an hypothesis test will be used. However, often in 
reliability studies the focus is on estimation of the intra-
class correlation coefficients, not on testing. Thus, 
using power as criterion for sample size calculation is 
not an appropriate approach. The criterion used in 
sample size calculations should be a measure of quality 
of the estimator. Designs based on confidence intervals 
have been proposed before (Beal, 1989; Cochran and 
Cox, 1957; Daly, 1991; Greenland, 1988; McHugh and 
Le, 1984; O’Neill, 1984) however, not for ICC 
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coefficients case 2 and 3. In this study we propose a 
method for calculating the size of a study based on 
confidence intervals of intra-class correlation 
coefficients. We apply our method to intra-class 
correlation coefficients in case 1 and 2. 
 
Intra-class correlation coefficients: A generic 
definition of an intra-class correlation coefficient ρ is: 
 

'True Variance'

'Observed Variance'
 

 
Where: 
‘True Variance’ = The variability between the 

targets 
‘Observed Variance’ = The total variance-true 

variance plus other variance 
 
 In many cases, but not always, intra-class 
correlation coefficients are reliability coefficients. 
Depending on the design or the conceptual intent of the 
study (Shrout and Fleiss, 1979) describe three classes of 
intra-class correlation coefficients to measure 
reliability, which they term Case 1, 2 and 3. In each 
case n randomly chosen targets are rated by k raters, 
with the distinction that for Case 1-each target is rated 
by different raters, for Case 2-the same raters rate each 
target and for Case 3-all possible raters rate each target. 
For each of the three cases above, Shrout and Fleiss 
(1979) further distinguish two cases: First in which the 
aim is to estimate the reliability of a single rating and 
the second in which the aim is to estimate the reliability 
of the average several ratings, thus resulting in a total of 
six ICC’s. The above mentioned authors coined the 
notation ICC(l,m) for these coefficients, where m is 
number of repeated measurements from the same rater 
on same target and l = 1, 2, 3 is the case. In this study 
we will only refer to ICC(1,1) and ICC(2,1). For a 
different categorization of various ICCs also (McGraw 
and Wong, 1996). 
 Variances entering the definition of ICC(1,1) and 
ICC(2,1) are estimated with a one-way and two-way 
random effects ANOVA, respectively. For Case 1 it is 
assumed that the jth observation yij  for target i (i = 1, 
2,…, n; j = 1, 2,…, k) satisfies: 
 
yij = µ + ti + ∈ij  (1) 
 
where, µ is the population mean of the measurements; 
the random target effects ti and the measurement errors 
∈ij are independent, normally distributed random 
variables with mean 0 and variance σ2

T and σ2
W, 

respectively. We assume the targets are randomly 
sampled from some population of interest. For Case 2 it 

is assumed that the jth observation yij for target i (i = 1, 
2,…, n; j = 1, 2,…, k) satisfies: 
 
yij = µ + ti + rj + ∈ij (2) 
 
where, µ is the population mean of the measurements; 
the random target effects ti, the random rater effects ri 
and the measurement errors ∈ij are independent 
normally distributed random variables with mean 0 and 
variance σ2

T, σ2
J and σ2

E, respectively. We assume the 
targets and raters are randomly sampled from some 
populations of interest. The Analysis Of Variance 
(ANOVA) tables for the models in Eq. 1 and 2 are 
summarized in Table 1. 
 Following the notation in (Shrout and Fleiss, 
1979), several key results on the estimation of ICC(1,1) 
and ICC(2,1) are summarized next. 
 
ICC(1,1) coefficient: Coefficient. The interclass 
correlation coefficient ICC(1,1) is defined as: 
 

2
T

2 2
T W

σρ =
σ + σ

 (3) 

 
 As a measure of inter-rater reliability, the intra-
class correlation above is the proportion of total 
variance in observed scores accounted for by the 
subject-to-subject variability in the true, unobserved 
scores. A consistent (biased) estimate of this coefficient 
is (Shrout and Fleiss, 1979): 
 

(BMS WMS) / k
ˆ

(BMS WMS) / k WMS

−ρ =
− +

 

 
Confidence interval: A 100(1-ff)% confidence interval 
for this parameter is presented by Fleiss and Shrout 
(1978) and can be expressed as: 
 

CI(α) = {L( α) < ρ < U(α)} 
 
with the lower bound: 
 

0 F

0 F

/ q (1 / 2,n 1,n(k 1)) 1
L( )

/ q (1 / 2,n 1,n(k 1)) k 1

ρ − α − − −α =
ρ − α − − + −

 

 
Table 1: ANOVA table for case 1 and 2 
   Expected MS 
   ------------------------------- 
   Case 1 Case 2 
Source of   One-way Two-way 
variation DF MS random effects random effects 
Between targets n-1 BMS kσ2

T + σ2
W kσ2

T + σ2
E 

Within targets n(k-1) WMS σ2
W - 

Between raters k-1 JMS - nσ2
J + σ2

E 
Residual (n-1)(k-1) EMS - σ2

E 
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and the upper bound: 
 

0 F

0 F

/ q (1 / 2,n 1,n(k 1)) 1
U( )

/ q (1 / 2,n 1,n(k 1)) k 1

ρ − α − − −α =
ρ − α − − + −

 

 
Where: 
ρ0 = BMS/WMS 
qF = (1-α, l, m) is the 100(1-α)% percentile of an F 

distribution with l and m degrees of freedom 
 
 A study of various confidence intervals for 
ICC(1,1) is presented in Donner and Wells (1986). 
 
ICC(2,1) coefficient: 
Coefficient: The intra-class correlation coefficient 
ICC(2,1) is defined as: 
 

2
T

2 2 2
T J E

σρ =
σ + σ + σ

 (4) 

 
 As a measure of inter-rater reliability, the intra-
class correlation above is the proportion of total 
variance in observed scores accounted for by the 
subject-to-subject variability in the true, unobserved 
scores. A consistent (biased) estimate of this 
coefficient is (Shrout and Fleiss, 1979): 
 

(BMS EMS) / k
ˆ

(BMS EMS) / k (JMS EMS) / n EMS

−ρ =
− + − +

 

 
Confidence interval: Constructing a confidence 
interval for this parameter is more difficult because it is 
a function of three independent quantities. An 
approximate 100(1-α)% confidence interval for this 
parameter is provided by Fleiss and Shrout12 and it has 
complicated form. We first set-up some notation. Let qF 
(1-α, l, m) be the 100(1-α)% percentile of an F 
distribution with l and m degrees of freedom, let: 
 

ρ0 = JMS/EMS 
 
and let: 
 

2
0

2 2 2 2
0

ˆ ˆ ˆ(k 1)(n 1)[ n(1 (k 1) ) k ]
ˆ ˆ ˆ(n 1)k [n(1 (k 1) ) k ]

− − ρρ + + − ρ − ρδ =
− ρ ρ + + − ρ − ρ

 

 
 With this notation, the confidence interval can be 
expressed as: 
 

CI(α) = {L( α) < ρ < U(α)} 

Where: 
 

F

F

n[BMS q (1 / 2,n 1, )EMS]
L( )

kJMS
q (1 / 2,n 1, ) nBMS

(kn k n)EMS

− − α − δα =
+ 

− α − δ + + − 

 (5) 

 
and 
 

F

F

n[q (1 / 2, ,n 1)BMS EMS]
U( )

1 / 2,
kJMS (kn k n)EMS nq BMS

,n 1

− α δ − −α =
− α 

+ + − +  δ − 

 (6)  

 
 The confidence intervals proposed in (Cappelleri 
and Ting, 2003)] improve slightly on coverage over the 
intervals proposed by Fleiss and Shrout (1978), 
however, the improvement is not great and we will not 
be using them here. An approach to inference for 
ICC(2,1) based on a generalized variable model have 
been proposed by Tian and Cappelleri (2004). 
 
Sample size calculations based on ICC(2,1): In 
reliability studies, the main aim is not testing but 
accurate estimation. For this reason sample size 
calculations should focus on precision rather than 
power (Beal, 1989; Daly, 1991; Greenland, 1988). 
Design based on confidence intervals have been 
proposed before in (Beal, 1989; Cochran and Cox, 
1957; Daly, 1991; Greenland, 1988;  McHugh and Le, 
1984; O’Neill, 1984)] but not for ICC(2,1) coefficients. 
 
Confidence intervals and sample size: Designing a 
study is an involved process. Sample size justification 
is part of the design. The traditional approach to sample 
size calculations is based on power. This approach 
starts from the premise that a test of hypothesis will be 
used. Hypothesis testing and confidence intervals are 
closely related. For instance, when a 100(1-α)% 
confidence interval is constructed, all values in the 
interval are considered plausible values for the 
parameter being estimated. Values outside the interval 
are rejected as relatively implausible. If the value of the 
parameter specified by the null hypothesis is contained 
in the 100(1-α)% interval, then the null hypothesis 
cannot be rejected at the 100α% level. If the value 
specified by the null hypothesis is not in the interval, 
then the null hypothesis can be rejected at the 100% 
level. Over the past decades many editorial boards have 
recommended that in the analysis of data, confidence 
intervals be used rather than hypothesis tests whenever 
confidence intervals are warranted. In spite of this shift 
in the presentation of the data many studies continue to 
use power or minimal detectable difference as the 
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criteria for sample size calculations. Estimates of 
sample size based on confidence interval can be quite 
different from the estimates based on power depending 
on the criteria used for sample size calculation 
(Greenland, 1988). Different criteria for sample size 
calculation based on confidence intervals have been 
proposed. For example, Cochran and Cox (1957), 
McHugh and Le (1984) and O’Neill (1984) propose 
using expected width of confidence interval, while Beal 
(1989), Daly (1991) and Greenland (1988) propose 
different concepts of ‘power’ for confidence interval in 
calculating sample size. Beal (1989) proposes the use of 
the conditional probability that the half length of a 
confidence interval is smaller that a preset value given 
that the interval includes the true value be used as a 
criteria for sample size calculations. Greenland (1988) 
introduces the concept of ‘discriminatory power’ for 
calculating sample size based on confidence interval 
and Daly (1991) proposes to translate the standard 
methods for calculating sample size based on power into 
the confidence interval framework. Kupper and Hafner 
(1989) for an evaluation of the performance of sample 
size calculations based on confidence intervals. Finally, 
many authors agree that when the main aim of the study 
is estimation the average length of the confidence 
interval can be used as an criterion for sample size 
calculations (Beal, 1989; Daly, 1991; Greenland, 1988; 
Maxwell and Kelley, 2007). 
 

MATERIALS AND METHODS 
 
 We will concentrate on sample size calculations 
based on ICC(2,1). The method proposed by Walter et al. 
(1998) applies only for the designs where the intra-class 
correlation coefficient is derived from a one-way 
ANOVA, hence not for a design based on ICC(2,1). 
The authors state “A treatment of sample size 
calculation in the two-way ANOVA cases, taking rater 
effects explicitly into account seems needed,...”. 
Kraemer (1976) considers reliability in a two-way 
ANOVA framework, however the definition for the 
intra-class correlation coefficient is different from the 
traditional definition; in her definition the rater 
variability is excluded. 
 We propose to compute sample size based on the 
expected width of the confidence interval. The 
proposed method can be briefly outlined as follows: For 
a given target value of ρ design a study (choose n and 
k) that will assure a 95% confidence interval with 
average length shorter than a pre-specified value ∆. 
This method is readily applicable for ICC(1,1) where 
the only parameter needed is the target ρ; however, for 
ICC(2,1) besides the target ρ we would also need 

guess-estimates for two of the three variance 
components. Assuming that extra information 
(estimates) can be elicited, we can use Monte Carlo 
simulations to simulate from the distribution of the 
‘approximate’ confidence bounds presented in Eq. 5 
and 6 and calculate the appropriate sample size using 
the following steps: 
 
• Simulate data yi,j according to the model in Eq. 2 

and calculate BMS, JMS and EMS 
• calculate the expected length of the confidence 

intervals for a variety of n and k values 
• Choose the design (n and k) which results in a 

confidence interval with expected length smaller 
than a value ∆ 

 
 The method as outlined above is rarely practical. 
The amount of information needed is rarely available. 
Moreover, even if all the information were available it 
is not clear that the proposed method has any desirable 
properties: for example, the property that the length of 
confidence interval decreases with the increasing 
amount of information (i.e., n and k). 
 

RESULTS 
 
 Next, several properties of the confidence interval 
of ICC(2,1) are investigated. Armed with these 
properties, a new method is proposed. More precisely, 
through a simulation study we examine whether a 
scaling invariance property holds for the approximate 
confidence interval and whether the expected length of 
the confidence interval decreases with the increase of 
either n or k or ρ. Also, we examine the dependence of 
the average length of the confidence interval on the 
ratio rT,E(σ2

T/σ2
E). 

 
Properties of confidence intervals for ICC(2,1): 
Properties of the confidence interval for the ICC(2,1) 
are examined through an extensive simulation study. 
We considered scenarios in which 2≤k≤10, k≤n≤30, 
ρ≥0.6 and ρ/(1-ρ)≤rT,E≤40. Note that, for a given ρ, the 
ratio rT,E is lower bounded by ρ/(1-ρ) because 
0<σ2

T/σ2
E = (1/ρ-1)rT,E-1. For each combination of n, k, 

ρ and rT,E, in order to calculate the expected length of 
the approximate confidence interval proposed by Fleiss 
and Shrout (1978), we first simulate data yi,j according 
to the model in Eq. 2, then calculate BMS, JMS and 
EMS, then calculate the approximate bounds according 
to the formulas in Eq. 5 and 6 and then average over the 
simulation results. For each scenario we use 1,000 
simulations. The simulations are run using the R 
package (The R Development Core Team, 2005). 
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Fig. 1: Scale invariance (n = 30, k = 4, rT,E = 4, rJ,E = 3) 
 
Scaling property: The formula in Eq. 4 defining 
ICC(2,1) can be written as: 
 

2 2
T E

2 2 2 2
T E J E

/

/ / 1

σ σρ =
σ σ + σ σ +

 

 
that is, this coefficient depends on σ2

T, σ2
J and σ2

E only 
through the ratios rT,E and rJ,E(= σ2

T/σ2
E). The question 

is whether the expected confidence interval inherit the 
above scaling property, that is, will different triplets 
σ2

T, σ2
J and σ2

E with the same ratios (rT,E and rJ,E) result 
in the same expected confidence intervals? Figure 1 
shows the results for n = 30, k = 4, rT,E = 4 and rJ,E = 3. 
Similar results were found in all other scenarios we 
considered. Simulations support this scaling property 
for the confidence intervals. In other words, the average 
confidence interval depends on σ2

T, σ2
J and σ2

E only 
through the ratios rT,E and rJ,E. 
 
Dependence on rT,E: Turning now to the dependence 
of the average confidence interval on rT,E, for given n, k 
and ρ, simulations will be run for a set of rT,E values. 
Figure 2 shows the average length of confidence 
intervals as a function of rT,E for n = 20 and k = 7. 
Similar results were found in all other scenarios we 
considered. The conclusion is that the average length 
increases with the variance ratio rT,E, however the 
increase is not big and it plateaus. 
 
Monotonicity: The next task is to assess if the average 
length of the confidence interval decreases with the 
increase of either the number targets n, or the number of 
raters k or the magnitude of the coefficient ρ. Figure 3 
shows the average  length  of  confidence interval for 
n = 10; 20 and 30, k = 4; 7  and  10  and  ρ = 0:7; 
0:75; 0:8; 0:85 and 0:9. The average over a wide range 
of  rT,E  values  has  been  used  to  construct  this graph. 

 
 
Fig. 2: Average length of confidence intervals as a 

function of rT,E (n = 20, k = 7) 
 

 
 
Fig. 3: Monotonicity-length of confidence interval 

averaged over a range of variance ratios 
 
These results indicate that, increasing the number of 
targets or/and raters will provide a narrower confidence 
interval and, everything else being constant, the average 
length of the confidence interval for a value ρ1 will be 
smaller than the average length of the confidence 
interval corresponding to a value ρ0<ρ1. 
 The scale invariance property of the average 
approximate confidence interval reduces the 
dimensionality of the problem. In other words, instead 
of having to input into the calculation two parameters 
(two of the σ2

T, σ2
J, or σ2

E), the input of only one (one 
of the rT,E or rJ,E) is necessary. The average length of the 
confidence interval increases with the ratio rT,E. When 
one of these ratios can be elicited from a pilot study 
the  sample  size  can  be  calculated using  simulations; 
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in practice, however, it is often difficult to obtain prior 
estimates of these ratios (Walter et al., 1998). Even 
when this is possible, the estimates come with big 
uncertainty as they are either obtained from small pilot 
studies, or they are adopted from studies on different 
measures and assumed to hold approximately true for 
the measure under study. Therefore, when these 
estimates are not available, the average confidence 
interval for a range of rT,E values will be calculated. 
Thus, a more practical approach is the following: for a 
target ρ and fixed k, calculate n that assures an average 
confidence interval length that is smaller than a value ∆ 
following the steps: 
 
• Choose a range of likely values for rT,E and chose a 

set of values (i.e., a grid) that spans this range 
• For a target ρ and the set of values for rT,E as above 

simulate data yi,j according to model in Eq. 2 and 
calculate BMS, JMS and EMS 

• Calculate the expected length of the confidence 
intervals for a variety of n and k and then average 
over the grid of rT,E values 

• Choose the design (n and k) that gives a confidence 
interval with length smaller than ∆ 

 
 Based on our experience this method will result in 
a conservative estimate of the sample size. When this 
approach is used we would recommend using ∆ 
between 0.3 and 0.5. Smaller values will often result is 
sizes (n and k) that are too large to be practical. A script 
in R is available from the author upon request. 
 
Example: A clean bowel is crucial to a successful 
colonoscopy. A dirty colon can preclude the doctor 
seeing polyps. That is why prior to a colonoscopy 
procedure, the patients are asked to drink a bowel 
cleaning medicine. Lai et al. (2007) propose a scale that 
measures how clean the colon is at the time of 
colonoscopy. A pilot study was conducted for a proposed 
Bowel Preparation Scale to inform the design of a 
reliability study to asses the reliability of the scale. 
Results from a pilot study suggested a reliability 
coefficient of around 0.7 (T,Er̂ 3.6= , J,Er̂ 0.4= ). The main 

goal is determine how many colonoscopies and raters 
are needed to ensure on average length for a 95% 
confidence interval of 0.3 or less. The results of the 
calculations are shown in Fig. 4. By increasing the 
number of raters (k) from 5-7 or from 7-10 we do not 
gain much. In other words, most benefit in power is 
obtained by increasing n; a similar result holds for 
ICC(1,1) (Walter et al., 1998). As the principal 
investigator was able secure ten raters we choose k = 10. 

 
 
Fig. 4: Example-average length for confidence intervals 
 
The minimum number of colonoscopies needed to assure 
an average length for the 95% confidence interval 
smaller than ∆ = 0.3 was determined to be 19. If we 
average over a grid of values  between  3.5  and  6,  
with ∆ = 0.3 and k = 10 raters, we would need n = 25 
colonoscopies. The latter estimate for the number of 
colonoscopies might be more realistic given the 
uncertainty around the estimate for rT,E. 
 

DISCUSSION 
 
 The design for reliability studies have not been 
well studied. In Kraemer (1976) addresses the problem 
of sample size calculation for a design based on ICC 
derived from a two-way ANOVA, however, the 
author’s definition for the intra-class correlation 
coefficient is different from the traditional definition. 
The method proposed by Walter et al. (1998) applies 
only for the designs where the intra-class correlation 
coefficient is derived from a one-way ANOVA. Hence 
a method to deal with ICC(2,1) was needed. 
 A method for sample size calculation for intra-class 
correlation coefficient ICC(2,1) based on the average 
length of confidence intervals is proposed. A target ρ 
and an estimate for one of the ratios rT,E or rJ,E has to be 
specified. In this study we chose to concentrated on the 
parameterization (ρ; rT,E) however the method could be 
easily be applied for cases when prior information is 
available on rJ,E in which case the parameterization (ρ; 
rJ,E) is more appropriate. The length of the confidence 
interval varies the most with the target ρ and 
decreases with the increase of either the number 
targets n, or the number of raters k. Our study shows 
that the length of the confidence intervals varies little 
with rT,E. In the absence of this information, an average 
over a range of plausible values of rT,E may be obtained. 
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Table 2: Number of targets (n≥k) for average length of confidence 
interval to be bounded by ∆ 

    Confidence level 
  ------------------------------------------------------------------- 
  α = 0.1   α = 0.05 
  ------------------------------- ------------------------------ 
∆ ρ = 0.6 0.7 0.8 0.6 0.7 0.8 
k = 3: 
0.2  >50 48 28 >50 >50 38 
0.3  32 24 14 45 32 20 
0.4  18 14 14 26 20 14 
k = 5: 
0.2  50 37 23 >50 >50 32 
0.3  24 18 14 32 24 16 
0.4  14 14 5 19 16 14 
k = 7: 
0.2  44 32 20 >50 46 28 
0.3  20 16 14 28 22 16 
0.4  14 14 7 16 14 14 
k = 10: 
0.2  40 30 20 >50 42 28 
0.3  18 16 10 26 21 14 
0.4  10 10 10 16 14 10 

 
This method will result in conservative estimates of the 
size of the study. An R script is available from the 
author upon request. 
 Our approach is also applicable to designs based on 
ICC(1,1) and a table for required number of targets to 
achieve an expected length of a confidence interval 
bounded by ∆ is displayed in Table 2. 
 We do not address in this study the problem of 
sample size calculation for ICC(3,1) based on 
confidence interval. In Case 3 the raters are modeled as 
fixed effects and a confidence interval for ICC(3,1) is a 
function of the raters’ effects. Thus, to implement a 
similar approach one would need to elicit prior 
information on these effects which is not practical. 
 The computer time to run the simulations to 
determine the sample size for ICC(2,1) can be 
shortened if in the first step we skip the data generation 
and start by simulating values for BMS, JMS and EMS 
from properly scaled independent chi-squared 
distributions with appropriate degrees of freedom. The 
approach proposed by Beal (1989) could also be used 
as a criteria for sample size calculations based on 
confidence intervals for intra-class correlation 
coefficients, however we do not pursue this here. Also, 
in some cases investigators might be interested in 
powering a study to be able distinguish between two 
values. For example, Landis and Koch (1977) propose 
classifying reliability based on the magnitude of a 
reliability coefficient ρ as follows: ρ = 0 is defined as 
‘non-existing’, ρ between 0 and 0.2 ‘slight’, ρ between 
0.2 and 0.4 ‘fair’, ρ between 0.4 and 0.6 ‘moderate’, ρ 
between 0.6 and 0.8 ‘substantial’, ρ between 0.8 and 
1.0 ‘almost perfect’. Given this classification, an 

investigator might be hoping for almost perfect 
reliability (i.e., ρ≥0.8), however he/she would want to 
be able to tell that the reliability is substantial (i.e., 
ρ≥0.6). Our approach could be adapted to this situation 
by using the methods by Greenland (1988). 
 

CONCLUSION 
 
 A simple method for sample size calculation for 
intra-class correlation coefficient Case 1 and 2 based on 
the average length of confidence intervals was 
proposed. The proposed was implemented by the 
authors in R (freely available software). Three 
invariance properties of the confidence intervals for the 
intra-class correlation coefficients Case 2 were studied 
by simulations. These properties are an important tool 
when considering the design of this type of studies. 
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