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ABSTRACT

We point out that some of the proposed generatizedified uncertainty principles originate from saile, or
nilpotent at appropriate limits, “deformations” ldé algebras. We briefly comment on formal aspeelsted

to the well-posedness of one of these algebragpdVie out a potential relation of such algebrashv@tassical
Mechanics in the spirit of the symplectic non-squmg theorem. We also point out their relation to a
hierarchy of generalized measure theories emeigiagovariant formalism of quantum gravity.

Keywords: Uncertainty Principle, Nilpotent/Solvable Grou@émplistic Topology, Quantum Gravity

1. INTRODUCTION principle, already known or new, that may be uncede
lying at its foundations. As a result, one encotmseveral
The possibility that the Heisenberg uncertainty versions of the generalised uncertainty principiajch
principle is modified by quantum gravitational €@c stem from different generalisations of the Heisegbe
has been rest proposed almost a half century agalgebra. Ultimately, such generalised uncertainiyciple
(Mead, 1964). More recently, this idea resurfacedshould arise and be justified by a theory of quantu
(Amati et al., 1989; Konishiet al., 1990; Maggiore, gravity. Since such a universally acceptable theisry
1993a; 1993b; 1993c; Kempdt al., 1995; Kempf,  cyrrently lacking several paths, mostly phenomegiotd

1997), mostly motivated by a wish to naturally motivated, have been taken toward the formulatibn o
incorporate a minimal length (Garay, 1995; Jaeekel eneralised uncertainty principles (Amati al., 1989;
Reynaud, 1994) in the various approaches to quantu onishi et al., 1990; Maggiore, 1993a; 1993b; 1993c:

gravity. Such a generalisation is warranted claséhée Kempfet al., 1995; Kempf, 1997; Garay, 1995; Jaeckel and

Planck scale, around which the Compton wavelenfth o ; ) i )
. . - Reynaud, 1994; Das andagenas, 2008; 2009; Bambi,
a particle becomes comparable to its Schwarzsch|ld2008; Ai e al. 2009; Bojowald and Kempf, 2012;

radius. There has been a veritable explosion efrést Chemissangt al.. 2011: Majumder, 2012).

in this topic during the last two decades, duringoh ;
formal variations (Das an¥agenas, 2008) and their In the present work, we examine some formal aspects

statistical mechanical and  phenomenological ©f such proposed generalisations of the Heisenberg
implications (Das and/agenas, 2009; Bambi, 2008; @algebra. In section 2, we notice that most sucip@sed
Ali et al., 2009; Bojowald and Kempf, 2012; algebras are solvable and even nilpotent in appatepr
Chemissanyet al., 2011; Majumder, 2012) have been limits, deformations of Lie algebras. We also comme
being explored. Implications of the generalized on why they may fail to have these properties. Such
uncertainty principles for quantum eld and gauge structures interpolate between the Heisenberg edgeb
theories have also recently emerged (Kinal., 2009;  which is 2-step nilpotent, hence solvable and thié f
Kober, 2010; Husaiet al., 2012). structure of a potential non commutative geometry
It is probably not too surprising that there is no (Chamseddine and Connes, 2010a; 2010b) that may be
“unique”, “natural” or even “best” generalizatiori the used to quantize gravity. Some technical points
Heisenberg uncertainty principle. Such a genet@isa pertaining to some of these algebras are also lveey
really depends on the goals that one wishes tm attal is addressed. In section 3, we make some remarks

ultimately justied by its predictions or by a plogi pertaining to the generalised algebras as seenghrthe
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“lassical” simplistic non-squeezing theorem (Ekelamd Consider the following commentator groups defined
Hofer, 1989; Hofer and Zehnder, 1994; Viterbo, 1,989 iteratively by Equation (5):

Arnol'd, 1986; De Gosson, 2001; 2002; 2009a; 2009b;

2012; De Gosson and Luef, 2009; Abbondandolo andGg® =G, ¢ =[c" ,&" ], iON (5)
Matveyev, 2012) and their\counterpart” in the cdevatr

formalism which is a generalized measure theory Tnhe derived series is Equation (6):

(Sorkin, 1994; 1997, Salgado, 2002). Section 4semes

an outlook and speculations. In the Appendix weesta Gg>c?>G®> ... (6)
some very well-known facts from real and Fourier
analysis (Stein and Murphy, 1993; Grafakos, 20089} A group G is solvable if its derived series terrtésa

as well as the theory of pseudo-deferential opesato after ' steps, namely if there isON such that GV = 1.
(Taylor, 1991), aiming at making our exposition pyamples of solvable groups: All Abelian groups are
somewhat smore self-contained. solvable. More generally, all nilpotent groups soévable,
1.1. Nilpotence and the Generalized Uncertainty @S can be readily seen. A solvable but non-nilpaeup is
Principle(s) the symmetric group of 3 elements Bor d|scret_e_groups,
the Feit-Thompson theorem states that every fgrniteip of
The concepts of nilpotent and solvable groups andodd order is solvable.
algebras are central in the structure and classiica For a Lie algebra g similar dentitions apply, byngghe
of both discrete and “continuous” groups and algsbr matrix instead of the group commentator. Then Esgel
(Helgason, 2001). Let G indicate a group with theorem states that a Lie algebra is nilpoteriéf @djoin
elements gl where | is a discrete or continuousind map ag (y) = [, y], X, YJg is a nilpotent operator, namely
set. The (group) commentator is the subgroupifthere isnON such that ad(®)= 0, OxClg. Moreover, g is

indicated by [G, G] having elements Equation (1): solvable if and only if [g, g] is nilpotent. The tation for
Lie algebras g that we will use is analogous td fba
[G.G]={g"a"gg. 0L} (1) groups, as given above. Analogous dentitions cansee

for associative algebras endowed with commentatusill

In a similar manner, when one considers two P€ ((j)one in the seqluel. that the Heisenb laebra of
subgroups H Hx<G, with elements H= {hy;, jOJ} H, = ne can easlly see that the Heisen erg‘;‘ alge ra"0
{ha KOK} with J, K subsets of |, then their commentator S#c?er]rtt:m tyMeF;:rri]r?c?ilpclz giglmg-srtlzg t?]”;g?e n?rd';:rr% e
subgroup [H, Hj] is given by Equation (2): solvable, since Equation (7):

[H,,H ] ={hjh3ihy, o Oj03,k0 K @) x,p, =i

j?

i,j=L...,n @)

Consider the following commentator groups defined

. . . ] and all other commutators are zero, where the difoen
iteratively by Equation (3):

of the phase space M is 2n. Then Equation (8):
Gy =G, G(i+1)=[Gthi)] ,i0 N (3)

@ [X,.[X,. Pl =[P, [X,, P, ]] =0 (8)

The descending central series is Equation (4):
With the other 2-step commutators trivially zero.
G2G, 2 Gy 2 .. (4) Now consider the n-dimensional rotationally
symmetric Kempf-Mangano-Mann (KMM)
A group G is called n-step nilpotent, if its lower deformation (Kempgtal., 1995; Kempf, 1997) of the
central series terminates after n-steps, namethyeife is ~ Heisenberg algebra given by Equation (9 to 11):
nON such that @.;) = 1. Several other equivalent
dentitions exist for nilpotent groups. Examples of [xi,pj]:ih(1+p~?»2HpH2)6Ij 9)
nilpotent groups: All Abelian groups are 1-stegatkent.
The Heisenberg group is 2-step nilpotent. By cafra
the quaternion and the rotation groups are nooteimt. [Pi,p1=0 (10)
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[x;. %1 =2inB*(px; —p % ) (11) (%% 1,0 1] = 2(7) *B2(L+ B[] (3,8,
where, BOR, and Equation (12): +2(ih)3[345u{(1+BZMZ)HFﬂzam + 2B e p} 4o
HF’H2 :Z":pl b (12) Reduces to Equation (17):

D, Do,y T =200 B 3 17)

We immediately observe that all elements of thersec
step of the derived serie€' gre zero, except the following
ones that require some straightforward calculations
Equation (13 and 14):

Which is obviously an element of the centre of he™
all 4-step commutators, i.e., all elements gfage trivial. In
other words, under the above approximations, theVKM
deformation (9)-(11) reduces to a 4-step nilposégebra.

[[xp1Ix % 1] =0 (13) Konishi et al. (1990) and Maggiore (1993a; 1993b)
proposes a generalization of the Heisenberg urngrta
And: relations that can be derived from the Lie algdiaaing
generators x p, J, i, j, K = 1, 2, 3 which obey the
[[Xi,xj],[xk,xll} =2(inP A A +BZHpHZ) (14) commutation relations Equation (18 to 23):

(O1% X% ]+ 0 XX T+ [x, X ] + Q%% ]) i
[Xivxj]:_iFEIjk I (18)
Using those, one can express the elements of the
higher elements in the derived series in termsia$e of
g and &. As can be immediately seen, the derived series[x‘ p]=in /1+E72§, (19)
does not terminate, in general. v K2
We proceed by further simplifying matters, in order
to get armer control of the algebra. An obvious way [p.,p.]1=0 (20)
achieve this goal is to impose conditions that mgRe v
Abelian. One way to attain this is to consider otiig

“semi-classical limits” # - 0or B0, or both, of the [ % 1= X (21)
KMM deformation. Such a “Inonu-Wigner”-like
contraction is implemented by ignoring all termattare 3.9 1=i0, B (22)
of quadratic or higher order in and of quartic or higher
order in. A second way to proceed is by foregoing -

[ 31= G d (23)

altogether all traces of non-commutativity betweba

“spatial” variables xby imposing Equation (15):
patialvar Xby imposing Equation (15) where, Ji =1, 2, 3 stand for the components of the total

angular momentum operatof @re the structure constants
of the Lie algebra of SU(2) and-is the “deformation
parameter which is identified with the Planck maEse
essential deference between this algebra and tiseriberg
algebra can be essentially traced back to (18k -As, we
recover the direct product of the Heisenberg algetith
the Lie algebra of SU(2). The latter however catieabme

[x;,x;1=0 (15)

Obviously, (15) is a signicant implication of the
KMM deformation. It is adopted by the “modified
uncertainty principle” as will be seen in the sdqui
either of these simplications are made, then the
corresponding subalgebra of the KMM deformatio@-is - s S .
step solvable as can be seen from (14). We haw to solvable, in any approximation in termskofTo justify this,

somewhat careful though. If we assume (14) andmie o consider the Killing form of a Lie algebra g, defihas the
terms of quadratic and higher orderhithen what Symmetric bilinear form on g given by Equation (24)
remains is the Heisenberg algebra, so we get rpthin

new. Hence, to get a nontrivial result, we are ddrcin K(x,y) =tr(ad(x)ad(y)), x,yt ¢ (24)
addition to (14) to omit only terms of quartic agler

order inf. By using this approximation, we go beyond Cartan'’s criterion states that a Lie algebra gligable if
the Heisenberg algebra, since Equation (16): and only if its Killing form satises Equation (25):
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K(x,[y,z]) =0, x,y,z0O g (25) The only 3-step non-trivial commutator is, in the
aforementioned approximation in termg dquation (31):

It is straightforward to check that every subalgetira
solvable Lie algebra is also solvable. Hence if (lag’s XX [X 0T =26 (8,8, +8,8 +&3) (31)
extension could become solvable in some non-trivial
(namely, not resuling in the Heisenberg algebra) \yhich being a central element of g implies that
approximation in terms ok then its SU(2) subalgebra Equation (32):
should also have a degenerate Kiling form. This is
impossible however as the SU(2) commutation relatido .
not depend on the value &fin Maggiore’s deformation, as 1D ;. ST =0 (32)
is obvious in (23). Hence Maggiore’s deformatiomrez
give rise to a nilpotent algebra either, in somprayriate
limit in terms of k. We conclude that our approach and
subsequent conclusions do not apply to Maggiore’s
generalization of the Heisenberg algebra (18)-(23).

The Das-Vagenas (DV) generalised uncertainty
relation is a result of the associative algebraoersd
with a bracket given by Equation (26 and 27):

All the other commutators have been trivially zero
from the previous step. We see that the presence of
the anisotropic term in (26) does not even aect the
step at which the DV algebra becomes nilpotent when
compared to the KMM case.

The Ali-Das-Vagenas (ADV) “modied uncertainty
principle” (Ali et al., 2009) generalizes the spatial-
momentum commutator of the KMM deformation and
extends the DV generalized algebra to Equation (33)

[x.,p;1=i7(3, +c3 [p|* +22p B ), i,j=1,.....n (26)
%] =[PP =0, 1j=L...n @n s, -a[pa,- pp] y
[x;.p,]=in ol )Lij=1,2,3 (33)
With ¢ = o /(Mpc®) where My denotes the Planck +“2(HpH25u +3p 9)

mass. This is an anisotropic variation, provided the
term Zpp of the KMM deformation (9)-(11) with the . . . .
additional  simplification that the spatial coordigm The generalisation to n dimensions is
commute as in (15). Requiring (15) instead of (slp  Straightforward. Here a = dolp/7 where } is the
considerable simplification of the KMM proposal, Planck length. The ADV algebra assumes, as the DV
conceptually more closely aligned to ordinary ratian  case (26), (27) above that Equation (34):
to non-commutative geometry. As can be readily sthén
algebra is 3-step solvable as all elements@fage zero.  [xx;1=[p;,p;1=0, i,j=1,2,3 (34)
On the other hand, for nilpotency we have Equgia®&):

In this case the “deformation” parameter is indidaby

[P.[pi.p 11=0 (28)  a. As in the case of (26), (33) is also 3-step dkvaince
g? is also trivial, as can be seen by a straightfmwa

But Equation (29): computation. Notice that due to the fact that throaical
momenta commute (34), the two potentially “dangstou

[X,.[x;. P11 =2(i7) 221 +:’>ZHpH2)6ij|c1K +2(hY issues being the exact operator ordering in thetidira of

Z{(1+ quf)(aik p+8R)+Zpp p} (29) (33), as well as the exact way tHaf and ﬁ are defined,

can be temporarily ignored.

To check the nilpotency of the ADV algebra, we will
work at a formal level, leaving potential justiftzans of
these steps for Subsections 2.6, 2.7 in the sequel.
Consider an operator of interest, let's sayThen define

As was also observed in the case of the KMM algebra
the DV one is not nilpotent unless one resortsaimes
approximations. The most straightforward assumptson
to consider only terms vanishing as quadratic ghéui
powers of 2 in which case (29) becomes zero. In this
approximation the DV algebra is 3-step nilpotemnt. tbe its inversei by demanding Equation (35):
other hand, someone may wish to keep only term& up b
second order ig. Then (29) reduces to Equation (30):

. — =& i,j=1,..., 35
XX, P11 :2(ih)212(§,-pk +Qp +QR) (30) : P; b " (33)
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There is no need to distinguish, naively at leadeft
from a right multiplication, because to due to (34)is
expected that both one-sided multiplications willegthe
same results. We use repeatedly that the commusator
derivation, as well as (34) and find from (12) Bipra(36):

(36)

(X4,

sz] = ZZ[ka plp

With the definition (35) this can be rewritten as
Equation (37):

[Xo[IPT = _Zsj[xk.p. Ip ﬁ (37)
j=1
So (35) results in Equation (38):
Dol e

Taking into account (36)-(38), a calculation givep,
to terms of ordeo?, that Equation (39):

6upk +6jkp +§<I R - mHlﬂ pé

ald s, jﬂ

~alplnd, -
PRy l (39)
(%[5 ]]=~(in) “Tll ., ppn
[l

+(ih2)a2(2pk6u +3H§k + 3Pq‘< )

Calculation of the next few terms such as,[x,
[Xk, [xi, g]l]] results in a gradually increasing level of
complexity of the resulting expressions, which does
not seem to terminate even in the approximatiorioup
a’. The reason behind this behavior, which is totally
deferent from that of the KMM and the DV algebras,
is not hard to pinpoint: It is the existence |pf rather
than of |p|°and its appearance not only in the
numerator, but also in the denominator of (33). As
long as it is unclear at this point what is the gibgl
principle, if any, dictating the form of (33) anthee
(33) is not the only expression resulting in an
uncertainty relation with desirable phenomenolobica
consequences, it may be prudent to avoid the use of
|p|itself which introduces these problems for the
subsequent formalism. One could use instead integer
powers of |p|in any generalized algebra, starting its
square as in the KMM (9) or DV (26) cases. Theus thi
algebra will become nilpotent in the lowest norvital
approximation in terms of the deformation parameter

In this subsection, we would like to comment on the
terms of (33) involving|p| . It seems that the meaning of
this quantity and especially its possible vanishimghe
denominator of (33) has not been adequately adsitdns
the literature of the generalized uncertainty ppies, so
far. For this reason, a comment or two may be deror
about these issues. The notation and some pertinent
defintitions used in the rest of this Section, barfound in
the Appendix and the references cited therein.

We will assume that someone works in the Schwartz

We follow the same level of approximation as in the space S (B in which the Fourier transform F is well-
KMM and DV cases above where terms up to the squaralefined. Incidentally, it is entirely possible teeuanother
of the lowest term in the deformation parameter areintegral transform, such as the Mellin transforerdach

retained. Next, we have Equation (40):

[xl ,[xk [%.p }ﬂ =(in)’a
I H(é”a" %3 +4.3)

(6|kan ]kpp+§< Pp

ler
PP -5PR-APP)
SOuPpp+B PR+ B PP
—5qpqu _Qkpp_éx oY
spipjrlp

lol®
+(t)a?(B,3, + B8 + F,3 )

(40)
I
+a (35,3, + 25,8 + 8,3 )+

PP AR

[l
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similar conclusions. We immediately see that thalsyl
corresponding tdp| is Equation (41):

. (a1)

PO,Y)= (v +y5+
This is a classical symbol belonging to the (Hordesih
classS,. In more physical terms, it is a pure canonical

momentum, being independent of the “conjuration”
variables x. The corresponding operator B(),is a rst
order pseudo-deferential operator belonging toSQP

The Laplacian 0° on R is a second order elliptic
operator, as it has a positive deifnite symbol erdsee
that (41) can be re-expressed as Equation (42):

p(x,0,)= (%) (42)

AJSS
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As such,
(33) in the slightly different form Equation (43):

p| is well-defined on R We can re-cast related to smoothness. As can be seen from (12) and
(42), in (33) we are dealing with an inverse powfthe
Laplacian, of the specific form Equation (45):

PP
o —ap[éj +pAJ J = (DZ) _; (45)
[xi.p1=in 4,0=1,2,3 (43)
P _
+G2p2[6“+3%|5ﬂ For our purposes s = 1 but it does not hurt to be

somewhat more general and alle@n C , with Re s>0 for
convergence purposes. Such expressions are cdlsd R
It should be understood that (33) and (43) are notysientials of order s and are defined via the Eouri

necessarily equivalent as the domains of theseatper G n ; :
expressions can be different, despite their funetio transform and its inverse, fdnz S(r") by Equation (46):

equivalence. The interest in operator domains shoat

be dismissed out of hand as an exercise of purely r(L‘S)

mathematical interest. Indeed the potential physica (j f)(x)= 1n 2 J‘Rnf(xn‘_Z’)dny (46)
importance of operator domains has been investigate > r(E) ||

for over two decades in the context of quantum ityav

and non-commutative geometry, in particular as it
pertains to issues of topology change (Asoetyl., The effect of operators such asis) to improve the
2012; Shaperet al., 2012). We will tacitly assume that ntegrability of functions, namely to mag 1°— L% which

the discussion takes place in the intersection h&f t for sOR are related by the Sobolev duality Equation (47):
domains of (33) and (43).

Going back to (43) one should notice that a paaénti
problem lies is its “infra-red” behaviour, namely the
possibility that its denominator becomes zero. Thim
stark contrast with typical issues in functionabeps,
especially where the Fourier transforms involveut t - _ Lo _ .
are mostly concerned about “ultra-violet” divergesicA 2 S = 1, n = 3 which gives q = 6. The Hardy-Liittd-
way to deal with this may be to compactififto the 3- Sobolev fractional integration theorem (Stein and
torus T and only consider functions that obey periodic MUrphy, 1993; Grafakos, 2008; 2009) provides bounds
boundary conditions as is frequently done in Quantu for the corresponding norms. The Riesz potentiaths
Physics. Another way is to work with principal vesuof as Hle are essentially integrals, hence they act as

potentially divergent integrals, which is a formiofra- — gmgothing operators. Therefore, by using inverseeps

red regularization, as is done in the case of Hilbe ot gifferential operators, the corresponding exgi@ss
transforms and other singular integral operator® €an  phacome more regular, a clearly desirable property
take this path by re-writing the fractional ternig48) in especially for any theory having a classical limit.

=3 (47)
n

Tl
QR

In the particular case of the ADV algebra above p =

terms of Riesz transforms as Equation (44): On the other hand, because of the fact that integra
operators are defined in domains dfrRther than points,
3 -alp|G -RR)| .. an obvious question arises about the meaning afitpc
Dop1=ing o 5 _a 4,1=12,3 (44)  in models using the ADV algebra. This, does notonl
o*p" @, -3R R ) create the usual problems of interpretation agdmary

Quantum Physics but also introduces considerably
It is well-known (Stein and Murphy, 1993; Grafakos, greater diffculties in the quantization of any such
2008; 2009) that the Riesz transforms are bounded i systems. It is not clear, to us at least, what thyxamuld
LP(R"; 1<p<o. Among them, the %integrable be the meaning of an operator defined at a poispate,
functions are of greatespOR, interest in Physics, €ven in the distributional sense, when a non-local
hence (43) therefore (33) are well-defined in such OPeration such as the convolution with a singuiggral
spaces, which is sufficient for our purposes. operator is involved in even defining the algebra
One issue arising from the ADV algebra (33). (34), 210 boricly “adcressed in (Maggiore, 1963) faz
due to the presence of the inversejgifand its square, is kM algebra by utilising a generalised BargmannJ€oc
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representation and by defining an approximate “guas nilpotent Lie algebras. It may be worth wondering o
position” representation. One could possibly adsires whether this just a coincidence, whether it is mHria
such issues by following a largely algebraic paththe  mathematical pattern, or even more importantly et
context of generalizations of C* Algebras emulatthg  is a manifestation of a physical principle. Thist&m is
path followed in axiomatic quantum eld theory (Haag an attempt to relate such questions to known falotat
1992) or non-commutative geometry (Chamseddine,cjassical Mechanics and a generalized measurerdtigra
2010a; 2010b). The issue of locality is of central of potential use for Quantum Gravity, as first raditary
importance in theories of quantum gravity, such@sp  ;omments that may contribute toward an answer.
Quantum Gravity (Rovelli, 2011) or Causal Sets y@ur The operator formalism of Quantum Mechanics has

2011), which aim to formulate theories that are undeniable similarities with the Hamiltonian formtibn
back dind dent. Contrast this with the @it . . ) .
aexground Indepencent. Lontras: this wi © of Classical Mechanics. Then, it would be highly

taken toward gravity quantization and interaction e . . , .
unification by the String/Brane/M theories (Mukhi, Sugdgestive if an extension of Heisenberg's unaetai

2011; Blau and Theisen, 2009). Since a generalisedPrinciple could be traced back to the structur€lassical
uncertainty principle should reflect, in some part, Mechanics. The fact that this is indeed possibletlie

elements of these quantum gravitational theories, i Heisenberg uncertainty principle itself, is a riglly
treatment of locality is crucial, extending far bag the recently established fundamental result in Symijgect
mere technical level that we have alluded to here. Topology called the “symplectic non-squeezing tbedr

Kempfet al. (1995) and Kempf (1997) an inner product (Gromov, 1985; Ekeland and Hofer, 1989; Hofer and
was introduced in an attempt to develop a rudimgnta zennder, 1994 Viterbo, 1989: Arnol'd, 1986: De €,
representation aspects of the KMM algebra. It weasrg 2001; 2002: 2009a; 2009b; 2012: De Gosson and Luef,
in n-dimensional momentum space, by Equation (48): 2009: Abbondandolo and Matveyev, 2012) or the

principle of the “symplectic camel” (Arnol'd, 1986)s this

1 SW(p)g(p)d"p (48) result has not yet received the visibility in Plegsihat it

1+Pp duly deserves, despite the extensive eorts of piliyrid.
De Gosson (and collaborators), who seems to be its

This product can be seen as “natural” from the biggest advocate in the Physics community (De Gusso
viewpoint of the Fourier transform of the inner guot 2001; 2002; 2009a; 2009b; 2012;: De Gosson and Luef,
of the (Sobolev) Bessel potential spacg (R"). More  2009), we will say a few words about it that arkates
generally, one can see that the algebras giviegtoishe  to the present work.
generalised uncertainty principles, can be appratefy The following applies to any symplectic manifold M
expressed as “quantizations” in Hilbert spaces eedo  but we may wish to think more physically as M beihg
with generalized inner products. Modifying the inne phase space of a Hamiltonian system. Assume that di
product to bypass altogether the Stone-von NeumanrM = 2n and let it be parametrized locally by (xvi)ere
theorem, which however does not hold in quanturd fie x = (X, ..., %) and p = (p,...,p,) Where the notation is
theory and obtain distinct predictions from the alsu borrowed from the Hamiltonian formulation of
operator quantization of the Fourier modes of thase ~ Mechanics. Consider the ball Equation (49):
space variables is one of the tenets of theorieh a8

wo=,

Loop Quantum Gravity (Rovelli, 2011). Motivated by BZH(R):{(X,IO)D Mi\>42+m25R} (49)
the the generalised uncertainty principles as waglby
the approach implemented in Loop Quantum Gravity, i and the “cylinder” 4r), |, = 1,...,n over the symplectic

may be of some interest to check on whether thelWey2-plane (x p) given by Equation (50):
correspondence (Stein and Murphy, 1993) can be
modied/extended to apply to the above or any ngebahs
giving rise to the generalized uncertainty priregpl

Z,(r)={(x,p)DM:x|2+gzs r} (50)

_ _ Consider a (smooth) canonical transformation

1.2.The “Symplectic Camel” and Generalized (symplectomorphism) f: M-M. The symplectic non-
Measure Theories squeezing theorem states that it is impossiblattB.f,
We saw in the previous section that some of the(R) inside %, unless Rr, namely that Equation (S1):

proposed generalisations of the Heisenberg unogrtai
principle lead to solvable and in particular limit® f(B,(R)O Z/(r) = R<1) (51)
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This shows that a phase-space volume is not onlyClassical Mechanics, but how actually close they tar
preserved by a Hamiltonian (more accurately: A each other (Sorkin, 1994; 1997). An indication $ach a
divergence-free) flow, as given by Liouville’s them, close relation was provided by the symplectic “non-
but it possess an additional rigidity associateth vitis sqgueezing” theorem discussed above. Another isdfaiun
projections along each 2-plane of canonical coatéis one thinks about a triple-slit experiment extending
Alternatively, the set of canonical transformatiafsv Young's double-slit experiment (Sorkin, 1994; 199%)e
is quite different from the set of volume-presegvin start with all three slits open and then graduaisrt
transformations of M (Gromov, 1985; Hofer and blocking ffo one, then two at a time and therttaibe. We
Zehnder, 1994; Arnol'd, 1986). This can be intetpde record the corresponding interference patterns \&ith
as a rigidity property of Hamiltonian Mechanics who overall plus sign if three and one slits are opmhwsith an
Quantum Physics “analogue” is the Schrodinger-Rsber  overall negative sign if two or no slits are opéle
inequality (De Gosson and Luef, 2009; De Gossofi9a)  superimpose these eight resulting patterns by gdtiem

2009b; 2012) Equation (52): up algebraically. The result will always be zerfoa four,
five slit extension of Young's experiment is set apd
2 . .. .
A V(A Vs(c , 2 n =1 52 calculations are performed along similar lines, tbsult
(@) (84) ( o(x p)) "2 f (52) will always turn out to be zero. This is a direct

consequence of the fact that the Heisenberg algstita
where, Cov(x p) stands for an element of the covariance step nilpotent. In Classical Mechanics no new imiation
matrix. If the covariance matrix is zero, this flesin the beyond the one provided by a “single-slit” expennes
usual Heisenberg uncertainty relation. So we saeirthide  obtained. In Quantum Mechanics, Young's double slit
Classical Mechanics itself, there are “elementQoéntum  experiment contains all the non-trivial physical
Physics, when some terms are properly interpretedt information and every multi-slit experiment beyoiid
possible to use further rigidity results of Clasbic gives nothing new. It is in this sense that Quantum
Mechanics (if any further rigidity exists at al)) guide usin ~ Mechanics is as “close” to Classical Mechanics as
formulating a generalised uncertainty principlegréiore  “possible” (Sorkin, 1994; 1997) although, of courteeir
going beyond Quantum Mechanics? This is unclear atstructures are quite different from each other.
present. Although a definitive answer is unknown, i To generalize this nilpotentcy in the covariant
appears that there may be additional rigidity prrigge in framework, we have to think in terms of generalised
the behaviour of canonical transformations, appgarithe =~ measures of histories, expressing the evoluticn syfstem.
middle dimension n as the work of (Abbondandolo and Consider a set of histories Baving a generalised measure
Matveyev, 2012) seems to indicate. If such indicetiare  indicated by\S_L‘ . Consider a second set &d form the
affrmative and more rigidity constraints exist fohase-
space volumes, nilpotence in this context wouldthmee
termination after a finite number of steps of ausege of
properly defined involutions of such rigidity comsits.

The present work is concerned  with
nilpotent/solvable associative algebras endowedh it
bracket operation, that are non-linear generatiaatiof
Lie algebras and properties of related functiomeces
which are the carrier spaces of their represemtstidt
may be worthwhile to see how these ideas may carry'l(sl)z‘sl‘
over from the canonical to the covariant framework. |2(31’52)E‘§H %_‘ %_‘ %
Each of these two approaches has its own advantages
and limitations, but both provide valuable techeisjand '3(511%@)5\ susl $-| 91 $
insights on how to understand and work out the ggsc  _ _
of quantisation in particular models. As is cle@nf the SLs|-[sl g+| 9+ 4] ¢ (53)
generalised uncertainty principles and the cornedimy 1.(S,.S,...S )E‘ S 9‘,_2":‘ Sl I8 I 43
algebras discussed above, our interest is in umcaye =)
properties related to Quantum Gravity. n i~

The most striking observation is that it is notlisea lZI:JSlH'“H%H LS 'éTJ' SR ;‘ |$

surprising how different is Quantum Mechanics from 1,

disjoint union $ 1 S,. These two sets could be chosen to
represent the histories of the electron going tinaglit one

or only through slit two in Young's double slit expment.
The extension of the notation and the defintititana multi-

slit experiment involving the “histories”,9 = 1,..., n is
immediate. Consider a hierarchy of sum rules (8orki
1994; 1997; Salgado, 2002) Equation (53):
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Here $ indicates that the argument S should betexnnit la :‘al‘ +a2‘ o+
in the calculation. Evidently;16 # 0 for any non-trivial
statement to be feasible. Classical Mechanics sporeds
to I, = 0. Quantum Mechanics is given 10, I = 0.
One can straightforwardly see that £ 0 implies that,lis
additive in each of its arguments. This multi-agdit can
be used to explain why imposing# 0 results in being || = sup
able to express the real part of the decoheremusidmal “F xOR"

as b (S 9 = 2‘3 , which in turn implies that the The above set of denumerable semi-norms allow one
transition probabilities are proportional to theuaie of  to define the Schwartz space by Equation (57):
amplitudes, as is well-known in Quantum Physics. A

generalized uncertainty principle would refect inist S(IR”):{fDC“(R”):HfH <oo,|]a,B|]N”} (57)
framework that || # 0, B4. The generalization of the P
Heisenberg algebra to an I-step nilpotent algelmalavbe
expressed by demanding that £ 0, & 4.

In such theories, the transition probabilities vaobke
functions of some integral power, but not the squaf
the amplitudes of wave-functions. It appears that
following the covariant approach would also imphat
the carrier spaces of the representations of thergbsed The dual to S[R"), namely the space of linear
algebras would be *LR"), p # 2, if not more general functionals onS®") is indicated byS'®") and is called
Sobolev spaces. Such spaces of functions are ieraen space of tempered distributions @". The Fourier

Banach spaces, rather than Hilbert spaces IK&Y)  transform forf OS(R")is defined by Equation (59);
which is the one used Quantum Physics. This poses a

obvious problem, as the Banach spac¥®RL), p# 2 do R 1 _

not admit an inner product. Then one would have to FIfI(§ =f (€) =——[.f(x) e ™d"x (59)
explain how exactly the geometric structure of the (2m)?

Euclidean spaces stems from that of functions whigh

elements of (R") p # 2. This might be feasible by and the inverse Fourier transform is Equation (60):
technically utilising a Littlewood-Paley type okatment

an

B

=IB.|+[B ]+ .. +[B | (55)

Consider f:R" - C such thatf OC_(R") and for each
pair of multi-indices; dene the semi-norms Equati):

x 0% (x)| (56)

One can immediately see that an equivalent dedimiti
of S(R"), with Gy>0 constants is Equation (58):

|0°fF (x)| < Cy o (@+[X)",OBON" ONON (58)

(Stein and Murphy, 1993; Grafakos, 2008; 2009), thet F[f](x) =f(x)= 1 . jknf(é)e‘*'gd"z (60)
physical principle that may justify such a “sena&dical” (2n)?

transition I°(R"), pz 2 to L3(R"), is not clear to us.

Appendix: In the above equations{xindicates the Euclidean

inner product andx| stands for the Euclidean norm of

xOR". Both the Fourier and the inverse Fourier
transforms are unitary operations (isometries),cesin
according to Parseval’s identity Equation (61):

Here, we collect some very well-known facts from
harmonic analysis and pseudo-differential operatioas
may be of some use in reading Subsections 2.6 \\?e7.
follow (Stein and Murphy, 1993; Grafakos, 2008; 2D0

The Schwartz space B{) is the subspace of smooth » n = [ § (2} n
functions of C(R") such that themselves as well as their IR"fl ()t o IRnfl (&)f-(2p"8 (61)
derivatives decay faster than the inverse of atynpmial
at infinity. To be more precise, define the muitlices a =
(ag,...0p), B = (By,-.-Bn) with a, BON" by Equation (54):

where, * indicates the complex conjugation and it
immediately implies Plancherel’'s formula Equati62)

2 2

5, |
Q% gr2  gen ‘f‘ =If| =f (62)
X% = x%x%2 X" 9P = 54
1 2 n X 6xf1 axgz 6xi" ( )
Consider the functiorg(x,y): R"xR" — C. For our
With Equation (55): purposes, it is suffcient to assume taiC”(R"xR").
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Consider mOR, 0 <pp<l. Then &(x,y) is called a  |»(R" :{f ‘R" _,C;J'Rn f (x)‘pd"x<oo} (69)
symbol in the (Hormander) clasgif for all muilti-
indices o, BON"there are constants, such that IF turns _out that these are Banach spaces when
Equation (63 and 64): equipped with the .norm Equation (70):
BAax m-plaj+3|p] 1
%0 00Y) = cust O ol =([ (o)’ (70)
Where: ) ) ) )
For the triangle inequality to holdkf<oo where I is

1 equipped with the sup norm. The classical Sobolev

(X) E(1+\x\2)2 (64) spacesw“"(R"), k, pON are defined as Equation (71):

Consider now the operatai(x, dx): S®R") -~ SR") o )
given by Equation (65): WH(R ):{f OLARY: [f |w YP:‘HszHaﬂr a p<°°} (71)

1 = £ —ix.§ N . P H
— [ 20(x.E)f(®) e g (65) An alternative description ofv**(R"), which also

(2m)?

a(x.9,)f (x) =

allows for an extension tolk R, is given via the Fourier

If 6(x.y)0S),, thena(x, 3) is a pseudo-diffierential transform and the Bessel potential spaces Equétdn

operator belonging to the classPg,. In the above fDLP(R”):

| e 1] o

definitions, m is called the order of the operatbro is L (]R") =
polynomial, then the corresponding operator is
differential. If the symbolsd(x,y)can be decomposed

asymptotically, as sums of homogeneous functions of , _
degrees m-j, namely if Equation (66 and 67): A theorem of Caldero’'n states that feflN, indeed

WP (R")=LY(R") . Among the above functional spaces,

(72)

< o0

LP

N

a(x.y) -6, (xy) 0" (66) the most commonly used in Physics _have, undgubtedly

=0 been L(R"and W"?(R")both of which are Hilbert
Where: spaces. The inner product (.,.)k @*2(R")is given in

_ terms of the usualdinner product (.,.) by Equation (73):
o(x,ty) =t'a(x,y), tOR|y =1 (67)
_ _ (£, )k = (0%,0% ,) (73)
then they are called classical symbols. The highest IBi<k

order term in the above classical symbol expangon
called the principal symbol. An elemert0OPS); is Due to the equivalence of the norms 1 + |y| @nd

2 : : KD
called elliptic pseudo differential operator, ifrfsome ~ ©f L~ one can_extend_th|s to an inner product if*W
R<c there is a constant ¢>0 such that Equation (68): kOR by Equation (74):

y=R 68)  (fif, )k =] L. (©*F (8 ,(E)"E (74)

a(x.y)| =y,

Sobolev spaces are spaces of functions aiming to  Which gives rise to the norm Equation (75):
quantify the “degree of the functions’ smoothne#st'st

and as a reminder, one defines the Lévesque spaces, 12 e e
Equation (69): mk =] ® ‘f(i)‘ d"g (75)
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It may be worth observing that if OS (R"), then that are solvable, or nilpotent at least in some
fOLY (R"), kOR . A pseudo-differential operator, such approximation. We fo_und that if such propose_d
algebras do not contain a simple part that remains
as o(x, 0,)JOPS; can be extended to an operator acting unaffected by the Inonu-Wigner type contraction of
between the Sobolev spaces,. (Rn) - ka(Rn)Or on one of their defor_mation parameter (s), then thay c _
" be seen as being parts of a solvable algebraic
the space of tempered distributioﬁ@R”). structure. In appropriate limits of parameters
depending on the Planck length and mass, such
algebras can be seen to possess a nilpotent steuctu
It may be worth noticing that the solvable

Riesz transforms are multi-dimensional analogues
of the Hilbert transforms. FoR" the Riesz transforms

R, I = 1,..., n are defined to be singular integral .

. algebras/groups are in a sense complementary to the
operators of convolution type, as follows: LieS(k") . simple ones that we use extensively in variousspiart
Then Equation (76): Classical and Quantum Physics. This complementarily

can be seen in two ways: The Killing-Cartan form on
N1 solvable Lie algebras is trivial but it is non-zefar
F[T) X —y simple algebras. Alternatively, any Lie algebra dan
(R, )(x) = ] p.u.J‘M L2 f(y)d"y (76) expressed as a semi-direct product of a solvableaan
™ — x| semi-simple Lie algebras, according to the Levi-

Mal'tsev decomposition. We are cannot help but vesnd
on whether this complementarity persists at a more
where, pu. indicates the principal value of the fundamental level and has any significance for Qumn
integral andr(x) is the Euler gamma function. More Gravity or it is just a formal coincidence due taro
explicitly, the Riesz transforms can be seen as thetreatment and approximations?
convolutions Equation (77): If such a solvability and nilpotency are accepteén
it may be worth examining the form of the geneedlis
measure theories that may be appropriate for fatimgl
(Rf)e)=(*a )0 (77)  the corresponding covariant formalism. In our ogini
this raises obvious questions about the centralttat the

(mon) - | = T—— Hilbert spaces play in Classical and Quantum Phy¥ite
where, ¢ DS(R ) | =1,...,n are tempered distributions believe that it may be worth further exploring theysical
given by the pairing Equation (78): and formal reasons as well as the corresponding

implications that may be behind such a role.
n+1 The ADV algebra also raises some questions that
(T) lim X may be of interest: Should we even allow for pseudo
(@,h)=—-3 . Oj‘x‘ﬂﬁl h(x) d' x (78) differential and smoothing operators in fundamental
me2 - X algebras? If so, what may be implications on ldgair

on the Markovian character of the classical anchtjuira

evolution? What techniques could someone use to

explore further such ideas? We believe that some of

purposes is that the Fourier transform of the Rieszthese questions may merit some attention in futtmex.

transform is a Fourier multiplier, namely that for [astly, one cannot fail to see the resemblanc&®f o a

f OS(R") , we have Equation (79): simplicial structure. It may be of interest to exgl
consequences of such a simplical view, define
appropriate boundary/coboundary operators and § (co

(Rif)(x)zF—l|:_iE'|F[f](z):|(x) (79) homology theory (Spanier, 1994), generalise vabumati

& theory (Klain and Rota, 1997).

For hOS(R"). What is of particular interest for our
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