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Abstract: A multi-timescale hybrid model is proposed to study 

microscopically the degraded performance of electronic devices, covering 

three individual stages of radiation effects studies, including ultra-fast 

displacement cascade, intermediate defect stabilization and cluster 

formation, as well as slow defect reaction and migration. Realistic 

interatomic potentials are employed in molecular-dynamics calculations 

for the first two stages up to 100 ns as well as for the system composed of 

layers with thicknesses of hundreds of times the lattice constant. These 

quasi-steady-state results for individual layers are input into a rate-

diffusion theory as initial conditions to calculate the steady-state 

distribution of point defects in a mesoscopic-scale layered-structure 

system, including planar biased dislocation loops and spherical neutral 

voids, on a much longer time scale. Assisted by the density-functional 

theory for specifying electronic properties of point defects, the resulting 

spatial distributions of these defects and clusters are taken into account in 

studying the degradation of electronic and optoelectronic devices, e.g., 

carrier momentum-relaxation time, defect-mediated non-radiative 

recombination, defect-assisted tunneling of electrons and defect or 

charged-defect Raman scattering as well. Such theoretical studies are 

expected to be crucial in fully understanding the physical mechanism 

for identifying defect species, performance degradations in field-effect 

transistors, photo-detectors, light-emitting diodes and solar cells and in 

the development of effective mitigation methods during their 

microscopic structure design stages. 
 
Keywords: Radiation Effects in Semiconductor Devices, Radiation-

Induced Defects in Semiconductors, Radiation-Induced Degradation of 

Semiconductor Device Performance 

 

Introduction 

Point defects (vacancies and interstitial atoms) are 

produced by the displacements of atoms from their 

lattice sites, (Was, 2007; Sigmund, 2006) where the 

atom displacements are mainly induced by a Primary 

Knockout Atom (PKA) on a time scale shorter than 50 

ps. This initial phase is followed subsequently by a 

defect reaction (clustering or dissolution of clusters), 

(Devanathan et al., 2001) and further by the thermally 

activated migration (Posselt et al., 2005) of the point 

defects and defect clusters over a time scale longer than 

100 ns. The combination of all these processes, resulting 

in a significant concentration of surviving defects in the 

crystal, is physically termed particle irradiation 

displacement damage (in addition to the well know γ-ray 

electron ionization cascade damage). Such radiation 

displacement damage effects depend not only on the 

energy-dependent flux of the incident particles (protons, 

neutrons, ions, etc.) but also on the differential energy 

transfer cross sections (probabilities) for collision 

between atoms, interatomic Coulomb interactions and 

kinetic-energy loss to electrons inside an atom. 

Irradiation temperature also significantly affects the 

motion of defects, their stability as clusters and the 

formation of Frenkel pairs (Gao and Weber, 2003a). 
On the other hand, electron devices are usually 

classified either as electronic ones, where electrons 
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respond to an applied voltage as a current flow, or 
optoelectronic ones, in which electrons perform 
interband/intraband optical transitions in the presence of 
an incident light signal. (Gumbs and Huang, 2013) For 
an electronic device (e.g., field-effect transistors in an 
integrated circuit), the momentum-relaxation time of 
electrons, due to scattering by randomly-distributed 
defects, plays a crucial role in determining the 
electron mobility, (Strour et al., 2003) while the 
photo-excited electron lifetime, due to nonradiative 
recombination with defects, is proven to be a key 
factor affecting the sensitivity or the performance of 
optoelectronic devices (e.g., photo-detectors and light-
emitting diodes) (Weatherford and Anderson, 2003). 

In a perfect crystal, the continuous free-electron 

states are quantized into many Bloch bands separated 

by energy gaps and these Bloch electrons move freely 

inside the crystal with an effective mass different 

from that of the free electrons (Callaway, 1991). In 

the presence of defects, however, the field-driven 

current flow of Bloch electrons in a perfect crystal 

will be scattered locally by these defects, leading to a 

reduced electron mobility. In addition, photo-excited 

Bloch electrons could acquire a shortened lifetime, 

giving rise to a degraded quantum efficiency due to 

enhanced non-radiative recombination with defects. 

The dangling bonds attached to the point defects may 

capture extra electrons to form charged defects. In this 

case, the positively-charged holes in the system will 

be trapped to produce a strong spacecharge field, 

while the negatively-charged electrons may generate 

the so-called 1/f-current noise in their chaotic motion 

due to the presence of many potential minima and 

maxima from randomly-distributed charged defects. 

Point defects in crystals, as shown in Fig. 1, can be 

generated by particle irradiation in both bulk and 

nanocrystals composed of many grains with different 

sizes (Gao et al., 2010). One of the effective 

calculation methods for studying the non-thermal 

spatial-temporal distributions of radiation-induced 

point defects is the Molecular-Dynamics (MD) model 

based on a stepped time-evolution approach (also 

termed the collisional and thermal spike stages), 

which involves the total force by summing over the 

interatomic potentials from all the atoms in a finite 

system (Gao et al., 2009). The lattice vibration at 

finite temperatures can be taken into account by an 

initial thermal-equilibrium state for atoms (intrinsic 

vacancies and interstitials) in the system plus an 

initial velocity for one of the atoms in a specific 

direction. The system size increases quadratically with 

the initial kinetic energy of particles and the time 

scale runs up to several hundred picoseconds (called 

the quenching stage). Therefore, the defect reaction 

process by thermal migration cannot be included in 

this MD model due to its much longer time scale, 

although the other processes, such as displacement of 

lattice atoms, energy dissipation, spontaneous 

recombination and clustering, can be fully taken into 

account. If the system time evolution goes beyond 100 ps, 

the kinetic lattice Monte-Carlo method can also be used 

(Rong et al., 2007). However, if the time scale exceeds 

several hundreds of nanoseconds (also called the annealing 

stage), the rate theory (Maksimov and Ryazanov, 1980; 

Golubov et al., 2012) has to be called in for studying the 

steady-state properties of the surviving defects (up to 

hours or days or even months). 
We know that the MD model with a realistic 

interatomic potential has been developed for studying 

the nonthermal spatial-temporal distributions of 

radiation-induced point defects in noble transition 

metals and alloys and the density-functional theory 

has been widely used for calculating electronic 

properties of defects with pre-assumed specific defect 

configurations. On the other hand, a quantum-

mechanical model has been well established for 

investigating defect effects on semiconductor 

electronic devices in the presence of spatially-uniform 

and randomly distributed point defects. However, to 

the best of our knowledge, no first-principle model 

and theory has been proposed so far to study 

microscopically the degraded performance of 

electronic devices induced by particle irradiation 

displacement damage. 

Therefore, the theory presented in this study is 

expected to be very important in understanding the 

full mechanism for characterizing defects, performance 

degradations in transistors, photo-detectors, light-

emitting diodes and solar cells, as well as in developing 

effective mitigation in early design stages. Equipped 

with our current multi-timescale microscopic theory, the 

experimental characterization of post-irradiated test 

devices will result in useful information on the device 

architecture’s susceptibility to space radiation effects 

(we already know details on particle irradiation sources). 

On the other hand, the model should allow prediction of 

devices degradation on the basis of space weather 

forecast for the particular orbit. 

Some of the equations presented below will be 

well-known to researchers in the materials science 

field, however, researchers in the device physics field 

may not be aware of them. With this paper, we hope 

to bridge the gap between researchers studying 

radiation-induced damage in materials and researchers 

studying radiation-induced performance degradation 

in devices. This should allow the formalism developed 

for the investigation of radiation-induced structural 

defects in nuclear reactor materials to be extended to 

the investigation of device performance degradation 

effects induced by particle radiation found in space-

based systems. 
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Fig. 1. Two-dimensional illustrations of different types of point defects in a crystal 
 

The rest of the paper is organized as follows. In 
section II, we present our atomic-scale MD model to 
cover both the ultra-fast defect generation and 
intermediate defect stabilization stages, as well as the 
mesoscopic-scale rate theory for defect migration and 
interaction processes. In Section III, master equations for 
both planar dislocation-loop and spherical void growth 
are introduced for studying surface and bulk sink 
dynamics, respectively. In section IV, master equations 
are presented for exploring the steady-state spatial 
distribution of defects in layered structure materials. In 
addition, a density-functional theory is introduced for 
specifying electronic properties of point defects and four 
device physics models are employed for characterizing 
and understanding defect-assisted resonant tunneling, 
reduced carrier mobility, non-radiative recombination 
with defects and inelastic light scattering by charged 
defects. In section V, an indication of how this defect 
theory might be applied to experimental data describing 
device performance degradation is presented. Finally, 
some concluding remarks are presented in section VI. 

Model and Theory 

Atomic-Scale Modeling for Ultrafast Defect 

Generation (Displacement Cascade: t < 100 ps)  

A schematic of a displacement-cascade event by 
proton irradiation is shown in Fig. 2. For the neutron-
nucleus elastic collision, this process can be simply 
regarded as colliding hard spheres as an approximation 
due to their charge neutrality. The more complicated 
inelastic collision of neutrons with a nucleus, however, 
could involve generating an additional neutron [(n, 2n)-
process] or photon emission [(n, γ)-process], which are 
both important to the displacement of atoms. For the 
proton-nucleus elastic collision, on the other hand, the 

extra interaction (potential function) between the 
electron cloud and the proton should be considered. 

Commonly, the end product of a particle collision 

results in the PKA having an excess kinetic energy and 

the subsequent atom-atom interaction represents the 

most fundamental physical mechanism of the radiation 

displacement damage (Gao and Weber, 2000a; Gao and 

Weber, 2003b). Since radiation damage events are 

random in nature, a large number of damage events are 

required to obtain good statistics by choosing different 

directions and locations for the PKA. On the other hand, 

the dynamics in the damage procedure can be accurately 

described by employing a realistic interatomic potential 

(MD model). For incident charged particles, the detailed 

form of the interatomic potential depends on the closest 

separation between two collision partners, which itself is 

determined by the kinetic energy of the incident particles 

(e.g., heavy-slow ions and relativistic electrons). 
The point defect generation as a result of 

displacement cascades is closely related to the PKA 
energy, which can be described statistically by an 
average transfer energy to the PKA. Such an average 
transfer energy can be calculated by using the energy-
loss theory and measured by the so-called proton 
(electron) energy-loss spectroscopy (Gumbs, 1989) as a 
function of various incident charged particle energies. 
The defects can also be identified experimentally by 
using positron annihilation (Tuomisto and Makkonen, 
2013). With help from the computed energy loss of 
incident particles per unit length (called the loss 
function), the range of the particle before its full stop 
inside a crystal can be found. On the other hand, the MD 
method has been widely employed to simulate defect 
generation in a number of semiconductors, including Si, 
(Rubia and Gilmer, 1995) SiC, (Gao and Weber, 2000) 
GaAs, (Nordlund et al., 2001) and GaN (Nord et al., 2003). 
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Fig. 2. Two-dimensional schematic of a displacement cascade induced by incident protons on a crystal 
 
These simulations provide important insights into the 
mechanisms for defect generation in semiconductors and 
predict the number and type of defects, spatial 
distribution of defects and initial correlation among 
defect species produced by the incident radiation for 
subsequent device level models. 

Basically, in MD simulations the time evolution of a 

set of interacting particles is tracked via the solution of 

Newton’s equations of motion as shown below: 
 

2

2

( )
( )

j

j j

d r t
F t m

dt
=  (1) 

 

where, the indices j = 1, 2,..., N label individual N 

particles in the system, rj(t) [xj(t), yj(t), zj(t)] is the 

position vector of the jth particle and ( )j j jk

k j

F t V

≠

= − ∇∑  is 

the force acting upon the jth particle at time t with 

interacting potential Vjk between the jth and kth particle 

and mj is the mass of the corresponding particle. In 

general, Fj(t) will depend on both particle positions and 

velocities at time t. Here, the energy loss of protons to 

electrons is ignored due to thin samples considered. To 

integrate the above second-order differential equations, 

the instantaneous forces acting on the particles and their 

initial positions and velocities need to be specified. Due 

to the many-body nature of the problem, the equations of 

motion have to be discretized and solved numerically. 

The MD trajectories are defined by both position vector 

rj (t) and velocity vector 
( )

( )
j

j

dr t
v t

dt
=  and they describe 

the time evolution of the system in position-velocity 

phase space. Accordingly, the positions and velocities 

are propagated with a small time interval  ∆t using 

numerical integrators. The numerical integration of 

Newton’s equations of motion is employed to find an 

expression that defines positions rj (t + ∆t) at time t + ∆t 

in terms of the already known positions rj(t) at time t. 

Because of its simplicity and stability, the Verlet 

algorithm is commonly used in MD simulations. 

(Frenkel and Smit, 2002) However, other popular 

algorithms, such as Leapfrog, Velocity Verlet, Beeman’s 

algorithms, (Frenkel and Smit, 2002; Allen and 

Tildesley, 1987) predictor-corrector, (Gear, 1971) and 

symplectic integrators, (Tuckerman and Martyna, 2000) 

are also widely adopted. For non-PKA particles, their two 

initial conditions can be set as rj(−∆t) = rj (0) = Rj, where 

Rj is the lattice vector for the jth site. If the PKA is given 

an initial velocity v0, in addition to 0
(0)PKA PKA

r r=  this leads 

to another initial condition 
0 0

( )PKA PKAr t r v t−∆ = − ∆ . 

In MD simulations, the atomic force field is crucial to 
determine physical systems in which collections of 
atoms are kept together by interatomic forces that can be 
calculated from empirical or semi-empirical interatomic 
potentials. Because of extensive applications of MD 
methods in materials science, a variety of techniques 
have been utilized over the years to develop reliable 
atomic-potential models. One of the early successful 
attempts to include manybody effects was the 
introduction of the embedding functional, (Norskov and 
Lang, 1980) which depends nonlinearly upon the 
coordination number (defined below) of each atom. This 
development led to the birth of the Embedded Atom 
Method (EAM), (Finnis and Sinclair, 1984) which 
provides a relatively accurate description for noble 
transition metals as well as their alloys. However, the 
Tersoff potential formalism (Tersoff, 1988) is based on 
the concept of bond order and has been widely applied to 
a large number of semiconductors. Novel many-body 
forms have been tried in an attempt to capture as much 
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as possible the physics and chemistry of the bonding. A 
typical analytical form is constituted by a number of 
functions, depending on geometrical quantities, such as 
distances or orientations, or on intermediate variables, 
such as atom coordinations. For example, a Tersoff 
potential has the appearance of a pair potential as below: 
 

, 1 , 1 , 1

1 1 1
( ) ( )

2 2 2

N N N

ij R ij ij A ij

i j i j i j

V V r B rφ φ
= = =

= = +∑ ∑ ∑  (2) 

 

where, the terms with i = j are excluded in the above 

summations, rij = |ri - rj | and the first and second terms 

represent repulsive and attractive interactions, 

respectively. However, the second term in Equation (2) 

is not a true pair potential since Bij is not a constant. In 

fact, it is the bond order for the bond joining the ith and 

jth atoms and it is a decreasing function of a 

“coordination” Gij assigned to the bond. Therefore, we 

have Bij = B(Gij ) and Gij is in turn defined by: 
 

( ) ( ) ( )
ij c ik ijk c jk

k

G f r g f rθ=∑  (3) 

 

where, fc(r) and g(θ) are suitable functions. The basic 
idea is that the i-j bond is weakened by the presence of 
other i-k and j-k bonds involving the intermediate atom 
at site k. The amount of bond weakening is determined 
by where the other bonds are. Angular terms appear 
necessary to construct a realistic model. When using a 
potential, the researcher should always be familiar with 
its chemical transferability properties, such as bond 
length, bond angle and bond energy and validate 
critically the results obtained in unusual conditions, for 
example, for very low coordinations, very high 
temperature, or very high pressure. 

Atomic-Scale Modeling for Intermediate Defect 

Stabilization (Stable Defect and Cluster 

Formations: 100 ps<t<10 ns) 

The atom-displacement-generated point defects 

(vacancies and interstitial atoms) under particle 

irradiation will thermally diffuse in space and interact 

and react with dynamically distributed bulk sinks, planar 

dislocation loops, (Hirth and Lothe, 1982) spherical 

voids and clusters (due to collision cascade) at the same 

time. Generally, the kinetic energy of the incident 

particles (or equivalently, the recoil energy of the struck 

atom) determines the species and number of individual 

point defects during the initial phase (in addition to the 

rate of defect generation), while the flux of the incident 

particles decides the defect density and the nature of 

point-defect diffusion, (Mehrer, 2007) i.e., either in an 

independent way (for lowdensity non-interacting point 

defects) or in a direction-correlated way (for high-

density interacting point defects) (Posselt et al., 2008). 

The macroscopic property changes of the irradiated 

system are related to the particle energy-flux per unit 

time by the so-called damage function, or factor, which 

is extracted by experimental measurements. However, 

the damage factor is found to depend on the initial 

approximation in a sensitive way. Therefore, we are not 

able to treat physically the radiation displacement 

damage effects as a black box through a fitting 

procedure. Instead, we should understand the full 

dynamics of these defects on all time scales after they 

have been produced. The spatial distribution of the 

mobile Frenkel pairs (i.e., vacancy-interstitial pairs) 

that are created is crucial in determining the number 

that survive annihilation or immobilization by 

clustering due to damage cascade. 

The statistically-averaged spatial distribution of point 

defects that are generated can be calculated based on the 

defect formation and recombination rates, as well as the 

follow-up processes for defect diffusion, interactions and 

reactions (Posselt et al., 2005). If the degree of atom 

displacements is limited due to high incident particle 

kinetic energies and low number intensities, we 

generally seek the radiation degradation effects on 

electronic and optoelectronic devices rather than looking 

at material level radiation damage effects when there is a 

significant level of atom displacements under intense 

low-energy particle irradiation (Strour et al., 2003). This 

radiation degradation depends not only on the particle 

radiation source and material, but also on the device 

structure and functionality. The analytical theory 

below can only provide a qualitative understanding of the 

collision- and thermally-activated diffusion processes, 

while the MD calculation based on a realistic interatomic 

potential is able to provide a quantitative result for 

comparison with experimental data. 

Point-Defect Generation Rate 

The spatially-temporally-dependent damage rate per 

unit volume for the displacement atoms in a crystal can 

be calculated from (Was, 2007): 

 

max

min

0
( , ) ( ) ( )

E

at i D i ext i

E

G r t n d r I tε σ ε ε= ∫  (4) 

 

where, nat is the crystal atom volume density, Iext(t|εi) 

represents the external dynamical energy-dependent 

particle intensity per unit energy, σD(r|εi) stands for both 

the position- and energy-dependent displacement cross 

section and Emin (Emax) corresponds to the minimum 

(maximum) kinetic energy in the energy distribution of 

incident particles. 

Since the displacement cross section σD(r|εi) in 

Equation (4) physically describes the probability for the 

displacement of struck lattice atoms by incident 

particles, we can directly write down: 
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2

1

( ) ( , ) ( )
D i R C i R D R
r d r N t

ε

ε

σ ε ε σ ε ε ε= ∫  (5) 

 

where, σC(r|εi, εR) is the differential energy transfer cross 

section by collision, which measures the probability that 

an incident particle with kinetic energy εi will transfer a 

recoil energy εR to a struck lattice atom, ND(r|εR) 

represents the average number of displaced atoms due to 

collision and ε1 (ε2) labels the minimum (maximum) 

recoil energy acquired by the struck lattice atom. 

Although ND(r|εR) can be directly determined by MD 

simulation, (Terentyev et al., 2006) the simplest 

approximation to estimate the displaced atoms is the 

Kinchin-Pease model (for a solid composed of randomly 

arranged atoms by ignoring focusing and channeling 

effects). (Kinchin and Pease, 1955; Olander, 1976) In 

practice, ND(r|εR) can be accurately determined by either 

classic (Devanathan et al., 1998) or ab initio MD 

simulations (Gao et al., 2011). 

In addition, the magnitude of the differential energy 

transfer cross section σC(r|εi, εR) introduced in Equation 

(5), which can be regarded as the crystal response to an 

external particle collision with lattice atoms, depends on 

the detailed collision mechanism and the form of the 

scattering potential as well. Here, as a simple example, we 

first give the expression of the differential energy transfer 

cross section for the elastic scattering. For the well-known 

Rutherford elastic scattering model (Rutherford, 1911) 

based on an unscreened Coulomb potential UR(ρ) = 

Z1Z2e/ ∈0ρ for protons with ρ being the radius in the local 

frame centered on the lattice atom, we get: 

 
2

0

2

( ) ( )
( , ) ( , )

4

i
C i R R i R

R

b r r
r r

π ε γ
σ ε ε σ ε ε

ε
≡ =  (6) 

 

where, γ(r) = 4mM(r)/[M(r) + m]
2
, m [M(r)] is the mass 

of the incident particle (surface atoms or different lattice 

atoms), b0(r) = Z1Z2(r) e
2
/η(r)∈0εi with Z1 and Z2(r) 

being the nuclear charge numbers for particles and 

different lattice atoms and η(r) = m/[M(r) + m].  

If the kinetic energy of the incident particles is very 

high, the Rutherford scattering model becomes no longer 

applicable. In this case, we have to consider hard-sphere 

type collisions for neutrons, which leads to: 

 
2
( )

( , ) ( , )
( ) ( )

C i R HS i R

i i

B r A
r r In

r r

π
σ ε ε σ ε ε

γ ε η ε

 
≡ =  

 
 (7) 

 

where, a Born-Mayer potential UB-M(ρ) = A exp(-ρ/B) is 

employed (Abrahamson, 1969). 

On the other hand, nuclear scattering with heavy-

slow ions represented by a power-law interacting 

potential UI(ρ) = (e/∈0aB) (Z1/Z2)
5/6
(aB/ρ)

2
 leads to: 

2

2 2 2

( , ) ( , )

4 ( ) ( ) ( )

( ) [1 4 ( )] ( )[1 ( )]

C i R I i R

a

i

r r

E r r r

r r X r X r

σ ε ε σ ε ε

ξ

γ ε ξ

≡

Λ
=

− −

 (8) 

 

where, X(r) = εR/γ(r)εiζ(r) 
1 1/6

1 2
cos ( ) / , ( ) 0.8853 / [ ( )]

B
X r r a Z Z rπ

−  = Λ =   is the 

screening length with aB being the Bohr radius and Ea(r) 

= (e
2
/∈0aB) [Z1/Z2(r)]

7/6
/η(r). 

In the special case, for the incidence of relativistic 

light electrons, we have: 
 

2 4 2

2 0

2 2 4 4

0 0 0

2 0 2

0 2

2 0 2 2

1
( , ) ( , )

( ) ( )
1

( ) ( ) ( )

C i R I i R

R R R

R

Z e
r r

m c

a r E r

E r E r E r

π β
σ ε ε σ ε ε

β

ε ε ε
β π

β ε

−
≡ =

∈

   
× − + −  

    

 (9) 

 

where, β0 = υ/c with υ being the velocity of incident 

electrons, E2(r) = [2εi/M(r)c
2
](εi+2m0c

2
), m0 is the free-

electron mass and α0(r) = Z2(r)/137. Moreover, we have 

the relation 2 2 2

0 0
1 ( / ) 1

i
m cβ ε= − ≤ for the relativistic-

particle velocity and kinetic energy. 

For the case of isotropic inelastic scattering with an 

energy loss Q0, we have the differential energy transfer 

cross section: 

 
'

1/2

0
0

( , ) ( , )

( , ) ( ) ( ) 1
1

( ) ( )

C i R in i R

is i

i i

r r

r Q Q r A r

r A r

σ ε ε σ ε ε

σ ε

γ ε ε

−

≡

 +
= + 

 

 (10) 

 

where, A(r) = M(r)/m and σis (r|εi, Q0) represents the 

isotropic differential energy transfer cross section for the 

resolved resonance in the center-of-mass frame. 

In addition, the incident-particle kinetic energy is no 

longer a constant if the particles are charged, e.g., protons 

and ions. In this case, we have 
2

0
( ) / 2

i i
z kzε ε ε

 → = −
 

 

with ε0 being the incident-particle energy at the left 

boundary z = 0, where a layered structure in the z-

direction is assumed. As a result, we find that electronic 

stopping will dominate at short distances, while elastic 

collisions will dominate near the end of the range. 
As an example, by using σC(r|εi, εR) from Equation (6) 

and ND(r|εR) from the Kinchin-Pease model, the 
displacement cross section from Equation (5) becomes: 
 

( )
( ) ( )

4 ( )
D i s i

th

r
r r

E r

γ
σ ε σ ε

 
≈  
 

 (11) 

 

where, 2

0
( ) ( ) / 4 ( ) / ( )s i i thr b r r E rσ ε π γ ε   =     . 

Furthermore, by using the result in Equation (11), the 
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displacement damage rate per unit volume from 

Equation (4) is: 
 

0

( ) ( )
( , ) ( ) ( , )

4 ( )

i

at s ext

th

r r
G r t n r F r t

E r

ε γ
σ

 
=  

 
 (12) 

 

where, ( )
s
rσ  and ( )rε  are the average values with 

respect to the incident particle intensity per unit energy 

Lext(t|εi) in the energy range of Eth (r)/γ≤εi≤Fext(r,t) is the 

integrated external particle intensity for the same energy 

range and the term in the bracket is the number of 

Frenkel pairs produced per incident particle. 

Point-Defect Diffusion Coefficient 

Even in the absence of particle irradiation, there still 

exist some thermally activated vacancies at room 

temperature in a crystal. In this case, the Helmholtz free-

energy function in thermodynamics can be applied by 

assuming the volume of the crystal is a constant. In the 

presence of crystal defects, both the entropy S and the 

enthalpy Hp of a perfect crystal will be changed. A 

straightforward calculation gives the thermal-equilibrium 

numbers of vacancies eq

v
C  and interstitials eq

i
C  as follows: 

 

, ,

,

exp exp
v i v ieq

v i

B B

S E
C

k k T

   
=       

   
 (13) 

 
where T is the temperature, Ev is the vacancy formation 

energy, which is smaller than the interstitial formation 

energy Ei and Sv (Si) is the change in entropy due to 

vibrational vacancy (interstitial) disorder. 

Diffusion of defects is driven by forces other than the 

concentration gradient of defects, such as stress or strain, 

electric fields, temperature, etc. The second Fick’s law 

(Murty and Charit, 2013) directly gives rise to the 

following diffusion equation on the macroscopic scale: 
 

,

, ,

( , )
[ ( , ) ( , )]

v i

v i v i

C r t
D r t C r t

t

∂
= −∇ ⋅ ∇

∂
 (14) 

 

where, Dv(r, t) = D(r, t|Cv) and Di(r, t) = D(r, t|Ci) are 

called the diffusion coefficients for vacancy and 

interstitial atoms, respectively and cv,i(r, t) = Cv,i(r, t)/V is 

the defect concentrations with V being the volume of the 

system considered. 
In addition, by assuming a microscopic random walk 

for the diffusion process, we get the Einstein formula 
(Guinan et al., 1977): 
 

2

0

( ) 1
( ) ( )exp ( ) ( )

6

ac

d

B

E r
D r D r r r

k T
λ

 
= − = Γ 

 
 (15) 

 
where, the temperature-independent part, D0(r), is 

proportional to the Debye frequency (∼ 10THz) and is 

independent of defect concentration, Eac(r) is the 

activation energy for thermal diffusion λd(r) is the 

diffusion length and Γ(r) is the defect jump rate. 

For tracer-atom (single radiative atom) diffusion, the 

random-walk model can not be used. Instead, the 

diffusion process becomes correlated, described by the 

Haven coefficient f(r) and we obtain 
2( ) ( ) ( ) ( ) / 6
d

D r f r r rλ= Γ  where f(r)<1 depends on the 

crystal structure and the diffusion mechanism. 

The lattice-atom correlated diffusion coefficients 
, ( , )v i

a
D r t  for vacancy and interstitial cases are given by: 

 
,

, , ,

( , ) ( ) ( ) ( , )v i

a v i v i v i
D r t f r D r C r t=  (16) 

 

which depend on the defect concentrations in this case, 

implying a nonlinear diffusion equation. It should be noted 

that the correlation factors, fv,i(r) and diffusion coefficients, 

Dv,i(r), can be determined by atomic-level simulations 

(Guinan et al., 1977; Posselt et al., 2008). Equation (16) can 

be directly applied to defect diffusion under irradiation, as 

long as the defect concentrations are known. 

Mesoscopic-Scale Rate Theory for Slow Defect 

Migration and Interaction (Defect Reaction and 

Migration: t > 10 ns) 

The formation, growth and dissolution of defect 

clusters such as voids, dislocation loops, etc., depend on 

the diffusion of point defects and their reaction with these 

defect clusters (Bullough et al., 1979; Colubov et al., 

2000). At the same time, they also depend on the 

concentration of point defects in the crystal. Since 

particle irradiation greatly raises the defect concentration 

above its thermal-equilibrium value, the diffusion 

coefficient can be enhanced. It can also be enhanced by 

the creation of new defect species. 

Point-Defect Diffusion Equation 

By introducing the local coupling rates ( , ), ( , )
is

r t r tℜ Γ  

and Γvs(r, t) for vacancy-interstitial recombination, 

interstitial-sink and vacancy-sink reaction rates, we can 

write down the following two nonlinear rate-based diffusion 

equations for binary crystals (Wiedersich et al., 1979): 

 

0

( , )
[ ( , ) ( , )] ( , )

( , ) ( , ) ( , )[ ( , ) ( )]

( , ) ( , )[ ( , ) ( )]

( , )
[ ( , ) ( , )] ( , )

v

v

i

C

v v vC

eq

i v v

eq

vs s v v

ci
i i ic

r t

D r t c r t J r t c
t

G r t R r t c r t c r t c r

r t c r t c r t c r

r t
D r t c r t J r t c

t

∂

= ∇ ⋅ ∇ −∇ ⋅
∂

+ − −

−Γ −

∂
= ∇ ⋅ ∇ −∇ ⋅

∂

 (17) 

 

0
( , ) ( , ) ( , )[ ( , ) ( )]

( , ) ( , )[ ( , )

eq

i v v

is s i

G r t R r t c r t c r t c r

r t c r t c r t

+ − −

−Γ
 (18) 
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where, we have neglected correlated diffusions and 

defect-defect interactions. Moreover, Jv(r, t|cv) and 

Ji(r, t|ci) in Equations (17) and (18) are the particle 

currents for vacancies and interstitials and the master 

equation for determining the local sink concentration 

cs(r,i) will be given later. 

For simplicity, we consider a homogeneous system 

with volume V in the absence of vacancy and interstitial 

currents and assume all the rates are independent of time. 

We further neglect the small thermal-equilibrium 

vacancy concentration and write the defect generation 

rate as G0 = G0V. For this model system, we find that the 

evolution of cv(t) and ci(t) depends on the temperature 

and cs and can be characterized in several regimes 

separated by different time scales τ, including initial 

buildup without reaction, dominant vacancy-interstitial 

mutual recombination and final vacancy and interstitial 

annihilation by sinks. Physically, it is easy to understand 

that the initial buildup and recombination regimes 

correspond to the ‘ultra-fast’ atomic-scale modeling, 

while the interstitial and vacancy annihilation regimes 

are associated with the ‘slow’ mesoscopic-scale 

modeling which may be simulated using the so-called 

rate theory (Singh and Zinkle, 1993) or phase field 

model (Li et al., 2010). 

Recombination and Sink Annihilation Rates 

In general, the reaction rate between species A and 

B can be expressed as ΓAB cA cB where cA and cB are 

the concentrations (particles/cm
3
) and ΓAB (cm

3
/s) is 

the rate constant. 

As an example, the recombination rate constant 

( , )r tℜ  in Equation (17) and (18) for vacancies and 

interstitials takes the form of (Waite, 1957): 
 

2

0

( ) ( ) ( , )
( , )

( )

iv i
z r r D r t

r t
a r

Ω
ℜ =  (19) 

 

where, ziv(r) (an integer) is the bias factor, depending on 

the crystal structure and species, Ω(r) is the atomic 

volume, a0(r) is the lattice constant and Di(r, t) is the 

mobile interstitial diffusion coefficient. 

In a similar way, the interstitial-sink Γis(r, t) or the 

vacancy-sink Γvs(r, t) annihilation rate constants in 

Equations (17) and (18) are given by Γas(r, t) ca(r, t) cs(r, 

t) 2 ( , ) ( , ) ( , )
as a a
k r t c r t D r t= , where α corresponds to mobile 

defect species and καs(r, t) (cm
−2
) represents the sink 

strength given by (Doan and Martin, 2003): 
 

2
( , ) ( , )

( , )
( , )

as s

as

a

r t c r t
r t

D r t
κ

Γ
=  (20) 

 

The sink strength measures the affinity of a sink for 

defects, which is independent of defect properties and 

1( , )
as

r tκ
−  corresponds to the mean distance for a traveling 

defect in the crystal before it is trapped by sinks. 

Point-Defect Interaction Rates 

In the absence of the macroscopic-scale gradient of 

defect concentration, the reaction between defects and 

sinks is reaction-rate-controlled. According to Equation 

(19), the defect-void interaction (Brailsford et al., 1976) 

can be described by the rate constants Γ{i,v}V(r, t) by: 

 
2

,

{ , }

2 0

2

,

2

4 ( , ) ( , )
( , )

( )

( , ) ( , )

( , )

i v

i v v

n

V i v

n V

R r t n D r t
r t

a r

r t n D r t

c r t n

π

κ

∞

=

∞

=

Γ =

=

∑

∑

 (21) 

 

where, 2 2 3

{ , } 0 0
4 / , , ( , )

i v V
z R a a R r t nπ= Ω ∼  represents the 

radius of a void sphere involving n vacancies. The void 

strength is given by 2 2

0
( , ) 4 ( , ) ( , ) / ( )
V V
r t n R r t n c r t n a rκ π=  

where cV(r, t|n) is the concentration of voids containing n 

vacancies in the crystal. 

Similarly, for the defect-dislocation interaction, we 

have the rate constants Γ{i,v}d(r,t) (Heald and Speight, 

1975) (in units of cm
2
/s) given by: 

 
2

{ , } ,

{ , } { , } ,

( , ) ( , )
( , ) ( ) ( , )

( , )

i v d i v

i v d i v d i v

d

r t D r t
r t z r D r t

r t

κ

ρ
Γ = =  (22) 

 

where, we replace Ω in Equation (19) by an atomic 

area 2

0
( ), ( ) ( )

id vd
a z r z r≠∼  and ρdr,t(r, t) is the dislocation 

areal density. 

Reactions driven by defect concentration gradients 

are diffusion limited instead of reaction-rate limited as 

discussed above. In this case, we have to solve the diffusion 

term ∇· [Di,v(r, t) ∇ci,v(r, t)] with the generation term G0(r, t) 

for spherical (voids) or cylindrical (dislocation lines) 

coordinates. In the case of dislocation loops, the sink 

strength is more complicated and increases with increasing 

loop size (Bullough et al., 1979). 

For the defect-void interaction, we get 

{ , } { , } { , } ,

2

( , ) ( , ), ( , ) 4 ( , ) ( , )
i v V i v V i v V i v

n

r t r t n r t n R r t n D r tπ

∞

=

Γ = Γ Γ =∑

 and 2 ( , )4 ( , ) ( , )
V V
r t n R r t n c r t nκ π . For the defect-dislocation 

line interaction, on the other hand, we have 

{ , } , 0 { , }
( , ) 2 ( , ) / [ / ( , )]

i v d i v i v d
r t D r t In R R r tπΓ = and 

2

{ , } 0 { , }
( , ) / [ / ( , )]

i v d i v d
r t In R R r tκ , where R0 is the 

absorption radius of a sink, Rid(r, t) and Rvd(r, t) are 

the sink capture radii for interstitials and vacancies, 

respectively with 
id vd

R R≫ . 

In the presence of Grain Boundaries (GBs), we obtain 

the grain-boundary sink strength: 
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2

{ , }

, ,

,

, ,

( , ) 4 ( ) ( )

( , ) ( )cosh[ ( , ) ( )]

sinh[ ( , ) ( )]

sinh[ ( , ) ( )] [ ( , ) ( )

i v gb gb gb

i v gb i v gb

i v gb

i v gb i v gb

r t R r c r

r t R r r t R r

r t R r

r t R r r t R r

κ π

κ κ

κ

κ κ

=

 
 

− 
× 

− 
 
 

 (23) 

 
where, Rgb(r) is the radius of a spherical grain, cgb(r) 

is the grain concentration and κi,v(r, t) is the sink 

strength for the grain interior for interstitlals or 

vacancies due to dislocations and voids. Moreover, its 

rate constant is 2

{ , } { , } ,
( , ) ( , ) ( , ) / ( )i v gb i v gb i v gbr t r t D r t c rκΓ = . 

More recently, atomic-level simulations have been 

employed to study the sink strength of grain 

boundaries (Tschopp et al., 2012; Jiang et al., 2014). 

These simulations revealed that the sink strength can 

exceed the theoretical strength of GBs due to the 

effect of GB stress fields. 

Radiation-Induced Segregation 

For a binary A-B alloy (or donor and acceptor 

randomly-doped semiconductors), in the absence of 

sinks, the diffusion equations for vacancies, interstitials 

and atoms A and B are (Wiedersich et al., 1979): 

 

0

0

( , )
( , ) ( , ) ( , ) ( , ) ( , )

{ [ ( ) ( )] ( , ) ( ) ( , )

( , ) ( , ) ( , )}

( , ) ( , ) ( , ) ( , )

v

v i v

Av Bv v

A v v

i v

c r t
J r t G r t r t c r t c r t

t

d r d r X r t r c r t

c r t D r t c r t

G r t r t c r t c r t

∂
= −∇ + −ℜ

∂

= ∇ − − Ω

∇ + ∇

+ −ℜ

i

 (24) 

 

0

0

( , )
( , ) ( , ) ( , ) ( , ) ( , )

{ [ ( ) ( )] ( , ) ( )

( , ) ( , ) ( , ) ( , )}

( , ) ( , ) ( , ) ( , )

v

v i v

Ai Bi

i A i i

i v

c r t
J r t G r t r t c r t c r t

t

d r d r X r t r

c r t c r t D r t c r t

G r t r t c r t c r t

∂
= −∇ ⋅ + −ℜ

∂

= ∇ − − Ω

∇ + ∇

+ −ℜ

 (25) 

 

( , )
. ( , ) { ( ) ( , ) ( , )

( ) ( , )[ ( ) ( , ) ( ) ( , )]}

v

A A A

A Ai i Av v

c r t
J r t D r X r t c r t

t

r c r t d r c r t D r c r t

∂
= −∇ +∇ ∇

∂

+Ω ∇ − ∇

 (26) 

 

where, 2

{ , }{ , } , , { , }{ , }
( ) ( ) ( ) ( )

A B i v i v i v A B i v
d r r z r rλ ω=  are the 

diffusivity coefficients and the dimensionless X(r,t) is 

the thermodynamic factor connecting the chemical-

potential gradient to the concentration gradient (or 

built-in electric field at junctions). In addition, we 

have cB(r, t) = Ω
�1
(r) –cA(r, t) when small defect 

concentrations are neglected. 

By requiring JA = JB = 0 and Ji = Jv for steady state 

and neglecting G0(r, t) and ( ),r tℜ in Equation (24)-

(26), we get: 

( )

A B Bi Ai

A B

Bi B A Ai A B

Av Ai

V

Bv Bi

N N d d
c c

X d N D d N D

D d
c

d d

∇ = −∇ =
+

 
− ∇ 

 

 (27) 

 

where, NA,B = cA,B Ω and the direction of ∇cA can be 

either parallel or anti-parallel to ∇cV. Additionally, the 

undersized (oversized) solutes bounded to interstitials 

will be concentrated (depleted) around sinks to create a 

concentration gradient after their redistribution. 

On the other hand, the oversized or undersized 

solutes with respect to the lattice atoms can act as traps 

for vacancies and interstitials, including release of 

defects from traps, recombination with trapped defects, 

trapping of free point defects and loss to internal sinks. 

This is further supplemented by three rate equations for 

trap and trapped defect concentrations. 

Sink Dynamics 

The growth of dislocation loops and spherical voids 

is determined by solving the point-defect balance 

equations without diffusion terms. Since the defect 

concentration is still changing with time due to the time-

dependent radiation source (or defect production rate), 

only quasi-steady state can be defined for short periods 

of time. Physically, the quasi-steady state is related to 

the fact that the change in sink strength due to 

microstructure evolution is slow compared to the 

response time of the defect population. 

Planar Biased Dislocation-Loop Growth 

By defining the dislocation line direction s and the 

Burgers vector b for edge (b ⊥ s) or skew (b||s) 

dislocations, the Peach-Koehler equation (Weertman, 

1965) gives us the force f per length as: 
 

.( )
T

f b sσ= ×  (28) 

 

where, σ  is the stress tensor. The force f along the b 

direction is the glide force, while f perpendicular to both 

s and b directions is called the climb force. The Peach-

Koehler equation can be used for calculating the 

interaction between dislocations, where b and s are 

assigned to the target dislocation while σ  is for the 

source dislocation. For an edge dislocation, we have five 

non-zero stress tensor elements σxx, σyy, σzz and σxy = σyc, 

while for a skew dislocation, we only have four non-zero 

stress tensor elements σyx = σzy and σxz = σzx. 

Besides the dislocation lines, there also exists Frank 

loops. For example, the close-packed fcc lattice follows 

the stacking sequence ABCABCABC …, where A, B 

and C correspond to different planes of atoms. It can be 

modified to ABCAB/ABC …, where “/” denotes the 
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intrinsic single fault or missing plane of atoms. It can 

also be modified to ABCAB/A/CABC …, where a plane 

of atoms or the extrinsic double fault is inserted. 

Interstitial condensation can occur around the edges 

of the depleted zone. A cluster of point defects can be a 

line, a disc or a void. The formation of perfect or faulted 

loops of interstitials competes with the formation of 

voids of vacancies, which are also affected by the 

irradiation temperature. 

The nucleation of loops is a clustering process that 

results in a critical size embryo for further growth. As an 

example, by denoting the number of clusters consisting 

of j vacancies as ρv(j), the master equations for ρv(j) are: 

 

0

1

1

1 1

1

( )
( ) [ ( ) ( )]

( ) ( ) ( )

1 ( ) ( ) [ ( ) ( )

[ ( ) ( )

n

n

n

n

v

nv
n

j

v
n

n v v
n n

v
n

j
G j j i j

t

v j a j v j

j v j n j n j n v j n

j n v j n

ρ
β β

ρ ρ

β ρ β ρ

β ρ

∞

=

=

∞

= =

∞

=

∂
= − +

∂

−

+ − − − + − + +

+ +

∑

∑

∑ ∑

∑

 (29) 

 

where, βvn and βin are the capture rates of migrating 

vacancy (v) or interstitial (i) clusters of size n by a 

cluster of size j and ( )
n
v

a j  is the emission rate for the new 

vacancy cluster of size n by a cluster of size j. In Equation 

(29), the first term is the direct production of a cluster of 

size j, while the second term is the loss of clusters from size 

j due to absorption of a cluster of size n. The third term is 

the loss of a cluster of size j due to emission of a cluster of 

size n. The fourth and fifth terms in Equation (29) are the 

addition of clusters to the cluster of size j due to absorption 

of vacancy clusters by a smaller cluster and absorption of 

interstitial clusters by a larger cluster and the last term is the 

addition of clusters to the cluster of size j due to loss of 

vacancy clusters by a larger cluster. 

Since the dominant contribution for cluster reactions 

is with point defects (i.e., cluster of size j = 1), for both 

vacancies and interstitials, Equation (29) with j≥2 can be 

simplified to: 

 

0

( ; )
( ; ) ( 1, )

( 1; ) ( 1) ( 1; )

( , 1) ( , 1) ( ; )

j t
G j t j j

t

j t a j j t

j j a j j j t

ρ
β

ρ ρ

β ρ

∂
= + −

∂

− + + +

− + + −

 (30) 

 

If the cluster size index j can be treated as a 

continuous variable ξ, Equation (30) reduces to a 

Fokker-Planck equation (Semenov and Woo, 2002). 

According to Equation (30), for the dislocation loop 

growth, we find the evolution of the number density ρil(j, 

t) for the interstitial loop of size j satisfies: 

0 4

( ; )
( ; ) [ ( 1)

( 1)] ( 1; ) ( 1) ( 1; )

( ) ( ) ( ) ( ; )

j v

i il i il

v i i il

j t
G j t j

t

a j j t j j t

j j a j j t

ρ
β

ρ β ρ

β β ρ

≥

∂
= + +

∂

+ − + + − −

− +

 (31) 

 

Where: 
 

, , ,

( ) 2 ( ) ( ) ( , ) ( , )
i v c i v i v

j r j z j D r t C r tβ π=  (32) 

 

,{ , },

,

( )( , )
( ) 2 ( ) ( ) exp

b i vi v

i v c

B

E jD r t
a j r j z j

k T
π

 
= − 

Ω   
 (33) 

 
r(j) and zc are the radius and bias factor of an 

interstitial loop of size j and Eb(j) is the binding energy 

for a cluster of j defects. 

The saturation of the dislocation density ρd(t) in 

quasi-steady state was found experimentally to be due to 

a recovery process at high temperatures, (Was, 2007) 

given by: 
 

2

2 1

( )
( ) ( )d

d d

d t
A t A t

dt

ρ
ρ ρ= −  (34) 

 

where, A2 and A1 are constants. This gives the steady-

state solution 
2 1
/

s

d
A Aρ =  and the time-dependent 

solution is found to be: 
 

2

0

0

1 / (1 )( )

1 / (1 )

x s x

d dd

s x s x

d d d

e et

e e

ρ ρρ

ρ ρ ρ

− −

− −

 − + +
 =
 − + + 

 (35) 

 

where, 0

d
ρ  is the initial value and 

1
( )

s

d
x t A tρ= . In 

addition, a phase field model has been developed to 

describe the growth kinetics of interstitial loops in 

irradiated materials during aging. The diffusion of 

vacancies and interstitials and the elastic interaction 

between interstitial loops and point defects are accounted 

for in this model. The effects of interstitial concentration, 

chemical potential and elastic interaction on the growth 

kinetics and stability of interstitial loops are investigated 

in two and three dimensions. The elastic interaction 

enhances the growth kinetics of interstitial loops. The 

elastic interaction also affects the stability of a small 

interstitial loop adjacent to a larger loop. The linear 

growth rates for interstitial loops predicted is in 

agreement with the previous theoretical predictions and 

experimental observations (Hu et al., 2012). 

Spherical Neutral Void Growth 

Not all the defects generated by radiation-induced 
atom displacement are point defects. Some of the defects 
form clusters and the vacancy clusters may further grow 
to form voids. For a small number of vacancies, the 
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spherical void is favorable, while for a large number of 
vacancies, the planar loop is a more stable configuration. 

The dynamics for void growth is very similar to that 

for dislocation-loop growth. The net absorption rate of 

vacancies by a spherical void is the difference of 

absorption rates of vacancies and interstitials, i.e., 

4 { [ ( )] }V

net V v v v i i
A R D V C R D Cπ= − − . Therefore, the 

equation for the growth of a spherical void of radius 

RV(t) (or volume) in quasi-steady state is: 

 

( )
{ ( , )[ ( , )

( )

( )] ( , ) ( , )}

V

v v

V

v V i i

dR t
D r t c r t

dt R t

c R D r t c r t

Ω
=

− −

 (36) 

 

where, cv(RV) is the vacancy concentration at the void 

surface. 

From the balance equation, we get the concentrations 

of point vacancies and interstitials as follows: 

 
2

, ,

,

( , ) ( , )
( , ) 1 1

2 ( , )

i v i v

i v

D r t k r t
c r t

R r t
η = + −   (37) 

 

where,
2 2 2

, , 0
( , ) ( ) ( , ) 4 ( , ) ( , ), 4 /

i v i v d V V i v v i
k r t z r r t R r t c r t RG D D k kρ π η= + =

. Inserting Equation (37) into Equation (36), we obtain: 

 

0
( ) ( ) 2 ( )

1 1V th
dR t dR t dR t

dt dt dt
η

η

  = + − −  
 

 (38) 

 

where, dR0(t)/dt is proportional to (zi − zv) G0 and 

independent of temperature, while the second negative 

term represents the thermal emission of defects from 

sinks and strongly depends on temperature 

(proportional to eq

v v
D C ). 

Neglecting the thermal emission in Equation (38), we 

get from Equation (36): 
 

( )0

2 2

4
1 1

2 ,

d dV v i

i v v i

V i v v i

dR D D RG
d z z z z

dt R R D D k k
ρ

 Ω
≈ + − − 

  
 (39) 

 

where, the sign of the bias of dislocation ( )d d

i v v i
z z z z−  for 

vacancies and interstitials determines the occurrence of 

either growth (dRV/dt > 0) or shrinkage (dRV/dt < 0). It 

should be noted that void growth in materials under 

radiation has been recently studied by the phase field 

model, (Li et al., 2010) which provides important 

insights into the growth kinetics of voids. The model 

takes into account the generation of vacancies and 

interstitials associated with the irradiation damage, the 

recombination between vacancies and interstitials, defect 

diffusion and defect sinks. The results demonstrate that 

the temperature gradient causes void migration and 

defect fluxes, i.e., the Soret effect, which affects void 

stability and growth kinetics. It is found that the effect of 

defect concentration, generation rate and recombination 

rate on void mobility for migration is minor although 

they strongly influence the void growth kinetics. 

Radiation Degradation of Electronic Devices 

Let us consider a commonly used layered-structure 

material, (Huang and Zhou, 1988) as shown in Fig. 3. 

Each material layer is characterized by the radiation 

parameters Gj, j
ℜ , Dj and Γj with j = 1, 2, 3, 4 for 

generation and recombination rates, diffusion coefficient 

and bulk-sink annihilation, which will be employed to 

model the dynamics from an ultra-fast atomic-scale up to 

100 ns. The calculated non-steady state defect 

distribution in each layer will be used for initial conditions 

in a slow mesoscopic-scale diffusion and annihilation 

model in order to calculate the steady-state spatial 

distribution of defects in the whole layered structure. In 

modeling the mesoscopic-scale, the interface-sink strengths 
2

i
k  with i = 1, 2, 3 will also be considered. Once the steady-

state distribution of point defects, denoted as ρd(z), is 

obtained for the whole layered structure, they will be fed 

into the follow-up calculations for radiation degradation in 

electronic devices, as described below. 

The band structure of a crystal largely determines the 

properties of electrons, (Gumbs and Huang, 2013) such 

as effective mass, bandgap energy, density of states, 

plasma frequency and absorption coefficient. These 

electron properties are a result of the unique crystal 

potential from all lattice atoms, instead of properties 

of an individual lattice atom. On the other hand, the 

radiation-induced displacements of lattice atoms are 

determined not only by the intrinsic properties, such 

as mass of the atoms, but also by the extrinsic 

conditions, such as kinetic energy of incident particles 

and lattice temperature. 

Steady-State Defect Distributions 

For the reaction rate control system shown in Fig. 3, 
by generalizing Equations (17) and (18), we write down 
the diffusion equations for point vacancies and 
interstitials as: 
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Fig. 3. Layered-structure material with radiation parameters Gj, 

Rj, Dj and Γj (j = 1, 2, 3, 4) for generation, 

recombination, diffusion coefficient and bulk-sink 

annihilation, respectively. In addition, 2

i
k  for i = 1, 2, 3 

represents the interface-sink strengths. Particles are 

incident from the front surface at z = 0 and exit from the 

back surface at z = z4 
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 (40) 

 

0

2

( ) ( , ) ( )j j j j j

vd d i i j

n

z t n D c z t a z zρ δ
∞

=

 − − ∑  (41) 

 
where, the integer j is the layer index, zj-1 and zj 

represent the left and right interface positions of the 

jth layer, respectively. In Equations (40) and (41), we 

used the facts that 2 2 2

, , , 0 0
/ , 4 /

i v i v i v V V V
z D a R c aκ πΓ = Ω =  

and 2

{ , } { , }i v d i v
z d dκ ρ=  for a reaction rate control system. 

The diffusion coefficients 
,

j

i v
D  for point vacancies 

and interstitials are calculated as: 

 
,

2

, , 0

, ,

, 0

( )
( ) ( ) exp

( ) ( )
exp exp

i v
j j j m
i v i v j

B

i v i v
jm m

i v

B B

S j
D T f a

k

E j ES j
f D

k T k T

η
 ∆

=  
 

   
=   

   

 (42) 

 

where, 
,

1j

i vf <  is the diffusion correlation factor, ηj is the 

structural factor relating to the jump distance and 

number of nearest neighbors, νj is the jump frequency on 

the order of the Debye frequency, , ( )i v

m
S j∆  is the change 

in entropy due to vibrational defect disorder and , ( )i v

m
E j  

is the point-defect migration energy. 

The radius ( )j

VR t n  of the spherical void of size n 

(in unit of lattice constant) introduced in Equations 

(40) and (41) is determined from the following void 

growth equation: 
 

( )
{ [ ( , ) ( )] ( , )}

( )

j

jV j j j j j

v v v V i ij

V

dR t n
D c z t c t R D c z t

dt R t n

Ω
= − −  (43) 

 

where, ( )
j

v Vc t R  is the vacancy concentration at the void 

surface and is given by: 
 

0
( ) ( )[2 / ( ) ]

( )
[ ( ) 4 ( ) ( )]

j j j

v j v d j V jj

v V j j j j

B v d V V

c j z t R t n
c tR

k T z t R t n c t n

ρ γ σ

ρ π

Ω −
=

+
 (44) 

 
γj is the surface tension of the void, σj is the hydrostatic 

stress applied to the void and 0( )
v
c j  is the thermal-

equilibrium vacancy concentration, given by: 
 

0

0

( )1
( ) exp

( ) ( )
exp ( )exp

v

f

v

j B

v v

f f

B B
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k
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n j
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Ω   

   
− = −   
      

 (45) 

 
j

fS∆  is the change of entropy for the formation of a point 

vacancy and j

fE  is the point vacancy formation energy. 

By using a continuous variable, the void concentration 

( , )j

Vc z t n ( 2)withn ≥  introduced in Equations (40) and (41) 

can be obtained by solving the Fokker-Planck equation in 

the size space below (with ξ = n): 
 

0

( , )
( )

( , ) ( , ) ( , ) ( , )

j

V j

j j

j V j V
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t
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∂ ∂
= −

∂ ∂

 ∂
 −  ∂ 

 (46) 

 

where, ( , ) ( , ) ( , )j j j j j j

j v v v i i i
F z t z D c z t z D c z tξ = −  is the drift 

term, ( , ) [ ( , ) ( , )] / 2j j j j j j

j v v v i i i
D z t z D c z t z D c z tξ = +  is the 

positive diffusion term and 
0
( )j

G t ξ  is the cluster 

production rate per volume (with ζ ≥ 2). 

Finally, the dislocation-loop density ( )j

d t nρ  introduced 

in Equations (40) and (41) can be found from (with n ≥ 4): 

 

0

( 1)( )
( , )

( , 1) ( 1)

( , 1) ( 1 [ ( , )
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jj
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 (47) 
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where, G0(zj, t|n) is the production rate per unit volume 

for the interstitial dislocation loop of length n, the 

absorption (βi,v) and emission (αi,v) rates in Equation (47) 

are defined by: 

 

, , ,

( , ) 2 ( ) ( ) ( , )j j j j

i v j j c i v i v j
z t n n z n D c z tβ ρ= ℓ  (48) 

 

,{ , },

,

( )
( , ) 2 ( ) ( ) exp

jj

b i vi vj j

i v j j c

j B

E nD
a z t n n z n

k T
π

   
= −   

Ω      
ℓ  (49) 

 

( ) ( )j

j c
n and z nℓ are the radius and bias factor of an 

interstitial loop of size n and ( )j

b
E n  is the binding energy 

for a cluster of n interstitial atoms. 

The initial condition for the diffusion equations will 

be given by the corresponding calculated results from the 

atomic-scale model for individual layers. The point 

defect diffusion occurs mainly around interfaces between 

two adjacent layers or across the interfaces. The 

boundary conditions with continuous concentrations of 

point defects, as well as the jump in their derivatives 

determined by the dislocation sinks, will be applied at 

each interface. In addition, the constraints for the zero 

concentration of point defects as well as the zero 

derivative of the concentration with respect to z at the 

two surfaces of the system will be enforced in our 

numerical computations. 

Point-Defect Electronic States 

To study the defect degradation effect on devices, we 

need to know not only the concentration and spatial 

distribution ρd(r) of the irradiation-induced defects but 

also their electronic properties, such as energy level Ej, 

wave function ψj(r) and local density of states Dd(r, E). 

Although the semi-classical MD calculation and the 

reaction-rate theory allow us to obtain the concentration 

and spatial distribution of defects, we still require 

Density-Functional Theory (Drabold and Estreicher, 

2007; Freysoldt et al., 2014) (DFT) for calculating defect 

configurations, energy levels, density of states and 

charge trapping by point defects in crystals. 

The main idea of DFT is to reformulate the energy 

of an atomic system as a functional of the ground state 

electron density function ρ0(r) instead of individual 

electron wave functions. The proof of existence of such 

a functional relies on a one-to-one correspondence 

between the external potential Vext({Rℓ}, {rm}) and 

ρ0(r), where {Rℓ} and {rm} label all the lattice atoms 

and electrons, respectively. The mapping of Vext({Rℓ}, 

{rm}) onto ρ0(r) is obvious. Any Hamiltonian H
⌢

with a 

given external potential Vext({Rℓ}, {rm}) has a ground 

state solution with an N-electron wave function 

ϕ0({rm}), which can be uniquely associated with the 

electron density function ρ0(r) using: 

2
3 3 3

0 0 1 2 1 1 2
( ) ... ( , ,..., ) ( ) ...

N N
r Nf f r r r r r d r d r d rρ ϕ δ= −  (50) 

 

Due to the resulting one-to-one correspondence 

between Vext({Rℓ}, {rm}) and ρ0(r), the energy Ei of the 

atomic system can be expressed as a functional of the 

electron density ρ0(r). The many-electron wave function 

of ϕ(r1, r2,…, rN) depends on the ‘combination’ of all 

spatial electron coordinates. Unfortunately, such an 

approach would by far exceed any computational 

capabilities. However, this problem can be overcome by 

using the Kohn-Sham (KS) ansatz, (Kohn and Sham, 

1965) in which the fully-interacting system is replaced 

by a non-interacting one. This approach corresponds to a 

mean-field approach, where the many-electron wave 

function is decomposed into a product of N single-

electron orbitals  φi(r) (i.e., Slater determinant). This 

simplification leads to a neglect of an energy 

contribution termed ‘correlations’. As a correction, the 

functional Exc[ρ(r)] must be introduced as an additional 

term in the Hamiltonian. Applying the variation principle 

to the modified Hamiltonian yields a single-particle-like 

Schrodinger equation, also referred to as the Kohn-Sham 

equation in DFT. This equation includes an effective 

potential Veff(r), which is produced by the Coulomb forces 

of all other electrons and nuclei and incorporates the 

exchange and correlation interactions, i.e.,: 
 

2
2

( ) ( ) ( )
2

KS KS KS

eff i i i

e

h
V r r r

m
φ ε φ

 
− ∇ + = 
 

 (51) 

 

( ) ( ) ( ) [ ( )]eff ext ee xcV r V r V r V rρ= + +  (52) 

 
where, Vee(r) describes the electron-electron interaction 

(the classical Coulomb interaction) that is defined by: 

 
2

3

0

( ')
( ) '

4 '
ee

e r
V r d r

r r

ρ

π
=

∈ −
∫  (53) 

 

and Vxc[ρ(r)] is the functional derivative of the 

exchange correlation energy with respect to the 

electron density function: 

 

[ ( )]
[ ( )]

( )

xc

ee

E r
V r

r

δ ρ
ρ

δρ
=  (54) 

 

The total energy of the atomic system can be 

arranged as: 

 

[ ] [ ] [ ] [ ] [ ]
k ext ee xc

E T V V Eρ ρ ρ ρ ρ= + + +  (55) 

 

where, Tk[ρ] represents the kinetic energy of non-

interacting electrons. The exchange-correlation 

functional in Equation (54) can be written as: 
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[ ] ( [ ] [ ]) ( [ ] [ ])
xc k el ee

E T T V Vρ ρ ρ ρ ρ= − + −  (56) 

 

where, Vel[ρ] is non-local electron-electron interaction 

beyond the classical one in Equation (53). Exc[ρ] is 

simply the sum of the error made in using a non-

interacting kinetic energy and the error made in treating 

the electron-electron interaction classically. The 

Kohn-Sham equations in Equation (51) have the same 

structure as the Hartree-Fock equations with the non-

local exchange potential replaced by the local 

exchange-correlation potential Vxc[ρ(r)]. The 

computational cost of solving the Kohn-Sham 

equations scales formally as N
3
 (due to the need to 

maintain the orthogonality of N orbitals), but in 

current practice it drops to N through the exploitation 

of the locality of the orbitals. Actually, the utility of 

the theory rests on the approximation made for Exc[ρ]. 

Therefore, the correct description of the exchange-

correlation functional takes a crucial role in DFT. The 

localdensity approximation has already achieved 

satisfactory results for systems with a slowly varying 

electron density function, such as metals (Kohanoff, 

2006). However, it has a tendency, termed over-binding, 

to overestimate binding energies and thus, for instance, 

predicts too strong hydrogen bonds with too short bond 

lengths. The generalized gradient approximation is a 

systematic expansion, which gives good results in most 

cases and corrects the issue of over-binding (Kohanoff, 

2006). Recently, hybrid functionals (Alkauskas et al., 

2008) have emerged, which achieve an improved 

accuracy, especially for semiconductors with a bandgap 

(Broqvist et al., 2008). 

Defect levels for charge capture or emission are 

calculated by means of the formation energies '
[ ]

q q

fE X , 

(de Walle and Neugebauer, 2004) with are defined for a 

certain charge state q and a certain atomic configuration 
'q

X  of the defect as:  

 
' '[ ] [ ] [ ]

( )

q q q

f tot tot

j v corr

j

E X E X E bulk

n q V Eξ µ ε

= −

− + + + ∆ +∑
 (57) 

 

Here, Etot[bulk] stands for the total energy of a super-

cell containing pure bulk material while 
'[ ]q

tot
E X

 

represents the super-cell containing a defect. The third 

term corrects for the different numbers of atoms in 

both super-cells. The integer nj stands for the number of 

added (nj > 0) or removed (nj <0) atoms which are required 

to create the defect from a perfect bulk structure and ξj 

denotes the corresponding energy in an atomic reservoir, 

which must be specified for each individual case. The 

fourth term accounts for the charge state q of the 

defect, in which µ is defined as the electron chemical 

potential referenced with respect to the valence band 

edge εν in a bulk-like region and  ∆V corrects the shift 

in the reference level between charged and uncharged 

super-cells and is obtained from the difference in the 

electrostatic potential far distant from the defect for 

these two super-cells. Due to the periodic boundary 

conditions, charge neutrality must be maintained within 

a super-cell. Therefore, a homogeneous compensating 

background charge must be introduced in calculations 

of charged defects. This artificial Coulomb interaction 

is corrected by the last term Ecorr. 

Defect-Assisted Resonant Tunneling 

At low temperatures, the defect-assisted tunneling 

through thermal emission can be neglected (Huang et al., 

1999). Therefore, the whole elastic tunneling process can 

be divided into two subsequent ones, i.e., tunnel 

capture and tunnel emission, as shown in Fig. 4. 

Although the in-plane momentum of electrons is not 

conserved during the tunneling process, the kinetic 

energy of electrons is conserved. For a neutral point 

defect, let us assume that it sits at an arbitrary position 

z = z0 inside a barrier layer (0≤z0≤LB) between the Left 

(L) and Right (R) electrodes with energy levels 0 < Ed(z0) 

<∆Ec, where ∆Ec is the conduction band offset for the 

middle barrier layer. A bias field εb is applied across the 

layer, leading to a voltage drop Vb = εbLB. 

 

 
 

Fig. 4. Schematic of defect-assisted resonant tunneling, where a 

point defect with energy E = Ed(z0) at z = z0 inside the 

barrier layer with conduction-band offset ∆Ec and barrier 

thickness LB. The electron from the left electrode with 

Fermi distribution fL is first captured from left (process-1 

in red) by the point defect through tunneling and then 

emitted to a continuum state above the energy barrier on 

the right (process-2 in blue) through tunneling in the 

presence of a voltage drop Vb across the barrier layer 
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By assuming a large voltage drop, we need to consider 

only the forward current from left to right but not the 

backward current from right to left. In this picture, the 

left-going (capture) tunneling current density JL(Vb, T ) 

can be formally written as (Huang et al., 2008): 

 

0 0
0
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2 2
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( , ) 2 ( )

2 /
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[ ( )]
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J V T e dz z

U F E
h E E z

ρ

π π
ψ

=

Γ
Ψ
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∑
 (58) 

 

where, ρd(z0) represents the distribution of the point-

defect concentration, Ud(r) is the Coulomb potential 

associated with the point defect, ψd(r) is its wave 

function and Γd is the broadening in the density of 

states for point defects. 

In Equation (58), the occupation factor FL(Ek) is 

defined as: 

 
(0)

0

(0)

0

( ) ( ){1 [ ( )]}

[1 ( )] [ ( )]

L k L k d

e L k d f

F E f E g E z
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 (59) 

 

where, Ek = h
2
k

2
/2m∗ is the electron kinetic energy with 

effective mass m∗ in the left electrode, Ze and Zf 

represent the structural degeneracy factors of the point 

defect when empty or filled, g[Ed(z0)] is the defect 

occupancy function and 
(0) 1

0
( ) {1 exp[( ) / ]}

L k k B
f E E k Tµ

−

= + −  is the Fermi 

distribution function in the left electrode with chemical 

potential µ0. In addition, by employing the WKB 

approximation (Gill, 1982) for the electron wave 

function Ψk(r), the interaction matrix 〈Ψk|Ud|ψd〉 is 

calculated as (Stievenard et al., 1992): 
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 (60) 

 

where, Ak is an unknown coefficient to be determined by 

the continuity of the wave function at the boundaries, S 

is the cross-sectional area: 
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 (62) 

 

In a similar way, we can also calculate the right-

going (escape) tunneling current density JR(Vb, T ). In 

steady state, we have JL(Vb, T ) = -JR(Vb, T ) ≡ J(Vb, T ). 

This allows us to eliminate the unknown defect 

occupancy function g[Ed(z0)] and eventually obtain 

(Stievenard et al., 1992): 
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 (63) 

 
where, (0) 1

0
( ) {1 exp[( ) / ]}

R k k b B
f E E eV k Tµ

−

= + − +  and 
(0) (0)

, , ,
(1 )L R L R e L R ff Z f ZΘ = + − . In addition, the tunnel-capture 

rate (probability) Pc(z0) of an electron by a point defect 

in Equation (63) is defined as: 
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d

c k d d

k k d d

P z U
E E z

π π
ψ

Γ
= Ψ

− + Γ
∑

ℏ
 (64) 

 
and the tunnel-emission rate (probability) Pem(z0) of 

an electron captured by a strongly-localized point 

defect is given by: 

 
* 3

2 0

0
*

2 0

4 2 ( )
( ) exp

34 2 ( )

db

em

bd

m E ze
P z

em E z

ε

ε

 
 = −
 
 

ℏ
 (65) 

 

For photo-detectors, the defect-assisted resonant 

tunneling greatly increases the dark current in the 

absence of incident light, which generates excess 

noise and reduces the detectivity of the photo-detector 

(Huang et al., 2000). 

Reduced Carrier Mobility 

When point defects are charged with a charge 

number |Z∗| ≥ 1, they can scatter conduction electrons 

through their Coulomb potential 

3 ' ' ' 2

1

( ) ( )
N

c d i

i

d r U r r r rψ

=

− −∑∫ , as shown in Fig. 5, 

where ri for i = 1, 2,…, N represent the positions of N 

point defects inside the quantum well (formed in 

semiconductors by having a layer of narrow bandgap 

material sandwiched between two layers of a material 

with a wider bandgap to create discrete energy levels) 

and ψd(r) ≡ ψd(r||) γd(z) is the wave function of the 

point defect in layered semiconductors. Let us 

consider electrons confined in one of the quantum 

wells with width LW and barrier height ∆Ec. For 

simplicity, we assume that only the ground state of 

electrons is occupied at low temperatures with the 

wave function 
.

11
( ) ( )

ik r

k

e
r z

S
ψ φ=

� �

�

 and subband energy 

2 2 *

1 1
( ) / 2E k h k mε= +

� �
 with quantum-well cross-

sectional area S, subband edge ε1 and electron 

effective mass m∗. 
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Fig. 5. Schematic of scattering of an electron by a point defect, 

where the defect is charged and has an effective charge 

number Z∗. The incident electron with wave vector k 

and kinetic energy Ek is scattered into a different 

direction with wave vector k′ and kinetic energy Ek′. 

The scattering angle between k and k′ is denoted by θkk′ 

and the elastic scattering process requires Ek = Ek′ 

 

In this case, the interaction matrix 
1 1 'ck k
UΨ Ψ

� �

 is 

calculated as (Huang et al., 2005a): 
 

'
1 1

2
' .

1

1

( ) ( , ) ( ) ,
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N
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i q

U

dz z U q z z F q k k eφ δ −

=

Ψ Ψ
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� �

�
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 (66) 

 
where, the two-dimensional Fourier transform of Uc(r-ri) 
is denoted as Uc(q||, z-zi) and give by: 
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2

2 .
( ) ( )
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−

= ∫
� �

� � �
 (68) 

 
and  ∈r is the dielectric constant of the quantum-well 
host material. Moreover, qs in Equation (67) is the 
inverse Thomas-Fermi screening length for quantum-
well electrons, given by (Huang and Manasreh, 1996): 
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 (69) 

 
where, T is the electron temperature and µ0 is the 

chemical potential of electrons in the quantum well. 

Since the positions of point defects are random, by 

introducing a continuous linear density distribution 

ρ1d(z0) = Sρd(z0) for point defects, the interaction matrix 

from Equation (66) becomes: 
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 (70) 

where, LW is the width of the quantum well. Once the 

scattering matrix elements in Equation (70) are 

computed, by using Fermi’s golden rule, the momentum-

relaxation time τ0 can be obtained from: 
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 (71) 

 

where, '
|| ||k k
θ  represents the angle between the two in-

plane scattering wave vectors '
k and k
� �

. By using the 

momentum-relaxation τ0 in Equation (71), the mobility 

µe of electrons can be simply expressed as 0

*e

e

m

τ
µ = . 

The reduced mobility of conduction carriers by 

radiation-induced point defects will directly affect the 

speed of high-mobility field-effect transistors in an 

integrated circuit (Ando et al., 1982). 

Non-Radiative Recombination with Defects 

After the electrons are photo-excited from valence 
band to conduction band in a semiconductor, some of 
these photo-electrons will be quickly captured by 
point defects through an inelastic scattering process, 
(Huang et al., 2008) as shown in Fig. 6. By including 
the multi-phonon emission at room temperature 
(Huang et al., 2005b; Ridley, 1978), in this case the 
capture rate is calculated as (Jim´enez-Molinos et al., 
2001; Garetto et al., 2012): 
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 (72) 

 
where, U{e, h}p (r) represent the potentials for the 

electron-phonon and hole-phonon coupling, ψd(r) is the 

wave function of the point defect, Γd is the level 

broadening of the defect state, , ( )e h

k
rΨ  are the wave 

functions of electrons (e) and holes (h) in a bulk, βHR is 

the Huang-Ryhs factor, 
,

0 0 0 0
( ) ( ), ( ) ( ) ,e h e h

e G k d h d k k
E z E E E z E z E z E E∆ = + − ∆ = +  are 

the kinetic energies of electrons and holes, EG is the 

bandgap energy of the semiconductor, hΩ0 is the optical-

phonon Nph(Ω0) = [exp(hΩ0/kBT)-1]
�1
 is the distribution 

function of thermal-equilibrium phonons, T is the 

temperature and Im(ξ) is the modified Bessel function of 

order m with 
0 0

2 ( )[ ( ) 1]HR ph phN Nξ β= Ω Ω + . 
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Fig. 6. Schematic of non-radiative recombination of photo-

excited electrons from valence band to conduction band 

with point defects, where multiple phonons are emitted 

while the photo-excited electrons recombine with 

localized defect states within the bandgap 

 

The electron-phonon coupling matrix element 
, 2

{ , }

e h

d e h p kUψ Ψ  in Equation (72) can be evaluated by 

(Huang and Alsing, 2008): 
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where, 
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V is the system volume, ∈∞ and ∈s are the high-

frequency and static dielectric constants of the host 

semiconductor and the inverse Thomas-Fermi 

screening length Qe,h for bulk electrons and holes is 

given by: 
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Here, , , 1

0 , ,
( ) {1 exp[( ) / ]}e h e h

k e h k e h B
f E E k Tµ µ

−

− = + −  is the 

Fermi distribution function for thermal-equilibrium 

conduction electrons and holes with chemical 

potentials  µe,h. 

Finally, based on the given expression for 
, 2

{ , }

e h

d e h p kUψ Ψ  in Equations (73)-(75), the rate for the 

non-radiative recombination 
,

1
e h

nr
τ

 can be explicitly 

calculated from: 
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where, ρ1d(z0) = Sρd(z0) is the linear density 

distribution of point defects in a layer with the cross-

sectional area S, g[Ed(z0)] in Equation (78) is the 

defect occupancy function and Ze and Zf represent the 

structural degeneracy factors of 
0 0 0

1 1 1

( ) ( ) ( )e h

d d d
z z zτ τ τ

= =  

which allows us to eliminate the unknown g[Ed(z0)] 

introduced in Equation (78), similar to what we have 

done in deriving Equation (63). This leads to: 
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The change in the non-radiative time by point defects 

in the system will reduce the quantum efficiency of 

photo-excited electrons in both light-emitting diodes and 

photo-detectors (Huang and Lyo, 1999). 

Inelastic Light Scattering by Charged Defects 

Let us choose the z direction perpendicular to the 

layered material. Light is incident on the layers in the xy-

plane and scattered by charged point defects within the 

layers. We consider incident light with photon energy hωi 

and wave vector ki scattered inelastically by bound 

electrons within point defects at ( , )
j j j
r r z=

�
 for j = 1,2,…. 

If the scattered-light photon energy and wave vector are 
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denoted by hωf and kf, respectively, the excitation energy 

and momentum transfer to charged point defects are given 

by f i q f ihw hw hw and h hk hk= − = − . We further assume 

that the ground and excited state (real) wave functions of 

defects are expressed as 
(0) (0) (0)( ) ( ) ( )d j d j d jr r r r z zψ ψ γ− = − −

� �
 and 

( ) ( ) ( )( ) ( ) ( )n n n

d j d j d jr r r r z zψ ψ γ− = − −
� �

, where n = 1, 2…. 

represent different excited states of a charged point 

defect. The energy levels for the ground and excited 

states of charged defects are separately represented by 
(0) ( )d jE z  and ( ) ( )n

d jE z . 

In a standard way, the differential scattering cross 

section 
2

( , )

q

d q w

dwd

σ

Ω
 for inelastic light scattering can be 

shown to be (Zhang et al., 1991): 
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where, ( , )
z

q q q=
�

, ei and ef are the unit polarization 

vectors for the incident and scattered light, Nph(w) = 

[exp(hw/kBT) -1]
−1
 is the photon distribution function, T 

is the temperature, Ωq represents the solid angle in three-

dimensional q-space and ρ1d(z0) is the linear density of 

charged point defects. 

In addition, the form factor 
' 0
( , )

nn z
A q q z

�
 introduced 

in Equation (83) is calculated as: 
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The interacting density-density correlation function 

' 0( , )nnQ q w z  employed in Equation (83) is: 
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where, 1 ( , )
nm

q w
−

∈  represents the matrix element of the 

inverse dielectric function of the host material 

containing defects. In addition, (0)

m ' 0( )
n

zωΠ  in Equation 

(85) is the non-interacting density-density correlation 

function, given by: 
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 (86) 

where, we assume that only the ground state of charged 

point defects is occupied with the thermal occupation 

factor (0)

0( )dn T z . 

If there exist conduction electrons, in addition to 

bound electrons in charged point defects, with 

concentration n0, effective mass m∗ and homogeneous 

broadening γe in the host material containing generated 

point defects, the matrix elements of the dielectric 

function are found to be (Huang et al., 2006): 
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where, υF = (h/m*)(3 π
2 

n0)
1/3
 is the Fermi velocity of 

conduction electrons at zero temperature, Ωp = 

(n0e
2
/∈0∈b*)

1/2
 is the plasma frequency and ∈b is the 

dielectric constant of the host material. 
Furthermore, if the host material is a doped polar 

semiconductor, its optical phonon modes can couple to 
conduction electrons. In this case, the matrix elements of 
the dielectric function in Equation (87) are modified to 
(Huang and Zhou, 1988): 
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 (88) 

 
where, the static dielectric constant ∈b in the expression 
for Ωp should be replaced with the optical-frequency one 
∈∞, ΩLO and ΩTO are the frequencies of the longitudinal 
and transverse optical phonon modes and γp represents 
the phonon homogeneous broadening. 

The inelastic-light scattering technique can be used 

for identifying the charged point-defect species and their 

electronic properties, (Platzman and Wolff, 1973) such 

as level separation between ground and excited states, 

broadening in the defect density of states and optical 

polarization properties of point defects. If the incident 

coherent light is provided by a pulsed laser, the ultra-fast 

dynamics of charged point defects can be directly 

measured and analyzed (Tsen et al., 2001). 

Application of Defect Theory 

Infrared imaging from space typically places the most 
stringent performance requirements on the hybridized 
Focal Plane Array (FPA) due to the additional cost, 
complexity and remoteness the space environment 
imparts as well as the 3-5 times smaller incident optical 
flux levels that occur in strategic environments compared 
to tactical (terrestrial) environments. Space also places 
the additional, specifically unique, requirement of 
radiation tolerance or rad-hardness on both elements of 
the FPA, the Si-CMOS (complementary metal-oxide-
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semiconductor) Read-Out Integrated Circuit (ROIC) and 
the detector array. FPAs developed for imaging 
applications in a space environment are meticulously 
characterized to evaluate their sensitivity, uniformity, 
operability and radiation hardness. Infrared (IR) hybrid 
detector arrays operated in the space environment may 
be subjected to a variety of radiation sources while in 
orbit. This means IR detectors intended for applications 
such as space-based surveillance or space-situational 
awareness must not only have high performance (high 
quantum efficiency and low dark current density), but 
also their radiation tolerance, or ability to withstand the 
effects of the radiation they would expect to encounter in 
a given orbit, must also be characterized. 

Pursuit of these performance metrics are intended to 
enhance technology development in multispectral 
sensors, higher pixel sensitivities, larger array formats 
with higher pixel densities, higher operating 
temperatures, simplified manufacturing techniques and 
reduced costs. Specific to space applications, as 
described above, is radiation hardness or tolerance, 
which is required to mitigate detrimental effects on IR 
detectors exposed to energetic charged particles (mostly 
electrons and protons and some heavy ions) confined by 
the earth’s magnetic field (the van Allen radiation belts), 
galactic cosmic ray particles (which can be a range of 
elements or electromagnetic radiation) and particles, 
protons and heavy ions from solar flares. Detector 
technologies that operate in the harsh radiation 
environment of space with better radiation tolerance 
afford greater flexibility in orbit selection, technical 
applications and system sustainability and thus, are of 
more value to the space-based sensing community. 

While specific mission requirements for rad-hardness 
vary, the effects of proton interactions with hybrid 
detector arrays tend to dominate in space. Thus, a 
specific detector’s degree of radiation tolerance is 
typically first characterized by measuring its 
performance degradation as a function of proton 
irradiation fluence (Hubbs et al., 2007). Subjecting IR 
detectors to protons will lead to two distinct damage 
mechanisms, ionization damage and displacement 
damage, which are expected to account for the 
performance degradation due to irradiation that will 
occur in optical sensors in satellites. Ionization damage, 
or so-called Total Ionizing Dose (TID), effects occur as 
the incoming particles incident on the FPA give up their 
kinetic energy to ionizing additional electron-hole pairs 
within both the detector material and the CMOS silicon 
of the ROIC. Some of these excess carriers can become 
trapped in surface states and defect levels of the 
dielectric materials used for passivation and as gate 
oxide layers. These surface states and defect levels are to 
be determined with the theoretical approach presented in 
this study. The excess trapped charge manifests in flat-
band voltage shifts of the ROIC’s MOSFETs (metal-
oxide-semiconductor field-effect transistors) and excess 
leakage currents in the detector pixels, typically surface-

currents. Displacement damage results when the 
incoming particle’s energy is lost to elastic or inelastic 
Coulomb scattering with an atomic nucleus that is 
sufficient to knock the atom from its lattice site and 
generate a vacancy-interstitial pair. The defect complexes 
so formed can act as electrically active sites where 
electron-hole recombination might occur (Claeys and 
Simoen, 2013). The additional defect generation thus 
shortens the detector material’s minority carrier 
recombination lifetime, resulting in increased dark current, 
decreased responsivity and overall degraded uniformity. 

Radiation tolerance characterization typically 

includes determining the rate of performance 
degradation via a damage factor analysis (Cowan et al., 

2012; Morath et al., 2015). The degradation rates of each 

measured parameter of the detector’s performance [dark 
current-including the diffusion-limited, Shockley-Reed-

Hall (SRH) generation-recombination and trap-assisted 
tunneling mechanisms; lateral optical collection length 

or effective diffusion length-and thus minority-carrier 
recombination lifetime and mobility; quantum efficiency; 

etc.] are determined by plotting them as a function of the 

proton irradiation fluence ΦP and characterizing the 
changes. When the change in parameter X appears 

roughly linear with ΦP, which may be true on average or 
for only a certain fluence range, then a damage factor, KX, 

can be defined such that X = X0±KX ΦP, where X0 is the 

un-irradiated value of the performance parameter and the 
± is determined by the expected change, e.g., + for dark 

current (Fig. 7) and −for quantum efficiency (Fig. 8). 
Damage factors are assumed to be related only to 

changes due to the effects of displacement damage, not 
ionization damage and are dependent on the proton 

energy E (Claeys and Simoen, 2013). 

The radiation-induced defects can manifest in lower 

quantum efficiency (η) and higher dark current density [JD 

which is related to the tunneling current density in Equation 

(63)], due to the consequent reduction in minority carrier 

recombination lifetime [τR which is related to the non-

radiative recombination time τnr in Equation (77)] and 

increase in SRH generation-recombination, carrier diffusion 

and trap-assisted tunneling. Thus, a substantial reduction in 

overall detector sensitivity, or “detectivity” (D*), is 

expected. Radiation tolerance can be characterized from 

performance measurements taken versus fluence by 

calculating the above-described damage factor (KX) or the 

rate of degradation for each performance metric X (e.g., X 

= η, 1/τR, JD, D*, etc). For comparison purposes, it is worth 

noting that damage factors are specific to the particle type 

and energy of the incoming radiation. With a known 

energydependence, KX(E), predictions of the expected on-

orbit degradation ∆X ideally become possible, according to: 
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Fig. 7. Dark current (JD) as a function of proton fluence. Dashed line gives a + slope for the trend, indicating the dark current damage factor 

 

 
 
Fig. 8. Quantum efficiency as a function of proton fluence. Dashed line gives a-slope for the trend, indicating the quantum efficiency 

damage factor 

 
where, dΦP(E)/dE is the expected orbit’s differential 
proton fluence spectrum (Hubbs et al., 2007). 

Comparing damage factors from different detectors 
may allow for the more rad-tolerant detectors to be 
determined (as long as several other conditions that 
may impact damage formation are kept constant). A 
connection between the damage factor and the amount 
of displacement damage can be established by first 
assuming a linear increase in the defect concentration NT 
[related to the point vacancy concentration cv introduced 

in Equation (40)] with ΦP (which the data in (Hubbs et al., 
2007; Cowan et al., 2012; Morath et al., 2015) support 
for the fluence ranges of interest). When dominated 
by SRH recombination, the minority carrier 
recombination lifetime τR, assuming a single active 
recombination level, is given by: 

 

1
( )T p th

R

N vσ
τ

= Φ  (90) 
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where, σ is the capture cross-section and νth is the 

carrier thermal velocity. With these assumptions in 

mind, the minority carrier recombination lifetime 

must depend on ΦP according to: 

 

1/

1 1
R p

R Ro

K
τ

τ τ

= + Φ  (91) 

 

where, 1/τR0 = NT(0) σ νth. Based on the assumptions 

above and from Equations (90) and (91), a material’s 

defect introduction rate is thus given by: 

 

1/

( ) 1T p

R

p th

dN
K

d v
τ

σ

Φ
=

Φ
 (92) 

 

Which means that if σνth is fairly constant, as expected 

for the fluence ranges of interest, K1/τR is a relative 

measure of dNT/dΦP, which is a true measure of a 

device’s defect tolerance. Thus, Equation (92) suggests 

that if the various performance damage factors (for 

diffusion-limited or SRH or trap-assisted tunneling dark 

current densities, lateral optical collection length, 

quantum efficiency, etc.), can be directly related to K1/τR, 

then an understanding of how they might relate to 

dNT/dΦP and, furthermore, to each other, can be 

determined (Morath et al., 2015). The theory presented 

in this study will be used to determine the formation and 

dynamics of the proton-induced defect concentration and 

defect introduction rate that produce the damage factors 

that describe the degradation of sensor performance 

parameters. The experimentally observed increase of 

photo-detector dark current and decrease of quantum 

efficiency can be explained by defect-assisted tunneling and 

defect-induced capture models in Section IV, respectively. 

Conclusion 

In conclusion, we have proposed a multi-timescale 
microscopic model for fully characterizing the 
performance degradation of electronic and optoelectronic 
devices. In order to reach this goal, we will employ 
realistic interatomic potentials in a molecular-dynamics 
simulation for both the ultra-fast displacement cascade 
stage and the intermediate defect stabilization and cluster 
formation stage. This simulation will then be combined 
with a rate-diffusion theory for the slow defect reaction 
and migration stage. Additionally, with assistance from a 
density-functional theory for identifying defect species 
and their electronic properties, the calculated steady-state 
spatial distributions of defects and clusters will be used 
to study and understand the physical mechanisms that 
degrade electronic and optoelectronic devices, including 
defect-assisted resonant tunneling, reduced carrier 
mobility, non-radiative recombination with defects and 
inelastic light scattering by charged defects. 

In this study, we have discussed several techniques 

for defect characterization. However, there are many 

other approaches for characterizing defect effects. These 

include electrical characterization techniques, such as 

deep-level transient spectroscopy and 

capacitancevoltage profiling and optical 

characterization techniques, such as cathode-

luminescence and reflectance modulation. Physical and 

chemical characterization techniques can also be 

applied, including electron energy loss spectroscopy, 

(Gumbs and Horing, 1991) secondary ion mass 

spectrometry (Zhang et al., 2014) and chemical milling.  

The molecular dynamics model presented in this 

study can be combined with a space-weather forecast 

model (Moldwin, 2008; Cooke and Katz, 1988) which 

predicts spatial-temporal fluxes and particle velocity 

distributions. With this combination of theories, the 

predicted irradiation conditions for particular satellite 

orbits allow electronic and optoelectronic devices to be 

specifically designed for operation in space with 

radiation-hardening techniques (such as self-healing and 

mitigation). This approach will effectively extend the 

lifetime of satellite onboard electronic and optoelectronic 

devices in nonbenign orbits and greatly reduce the cost. 

In addition, by improving the physical model for 

scintillation detectors, the accuracy of space-weather 

measurements will be enhanced. 
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