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ABSTRACT 

We point out that some of the proposed generalized/modified uncertainty principles originate from solvable, or 
nilpotent at appropriate limits, “deformations” of Lie algebras. We briefly comment on formal aspects related 
to the well-posedness of one of these algebras. We point out a potential relation of such algebras with Classical 
Mechanics in the spirit of the symplectic non-squeezing theorem. We also point out their relation to a 
hierarchy of generalized measure theories emerging in a covariant formalism of quantum gravity. 
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1. INTRODUCTION 

The possibility that the Heisenberg uncertainty 
principle is modified by quantum gravitational ejects 
has been rest proposed almost a half century ago 
(Mead, 1964). More recently, this idea resurfaced 
(Amati et al., 1989; Konishi et al., 1990; Maggiore, 
1993a; 1993b; 1993c; Kempf et al., 1995; Kempf, 
1997), mostly motivated by a wish to naturally 
incorporate a minimal length (Garay, 1995; Jaeckel and 
Reynaud, 1994) in the various approaches to quantum 
gravity. Such a generalisation is warranted close to the 
Planck scale, around which the Compton wavelength of 
a particle becomes comparable to its Schwarzschild 
radius. There has been a veritable explosion of interest 
in this topic during the last two decades, during which 
formal variations (Das and Vagenas, 2008) and their 
statistical mechanical and phenomenological 
implications  (Das and Vagenas, 2009; Bambi, 2008; 
Ali et al., 2009; Bojowald and Kempf, 2012; 
Chemissany et al., 2011; Majumder, 2012) have been 
being explored. Implications of the generalized 
uncertainty principles for quantum eld and gauge 
theories have also recently emerged (Kim et al., 2009; 
Kober, 2010; Husain et al., 2012). 

It is probably not too surprising that there is no 
“unique”, “natural” or even “best” generalization of the 
Heisenberg uncertainty principle. Such a generalisation 
really depends on the goals that one wishes to attain and is 
ultimately justied by its predictions or by a physical 

principle, already known or new, that may be uncovered 
lying at its foundations. As a result, one encounters several 
versions of the generalised uncertainty principle, which 
stem from different generalisations of the Heisenberg 
algebra. Ultimately, such generalised uncertainty principle 
should arise and be justified by a theory of quantum 
gravity. Since such a universally acceptable theory is 
currently lacking several paths, mostly phenomenological 
motivated, have been taken toward the formulation of 
generalised uncertainty principles (Amati et al., 1989; 
Konishi et al., 1990; Maggiore, 1993a; 1993b; 1993c; 
Kempf et al., 1995; Kempf, 1997; Garay, 1995; Jaeckel and 
Reynaud, 1994; Das and Vagenas, 2008; 2009; Bambi, 
2008; Ali  et al., 2009; Bojowald and Kempf, 2012; 
Chemissany et al., 2011; Majumder, 2012). 

In the present work, we examine some formal aspects 
of such proposed generalisations of the Heisenberg 
algebra. In section 2, we notice that most such proposed 
algebras are solvable and even nilpotent in appropriate 
limits, deformations of Lie algebras. We also comment 
on why they may fail to have these properties. Such 
structures interpolate between the Heisenberg algebra, 
which is 2-step nilpotent, hence solvable and the full 
structure of a potential non commutative geometry 
(Chamseddine and Connes, 2010a; 2010b) that may be 
used to quantize gravity. Some technical points 
pertaining to some of these algebras are also very briey 
addressed. In section 3, we make some remarks 
pertaining to the generalised algebras as seen through the 
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“lassical” simplistic non-squeezing theorem (Ekeland and 
Hofer, 1989; Hofer and Zehnder, 1994; Viterbo, 1989; 
Arnol’d, 1986; De Gosson, 2001; 2002; 2009a; 2009b; 
2012; De Gosson and Luef, 2009; Abbondandolo and 
Matveyev, 2012) and their\counterpart” in the covariant 
formalism which is a generalized measure theory 
(Sorkin, 1994; 1997; Salgado, 2002). Section 4, presents 
an outlook and speculations. In the Appendix we state 
some very well-known facts from real and Fourier 
analysis (Stein and Murphy, 1993; Grafakos, 2008; 2009) 
as well as the theory of pseudo-deferential operators 
(Taylor, 1991), aiming at making our exposition 
somewhat smore self-contained. 

1.1. Nilpotence and the Generalized Uncertainty 
Principle(s) 

The concepts of nilpotent and solvable groups and 
algebras are central in the structure and classification 
of both discrete and “continuous” groups and algebras 
(Helgason, 2001). Let G indicate a group with 
elements gI where I is a discrete or continuous index 
set. The (group) commentator is the subgroup 
indicated by [G, G] having elements Equation (1): 
 

{ }1 1
i i i j[G,G] g g g g ,  i, j I− −= ∀ ∈  (1) 

 
In a similar manner, when one considers two 

subgroups H1, H2≤G, with elements H1 = {h1j, j∈J} H2 = 
{h2k, k∈K} with J, K subsets of I, then their commentator 
subgroup [H1, H2] is given by Equation (2): 
 

{ }1 1
1 2 1j 2k 1j 2k[H ,H ] h h h h j J,k K− −= ∀ ∈ ∈  (2) 

 
 Consider the following commentator groups defined 

iteratively by Equation (3): 
 

(1) (i 1) (i)G G, G [G,G ] ,i N+= = ∈  (3) 

 
The descending central series is Equation (4): 

 

(2) (3)G G G ....≥ ≥ ≥  (4) 

 
A group G is called n-step nilpotent, if its lower 

central series terminates after n-steps, namely if there is 
n∈ℕ  such that G(n+1) = 1. Several other equivalent 
dentitions exist for nilpotent groups. Examples of 
nilpotent groups: All Abelian groups are 1-step nilpotent. 
The Heisenberg group is 2-step nilpotent. By contrast, 
the quaternion and the rotation groups are not nilpotent.  

Consider the following commentator groups defined 
iteratively by Equation (5): 
 

(1) (i 1) (i) (i)G G, G [G ,G ], i N+= = ∈  (5) 

 
The derived series is Equation (6): 

 
(2) (3)G G G ....≥ ≥ ≥  (6) 

 
A group G is solvable if its derived series terminates 

after n’ steps, namely if there is n '∈ℕ such that G (n’+1) = 1. 
Examples of solvable groups: All Abelian groups are 
solvable. More generally, all nilpotent groups are solvable, 
as can be readily seen. A solvable but non-nilpotent group is 
the symmetric group of 3 elements S3. For discrete groups, 
the Feit-Thompson theorem states that every finite group of 
odd order is solvable. 

For a Lie algebra g similar dentitions apply, by using the 
matrix instead of the group commentator. Then Engel’s 
theorem states that a Lie algebra is nilpotent if the adjoin 
map adx (y) = [x, y], x, y∈g is a nilpotent operator, namely 
if there is n∈ℕ such that ad(x)n  = 0,  ∀×∈g. Moreover, g is 
solvable if and only if [g, g] is nilpotent. The notation for 
Lie algebras g that we will use is analogous to that for 
groups, as given above. Analogous dentitions can be used 
for associative algebras endowed with commentators as will 
be done in the sequel. 

One can easily see that the Heisenberg algebra of 
Quantum Mechanics, giving rise to the “ordinary” 
uncertainty principle, is 2-step nilpotent, hence 
solvable, since Equation (7): 
 

i j ij[x p ] i , i, j 1,...,n= δ =ℏ  (7) 

 
and all other commutators are zero, where the dimension 
of the phase space M is 2n. Then Equation (8): 
  

i j k i j k[x ,[x ,p ]] [p ,[x ,p ]] 0= =  (8) 

 
With the other 2-step commutators trivially zero. 

Now consider the n-dimensional rotationally 
symmetric Kempf-Mangano-Mann (KMM) 
deformation (Kempf et al., 1995; Kempf, 1997) of the 
Heisenberg algebra given by Equation (9 to 11): 
 

22
i j ij[x ,p ] i (1 p )= + β δℏ  (9) 

 

i j[p ,p ] 0=  (10) 
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2
i j i j j i[x .x ] 2i (p x p x )= β −ℏ  (11) 

 
where,  +β∈ℝ and Equation (12): 
 

n
2

i j
i 1

p p p
=

=∑  (12) 

 
We immediately observe that all elements of the second 

step of the derived series g(2) are zero, except the following 
ones that require some straightforward calculations 
Equation (13 and 14): 
 

i j k l[x p ],[x ,x ] 0  =   (13) 

 
And: 

 
22 2

i j k l

il j k jk i l jl k i ik l j

[x ,x ],[x ,x ] 2(i ) (i )(1 p )

( [x ,x ] [x x ] [x .x ] [x ,x ])

  = β + β 

δ + δ + δ + δ

ℏ ℏ
 (14) 

 
 Using those, one can express the elements of the 

higher elements in the derived series in terms of those of 
g and g(2). As can be immediately seen, the derived series 
does not terminate, in general. 

We proceed by further simplifying matters, in order 
to get armer control of the algebra. An obvious way to 
achieve this goal is to impose conditions that make g(2) 
Abelian. One way to attain this is to consider only the 
“semi-classical limits” 0→ℏ or β→0, or both, of the 
KMM deformation. Such a “Inonu-Wigner”-like 
contraction is implemented by ignoring all terms that are 
of quadratic or higher order in ℏ  and of quartic or higher 
order in. A second way to proceed is by foregoing 
altogether all traces of non-commutativity between the 
“spatial” variables xi by imposing Equation (15): 
 

i j[x ,x ] 0=  (15) 

 
Obviously, (15) is a signicant implication of the 

KMM deformation. It is adopted by the “modified 
uncertainty principle” as will be seen in the sequel. If 
either of these simplications are made, then the 
corresponding subalgebra of the KMM deformation is 2-
step solvable as can be seen from (14). We have to be 
somewhat careful though. If we assume (14) and we omit 
terms of quadratic and higher order inℏ then what 
remains is the Heisenberg algebra, so we get nothing 
new. Hence, to get a nontrivial result, we are forced, in 
addition to (14) to omit only terms of quartic or higher 
order in β. By using this approximation, we go beyond 
the Heisenberg algebra, since Equation (16): 

( ){ }
23 2 2

l k i i ij kl

2 2 23 4 2 2
ij kl k l

[x ,x ],[x ,p ] 2(i ) (1 p )(

2(i ) 1 p p 2(1 p )p p

  = β + β δ δ 

+ β δ + β δ + + β

ℏ

ℏ
 (16) 

 
Reduces to Equation (17): 

 
3 2

l k i j ij kl[x ,[x ,[x ,p ]]] 2(i )= β δ δℏ  (17) 

 
Which is obviously an element of the centre of g. Then 

all 4-step commutators, i.e., all elements of g(5) are trivial. In 
other words, under the above approximations, the KMM 
deformation (9)-(11) reduces to a 4-step nilpotent algebra. 

Konishi et al. (1990) and Maggiore (1993a; 1993b) 
proposes a generalization of the Heisenberg uncertainty 
relations that can be derived from the Lie algebra having 
generators xi, pj, Jk, i, j, κ = 1, 2, 3 which obey the 
commutation relations Equation (18 to 23): 
 

2

i j ijk k2
[x ,x ] i J= − ∈

κ
ℏ

 (18) 

 
2

i j ij2

E
[x ,p ] i 1= + δ

κ
ℏ  (19) 

 

i j[p ,p ] 0=  (20) 

 

i j ijk k[J ,x ] i= ∈ χ  (21) 

 

i j ijk k[J ,p ] i p= ∈  (22) 

 

i j ijk k[J ,J ] c J=  (23) 

 
where, Ji, i = 1, 2, 3 stand for the components of the total 
angular momentum operator, cijk are the structure constants 
of the Lie algebra of SU(2) and-is the “deformation” 
parameter which is identified with the Planck mass. The 
essential deference between this algebra and the Heisenberg 
algebra can be essentially traced back to (18). As κ→∞, we 
recover the direct product of the Heisenberg algebra with 
the Lie algebra of SU(2). The latter however cannot become 
solvable, in any approximation in terms of κ. To justify this, 
consider the Killing form of a Lie algebra g, defined as the 
symmetric bilinear form on g given by Equation (24): 
 
K(x, y) tr(ad(x)ad(y)), x, y g= ∈  (24) 

 
Cartan’s criterion states that a Lie algebra g is solvable if 

and only if its Killing form satises Equation (25): 
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K(x,[y,z]) 0, x, y,z g= ∈  (25) 
 

It is straightforward to check that every subalgebra of a 
solvable Lie algebra is also solvable. Hence if Maggiore’s 
extension could become solvable in some non-trivial 
(namely, not resulting in the Heisenberg algebra) 
approximation in terms of κ then its SU(2) subalgebra 
should also have a degenerate Killing form. This is 
impossible however as the SU(2) commutation relations do 
not depend on the value of  κ in Maggiore’s deformation, as 
is obvious in (23). Hence Maggiore’s deformation cannot 
give rise to a nilpotent algebra either, in some appropriate 
limit in terms of κ. We conclude that our approach and 
subsequent conclusions do not apply to Maggiore’s 
generalization of the Heisenberg algebra (18)-(23). 

The Das-Vagenas (DV) generalised uncertainty 
relation is a result of the associative algebra endowed 
with a bracket given by Equation (26 and 27): 
 

2

i j ij ij i j[x ,p ] i ( p 2 p p ), i, j 1,....,n= δ + ςδ + ζ =ℏ  (26) 
 

i j i j[x ,x ] [p p ] 0, i, j 1,....,n= = =  (27) 
 

With ζ = ζ0 /(MPlc
2) where MPl denotes the Planck 

mass. This is an anisotropic variation, provided by the 
term 2ζpipj of the KMM deformation (9)-(11) with the 
additional simplification that the spatial coordinates 
commute as in (15). Requiring (15) instead of (11) is a 
considerable simplification of the KMM proposal, 
conceptually more closely aligned to ordinary rather than 
to non-commutative geometry. As can be readily seen, this 
algebra is 3-step solvable as all elements of g(2) are zero. 
On the other hand, for nilpotency we have Equation (28): 
 

k i j[p ,[p ,p ]] 0=  (28) 
 

But Equation (29): 
 

( )( ){ }
22 2

k i j ij k

2

ik j jk i i j k

[x ,[x ,p ]] 2(i ) (1 3 p ) p 2(i )

1 p p p 2 p p p

= ζ + ζ δ +

ζ + ζ δ + δ + ζ

ℏ ℏ

 (29) 

 
As was also observed in the case of the KMM algebra, 

the DV one is not nilpotent unless one resorts to some 
approximations. The most straightforward assumption is 
to consider only terms vanishing as quadratic or higher 
powers of ℏ  in which case (29) becomes zero. In this 
approximation the DV algebra is 3-step nilpotent. On the 
other hand, someone may wish to keep only terms up to 
second order in ζ. Then (29) reduces to Equation (30): 
 

2 2
k i j ij k ik j jk i[x ,[x ,p ]] 2(i ) ( p p p )= ζ δ + δ + δℏ  (30) 

The only 3-step non-trivial commutator is, in the 
aforementioned approximation in terms of ζ Equation (31): 
 

3
l k i j ij kl jk il jk jl[x ,[x ,[x ,p ]]] 2(i ) ( )= δ δ + δ δ + δ δℏ  (31) 

 
Which being a central element of g implies that 

Equation (32): 
 

m l k i j[x ,[x ,[x ,[x ,p ]]]] 0=  (32) 
 

All the other commutators have been trivially zero 
from the previous step. We see that the presence of 
the anisotropic term in (26) does not even aect the 
step at which the DV algebra becomes nilpotent when 
compared to the KMM case. 

The Ali-Das-Vagenas (ADV) “modied uncertainty 
principle” (Ali et al., 2009) generalizes the spatial-
momentum commutator of the KMM deformation and 
extends the DV generalized algebra to Equation (33): 
 

( )

i j
ij ij

i j

22
ij i j

p p
p

p[x ,p ] i , i, j 1,2,3

p 3p p

  
δ − α δ +    = =  
 +α δ +  

ℏ  (33) 

 
The generalisation to n dimensions is 

straightforward. Here  α = α0lPl/ ℏ where lPl is the 
Planck length. The ADV algebra assumes, as the DV 
case (26), (27) above that Equation (34): 
 

i j i j[x x ] [p ,p ] 0, i, j 1,2,3= = =  (34) 
 

In this case the “deformation” parameter is indicated by 
α. As in the case of (26), (33) is also 3-step solvable since 
g(2) is also trivial, as can be seen by a straightforward 
computation. Notice that due to the fact that the canonical 
momenta commute (34), the two potentially “dangerous” 
issues being the exact operator ordering in the fraction of 

(33), as well as the exact way that p and 
1

p
are defined, 

can be temporarily ignored. 
To check the nilpotency of the ADV algebra, we will 

work at a formal level, leaving potential justifications of 
these steps for Subsections 2.6, 2.7 in the sequel. 
Consider an operator of interest, let’s say pi. Then define 

its inverse 
j

1

p
 by demanding Equation (35): 

 

i ij
j

1
p i, j 1,...,n

p
= δ =  (35) 
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There is no need to distinguish, naively at least, a left 
from a right multiplication, because to due to (34), it is 
expected that both one-sided multiplications will give the 
same results. We use repeatedly that the commutator is a 
derivation, as well as (34) and find from (12) Equation (36): 
 

3
2

k k l l
j 1

[x , p ] 2 [x ,p ] p
=

= ∑  (36) 

 
With the definition (35) this can be rewritten as 

Equation (37): 
 

3

k k l l
j 1

1
[x , p ] [x ,p ]p

p=

=∑  (37) 

 
So (35) results in Equation (38): 

 

k k 2

1 1
x , x , p

p p

 
 = −   

  
 (38) 

 
Taking into account (36)-(38), a calculation gives, up 

to terms of order α2, that Equation (39): 
 

( )

( ) ( )

ij k jk i ki j k ij

i j k
i jk j jk 2

2

k i j

i j k

2

2 2
k ij j ik i jk

p p p 2 p p

p p p
p p p p

p1
x , x ,p i

p p p p
4

p

i 2p 3p 3p

 δ + δ + δ − α δ
 
 

−α δ − α δ + 
 

   = − α    
 − α 
 
 + α δ + δ + δ 

ℏ

ℏ

 (39) 

 
We follow the same level of approximation as in the 

KMM and DV cases above where terms up to the square 
of the lowest term in the deformation parameter are 
retained. Next, we have Equation (40): 
 

( )

( )

( )

3

l k i j

ij kl jk il ik jl

ij k l jk i l ik j l3

kl i j jl i k il j l

kl i j jl i k il j k

2

ij k l jk i l ik j l

i j k
ij kl jk il ik jl

x , x , x ,p i

1

p

1
( p p p p p p

p

p p p p p p )

5 p p 5 p p 5 p p

p p p p p pp

p p p p
3 2 2 3

    = α   

− δ δ + δ δ + δ δ

+ δ + δ + δ

−δ − δ − δ

 δ + δ + δα
 +
 −δ − δ − δ 

+α δ δ + δ δ + δ δ +

ℏ

( ) ( )

l

5

3i j k l 2
ij kl ik jl jk il4

p

p p p p
11 t 2 3 3

p

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

− α + α δ δ + δ δ + δ δ 
  

ℏ

 (40) 

Calculation of the next few terms such as [xm,[x l, 
[xk, [xi, pj]]]] results in a gradually increasing level of 
complexity of the resulting expressions, which does 
not seem to terminate even in the approximation up to  
α2. The reason behind this behavior, which is totally 
deferent from that of the KMM and the DV algebras, 
is not hard to pinpoint: It is the existence of p  rather 
than of 2

p and its appearance not only in the 
numerator, but also in the denominator of (33). As 
long as it is unclear at this point what is the physical 
principle, if any, dictating the form of (33) and since 
(33) is not the only expression resulting in an 
uncertainty relation with desirable phenomenological 
consequences, it may be prudent to avoid the use of 
p itself which introduces these problems for the 

subsequent formalism. One could use instead integer 
powers of p in any generalized algebra, starting its 
square as in the KMM (9) or DV (26) cases. Then this 
algebra will become nilpotent in the lowest non-trivial 
approximation in terms of the deformation parameter. 

In this subsection, we would like to comment on the 
terms of (33) involving p . It seems that the meaning of 
this quantity and especially its possible vanishing in the 
denominator of (33) has not been adequately addressed in 
the literature of the generalized uncertainty principles, so 
far. For this reason, a comment or two may be in order 
about these issues. The notation and some pertinent 
defintitions used in the rest of this Section, can be found in 
the Appendix and the references cited therein. 

We will assume that someone works in the Schwartz 
space S (Rn) in which the Fourier transform F is well-
defined. Incidentally, it is entirely possible to use another 
integral transform, such as the Mellin transform, to reach 
similar conclusions. We immediately see that the symbol 
corresponding to p is Equation (41): 
 

1
2 2 2 2
1 2 np(x,y) (y y ... y )= + + +ɶ  (41) 

 
This is a classical symbol belonging to the (Hormander) 

class 1
1,0S . In more physical terms, it is a pure canonical 

momentum, being independent of the “conjuration” 
variables x. The corresponding operator p(x, ∂x) is a  rst 
order pseudo-deferential operator belonging to OP1

1,0S . 

The Laplacian  ∇2 on Rn is a second order elliptic 
operator, as it has a positive deifnite symbol and we see 
that (41) can be re-expressed as Equation (42): 
 

1
2 2

xp(x, ) ( )∂ = ∇  (42) 
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As such, p  is well-defined on Rn. We can re-cast 

(33) in the slightly different form Equation (43): 
 

ji
ij ij

i j

2 j2 i
ij

pp
p

p p
[x ,p ] i ,i, j 1,2,3

pp
p 3

p p

  
δ − α δ +     = = 

  +α δ +   
  

ℏ  (43) 

 
It should be understood that (33) and (43) are not 

necessarily equivalent as the domains of these operator 
expressions can be different, despite their functional 
equivalence. The interest in operator domains should not 
be dismissed out of hand as an exercise of purely 
mathematical interest. Indeed the potential physical 
importance of operator domains has been investigated 
for over two decades in the context of quantum gravity 
and non-commutative geometry, in particular as it 
pertains to issues of topology change (Asorey et al., 
2012; Shapere et al., 2012). We will tacitly assume that 
the discussion takes place in the intersection of the 
domains of (33) and (43).  

Going back to (43) one should notice that a potential 
problem lies is its “infra-red” behaviour, namely in the 
possibility that its denominator becomes zero. This is in 
stark contrast with typical issues in functional spaces, 
especially where the Fourier transforms involved, that 
are mostly concerned about “ultra-violet” divergences. A 
way to deal with this may be to compactify 3ℝ to the 3-
torus T3 and only consider functions that obey periodic 
boundary conditions as is frequently done in Quantum 
Physics. Another way is to work with principal values of 
potentially divergent integrals, which is a form of infra-
red regularization, as is done in the case of Hilbert 
transforms and other singular integral operators. One can 
take this path by re-writing the fractional terms of (43) in 
terms of Riesz transforms as Equation (44): 
 

ij ij i j

i j 22
ij i j

p ( R R )
[x ,p ] i ,i, j 1,2,3

p ( 3R R )

 δ − α δ − = = 
+α δ −  

ℏ  (44) 

 
It is well-known (Stein and Murphy, 1993; Grafakos, 

2008; 2009) that the Riesz transforms are bounded in 
Lp(Rn); 1<p<∞. Among them, the L2-integrable 
functions are of greatest +β∈ℝ interest in Physics, 
hence (43) therefore (33) are well-defined in such 
spaces, which is sufficient for our purposes. 

One issue arising from the ADV algebra (33), (34), 
due to the presence of the inverse of p and its square, is 

related to smoothness. As can be seen from (12) and 
(42), in (33) we are dealing with an inverse power of the 
Laplacian, of the specific form Equation (45): 
 

( )2
s

s
J

2
= ∇ −  (45) 

 
For our purposes s = 1 but it does not hurt to be 

somewhat more general and allow s∈ℂ , with Re s>0 for 
convergence purposes. Such expressions are called Riesz 
potentials of order s and are defined via the Fourier 
transform and its inverse, for f∈2 S( n

ℝ ) by Equation (46): 
 

( ) n
s nn n s

s 2

n s
f x y1 2

(J f )(x) d y
s y2
2

−

− Γ  − =
 Γπ  
 

∫ ℝ  (46) 

 
The effect of operators such as Js is to improve the 

integrability of functions, namely to map Js: L
p→Lq which 

for s∈ℝ are related by the Sobolev duality Equation (47): 
 
1 1 s

p q n
− =  (47) 

 
In the particular case of the ADV algebra above p = 

2, s = 1, n = 3 which gives q = 6. The Hardy-Littlewood-
Sobolev fractional integration theorem (Stein and 
Murphy, 1993; Grafakos, 2008; 2009) provides bounds 
for the corresponding norms. The Riesz potentials such 

as 1
p

−  are essentially integrals, hence they act as 

smoothing operators. Therefore, by using inverse powers 
of differential operators, the corresponding expressions 
become more regular, a clearly desirable property 
especially for any theory having a classical limit. 

On the other hand, because of the fact that integral 
operators are defined in domains of Rn rather than points, 
an obvious question arises about the meaning of locality 
in models using the ADV algebra. This, does not only 
create the usual problems of interpretation as in ordinary 
Quantum Physics but also introduces considerably 
greater diffculties in the quantization of any such 
systems. It is not clear, to us at least, what exactly would 
be the meaning of an operator defined at a point in space, 
even in the distributional sense, when a non-local 
operation such as the convolution with a singular integral 
operator is involved in even defining the algebra 
expressing the dynamics. A similar issue is also raised 
and partially addressed in (Maggiore, 1993a) for the 
KMM algebra by utilising a generalised Bargmann-Fock 
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representation and by defining an approximate “quasi-
position” representation. One could possibly address 
such issues by following a largely algebraic path, in the 
context of generalizations of C* Algebras emulating the 
path followed in axiomatic quantum eld theory (Haag, 
1992) or non-commutative geometry (Chamseddine, 
2010a; 2010b). The issue of locality is of central 
importance in theories of quantum gravity, such as Loop 
Quantum Gravity (Rovelli, 2011) or Causal Sets (Surya, 
2011), which aim to formulate theories that are 
background independent. Contrast this with the approach 
taken toward gravity quantization and interaction 
unification by the String/Brane/M theories (Mukhi, 
2011; Blau and Theisen, 2009). Since a generalised 
uncertainty principle should reflect, in some part, 
elements of these quantum gravitational theories, its 
treatment of locality is crucial, extending far beyond the 
mere technical level that we have alluded to here.  

Kempf et al. (1995) and Kempf (1997) an inner product 
was introduced in an attempt to develop a rudimentary 
representation aspects of the KMM algebra. It was given, 
in n-dimensional momentum space, by Equation (48): 
 

n

n
2

1
( , ) * (p) (p)d p

1 p
Ψ φ = Ψ φ

+ β∫ ℝ  (48) 

 
This product can be seen as “natural” from the 

viewpoint of the Fourier transform of the inner product 
of the (Sobolev) Bessel potential space 2

1L− (Rn). More 

generally, one can see that the algebras giving rise to the 
generalised uncertainty principles, can be approximately 
expressed as “quantizations” in Hilbert spaces endowed 
with generalized inner products. Modifying the inner 
product to bypass altogether the Stone-von Neumann 
theorem, which however does not hold in quantum field 
theory and obtain distinct predictions from the usual 
operator quantization of the Fourier modes of the phase 
space variables is one of the tenets of theories such as 
Loop Quantum Gravity (Rovelli, 2011). Motivated by 
the the generalised uncertainty principles as well as by 
the approach implemented in Loop Quantum Gravity, it 
may be of some interest to check on whether the Weyl 
correspondence (Stein and Murphy, 1993) can be 
modied/extended to apply to the above or any new algebras 
giving rise to the generalized uncertainty principles. 

1.2. The “Symplectic Camel” and Generalized 
Measure Theories 

We saw in the previous section that some of the 
proposed generalisations of the Heisenberg uncertainty 
principle lead to solvable and in particular limits, to 

nilpotent Lie algebras. It may be worth wondering on 
whether this just a coincidence, whether it is part of a 
mathematical pattern, or even more importantly whether it 
is a manifestation of a physical principle. This section is 
an attempt to relate such questions to known facts about 
Classical Mechanics and a generalized measure hierarchy 
of potential use for Quantum Gravity, as first rudimentary 
comments that may contribute toward an answer. 

The operator formalism of Quantum Mechanics has 
undeniable similarities with the Hamiltonian formulation 
of Classical Mechanics. Then, it would be highly 
suggestive if an extension of Heisenberg’s uncertainty 
principle could be traced back to the structure of Classical 
Mechanics. The fact that this is indeed possible for the 
Heisenberg uncertainty principle itself, is a relatively 
recently established fundamental result in Symplectic 
Topology called the “symplectic non-squeezing theorem” 
(Gromov, 1985; Ekeland and Hofer, 1989; Hofer and 
Zehnder, 1994; Viterbo, 1989; Arnol’d, 1986; De Gosson, 
2001; 2002; 2009a; 2009b; 2012; De Gosson and Luef, 
2009; Abbondandolo and Matveyev, 2012) or the 
principle of the “symplectic camel” (Arnol’d, 1986). As this 
result has not yet received the visibility in Physics that it 
duly deserves, despite the extensive eorts of primarily M. 
De Gosson (and collaborators), who seems to be its 
biggest advocate in the Physics community (De Gosson, 
2001; 2002; 2009a; 2009b; 2012; De Gosson and Luef, 
2009), we will say a few words about it that are related 
to the present work. 

The following applies to any symplectic manifold M 
but we may wish to think more physically as M being the 
phase space of a Hamiltonian system. Assume that dim 
M = 2n and let it be parametrized locally by (x, p) where 
x = (x1, …, xn) and p = (p1,…,pn) where the notation is 
borrowed from the Hamiltonian formulation of 
Mechanics. Consider the ball Equation (49): 
 

{ }2 2

2nB (R) (x,p) M : x p R= ∈ + ≤  (49) 
 
and the “cylinder” Zl(r), l, = 1,…,n over the symplectic 
2-plane (xl, pl) given by Equation (50): 
 

{ }2 2
l l lZ (r) (x,p) M : x p r= ∈ + ≤  (50) 

 
Consider a (smooth) canonical transformation 

(symplectomorphism) f: M→M. The symplectic non-
squeezing theorem states that it is impossible to fit B2n 
(R) inside Zl(r) unless R≤r, namely that Equation (51): 
 

2n lf (B (R) Z (r) R r)⊂ ⇔ ≤  (51) 
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This shows that a phase-space volume is not only 
preserved by a Hamiltonian (more accurately: A 
divergence-free) flow, as given by Liouville’s theorem, 
but it possess an additional rigidity associated with its 
projections along each 2-plane of canonical coordinates. 
Alternatively, the set of canonical transformations of M 
is quite different from the set of volume-preserving 
transformations of M (Gromov, 1985; Hofer and 
Zehnder, 1994; Arnol’d, 1986). This can be interpreted 
as a rigidity property of Hamiltonian Mechanics whose 
Quantum Physics “analogue” is the Schrodinger-Robertson 
inequality (De Gosson and Luef, 2009; De Gosson, 2009a; 
2009b; 2012) Equation (52): 
 

( ) ( )( )
2222

xl pl l l( ) Co x ,p , l 1,...n
4

∆ ∆ ≥ υ + =ℏ
 (52) 

 
where, Cov(xl, pl) stands for an element of the covariance 
matrix. If the covariance matrix is zero, this results in the 
usual Heisenberg uncertainty relation. So we see that inside 
Classical Mechanics itself, there are “elements” of Quantum 
Physics, when some terms are properly interpreted. Is it 
possible to use further rigidity results of Classical 
Mechanics (if any further rigidity exists at all) to guide us in 
formulating a generalised uncertainty principle, therefore 
going beyond Quantum Mechanics? This is unclear at 
present. Although a definitive answer is unknown, it 
appears that there may be additional rigidity properties in 
the behaviour of canonical transformations, appearing in the 
middle dimension n as the work of (Abbondandolo and 
Matveyev, 2012) seems to indicate. If such indications are 
affrmative and more rigidity constraints exist for phase-
space volumes, nilpotence in this context would be the 
termination after a finite number of steps of a sequence of 
properly defined involutions of such rigidity constraints. 

The present work is concerned with 
nilpotent/solvable associative algebras endowed with a 
bracket operation, that are non-linear generalisations of 
Lie algebras and properties of related functional spaces 
which are the carrier spaces of their representations. It 
may be worthwhile to see how these ideas may carry 
over from the canonical to the covariant framework. 
Each of these two approaches has its own advantages 
and limitations, but both provide valuable techniques and 
insights on how to understand and work out the process 
of quantisation in particular models. As is clear from the 
generalised uncertainty principles and the corresponding 
algebras discussed above, our interest is in uncovering 
properties related to Quantum Gravity.  

The most striking observation is that it is not really 
surprising how different is Quantum Mechanics from 

Classical Mechanics, but how actually close they are to 
each other (Sorkin, 1994; 1997). An indication for such a 
close relation was provided by the symplectic “non-
squeezing” theorem discussed above. Another is found if 
one thinks about a triple-slit experiment extending 
Young’s double-slit experiment (Sorkin, 1994; 1997). We 
start with all three slits open and then gradually start 
blocking ffo  one, then two at a time and then all three. We 
record the corresponding interference patterns with an 
overall plus sign if three and one slits are open and with an 
overall negative sign if two or no slits are open. We 
superimpose these eight resulting patterns by adding them 
up algebraically. The result will always be zero. If a four, 
five slit extension of Young’s experiment is set up and 
calculations are performed along similar lines, the result 
will always turn out to be zero. This is a direct 
consequence of the fact that the Heisenberg algebra is 2-
step nilpotent. In Classical Mechanics no new information 
beyond the one provided by a “single-slit” experiment is 
obtained. In Quantum Mechanics, Young’s double slit 
experiment contains all the non-trivial physical 
information and every multi-slit experiment beyond it 
gives nothing new. It is in this sense that Quantum 
Mechanics is as “close” to Classical Mechanics as 
“possible” (Sorkin, 1994; 1997) although, of course, their 
structures are quite different from each other. 

To generalize this nilpotentcy in the covariant 
framework, we have to think in terms of generalised 
measures of histories, expressing the evolution of a system. 
Consider a set of histories S1 having a generalised measure 
indicated by 1S . Consider a second set S2 and form the 

disjoint union S1 ∐S2. These two sets could be chosen to 
represent the histories of the electron going through slit one 
or only through slit two in Young’s double slit experiment. 
The extension of the notation and the defintitions to a multi-
slit experiment involving the “histories” Sl, l = 1,…, n is 
immediate. Consider a hierarchy of sum rules (Sorkin, 
1994; 1997; Salgado, 2002) Equation (53): 
 

( )

1 2

1 2

1 2

1 1 1

2 1 2 1 2 1 2

3 1 2 3 1 2 3 1 2

1 3 1 3 1 2 3

n

n 1 2 n 1 n 1 n
l 1

n n
n 1

1 n ll l
l 1l ,l

l l

I (S ) S

I (S ,S ) S S S S

I S ,S ,S S S S S S

S S S S S S S

I (S ,S ,...S ) S ...S S ... $ .... S

S ... $ .... S ... S ... ( 1) S

=

+

==
≠

≡

≡ − −

≡ −

− − + + +

≡ − +

+ + −

∑

∑ ∑

∐

∐ ∐ ∐

∐ ∐

∐ ∐ ∐ ∐ ∐

∐ ∐ ∐ ∐ ∐ ∐

 (53) 
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Here $ indicates that the argument S should be omitted 
in the calculation. Evidently I1 6 ≠ 0 for any non-trivial 
statement to be feasible. Classical Mechanics corresponds 
to I2 = 0. Quantum Mechanics is given by I2 ≠ 0, I3 = 0. 
One can straightforwardly see that Il+1 = 0 implies that Il is 
additive in each of its arguments. This multi-additivity can 
be used to explain why imposing I3 = 0 results in being 
able to express the real part of the decoherence functional 
as I2 (Sl, Sl) = l2 S , which in turn implies that the 

transition probabilities are proportional to the square of 
amplitudes, as is well-known in Quantum Physics. A 
generalized uncertainty principle would refect in this 
framework that Il ≠ 0, l≥4. The generalization of the 
Heisenberg algebra to an l-step nilpotent algebra would be 
expressed by demanding that Il+1 = 0, l≥ 4.  

In such theories, the transition probabilities would be 
functions of some integral power, but not the square, of 
the amplitudes of wave-functions. It appears that 
following the covariant approach would also imply that 
the carrier spaces of the representations of the generalised 
algebras would be Lp( n

ℝ ), p ≠ 2, if not more general 
Sobolev spaces. Such spaces of functions are in general 
Banach spaces, rather than Hilbert spaces like L2( n

ℝ ) 
which is the one used Quantum Physics. This poses an 
obvious problem, as the Banach spaces Lp( n

ℝ ), p ≠ 2 do 
not admit an inner product. Then one would have to 
explain how exactly the geometric structure of the 
Euclidean spaces stems from that of functions which are 
elements of Lp( n

ℝ ) p ≠ 2. This might be feasible by 
technically utilising a Littlewood-Paley type of treatment 
(Stein and Murphy, 1993; Grafakos, 2008; 2009), but the 
physical principle that may justify such a “semi/classical” 
transition Lp( n

ℝ ), p ≠ 2 to L2( n
ℝ ), is not clear to us. 

Appendix: 

Here, we collect some very well-known facts from 
harmonic analysis and pseudo-differential operators that 
may be of some use in reading Subsections 2.6, 2.7. We 
follow (Stein and Murphy, 1993; Grafakos, 2008; 2009). 

The Schwartz space S(nℝ ) is the subspace of smooth 
functions of C∞( n

ℝ ) such that themselves as well as their 
derivatives decay faster than the inverse of any polynomial 
at infinity. To be more precise, define the multi-indices  α = 
(α1,…αn), β = (β1,…βn) with α, nβ∈ℕ by Equation (54): 
 

1 2 n
1 2 n

1 2 n x 1 2 n
1 2 n

x x x ...x , ...
x x x

β β β
α α α α β

β β β

∂ ∂ ∂= ∂ =
∂ ∂ ∂

 (54) 

 
With Equation (55): 

1 2 n 1 2 n... , ....α = α + α + + α β = β + β + + β  (55) 

 
Consider f: n →ℝ ℂ such that nf C ( )∞∈ ℝ and for each 

pair of multi-indices; dene the semi-norms Equation (56): 
 

xn,

sup
f x f (x)

x
α β

α β
= ∂

∈ℝ
 (56) 

 
The above set of denumerable semi-norms allow one 

to define the Schwartz space by Equation (57): 
 

{ }n n n

,
S( ) f C ( ) : f , ,∞

α β
= ∈ < ∞ ∀α β∈ℝ ℝ ℕ  (57) 

 
One can immediately see that an equivalent definition 

of S( n
ℝ ), with CβN>0 constants is Equation (58): 

 
( ) N n

,Nf x C (1 x ) , , Nβ
β∂ ≤ + ∀β∈ ∀ ∈ℕ ℕ   (58) 

 
The dual to nS( )ℝ , namely the space of linear 

functionals on nS( )ℝ  is indicated by nS'( )ℝ  and is called 
space of tempered distributions of nℝ . The Fourier 
transform for nf S( )∈ ℝ is defined by Equation (59): 
 

( ) ix. n
nn

2

1ˆF[f ]( ) f f (x) e d x

(2 )

− ξξ ≡ ξ =
π
∫ ℝ  (59) 

 
and the inverse Fourier transform is Equation (60): 
 

[ ]( ) ( ) ( )n

1 ix. n
n

2

1ˆ ˆF f x f x f e d

(2 )

− ξ≡ = ξ ξ
π
∫ ℝ  (60) 

 
In the above equations x.ζ indicates the Euclidean 

inner product and x stands for the Euclidean norm of 
nx ∈ℝ . Both the Fourier and the inverse Fourier 

transforms are unitary operations (isometries), since 
according to Parseval’s identity Equation (61): 
 

( ) ( ) ( ) ( )n n

* n * n
1 2 1 2

ˆ ˆf x f x d x f f d= ξ ξ ξ∫ ∫ℝ ℝ
 (61) 

 
where, * indicates the complex conjugation and it 
immediately implies Plancherel’s formula Equation (62): 
 

 
2 22 ˆ ˆf f f= =  (62) 

 
Consider the function (x,y)σɶ : n n× →ℝ ℝ ℂ . For our 

purposes, it is suffcient to assume that n nC ( )∞σ ∈ ×⌢
ℝ ℝ . 
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Consider m∈ℝ , 0 <p,δ≤1. Then ( )x,  yσɶ  is called a 

symbol in the (Hormander) classmp,S δ if for all multi-

indices  n,α β∈ℕ there are constants ca,β such that 

Equation (63 and 64):  
 

( ) m p
x y ,x, y c y − α +δ ββ α

α β∂ ∂ σ ≤ 〈 〉ɶ  (63) 

 
Where: 
 

( )
1

2 2x 1 x〈 〉 ≡ +  (64) 

 
Consider now the operator σ(x, ∂x): n nS ( ) S ( )→ℝ ℝ  

given by Equation (65): 
 

( ) ( ) ( ) ix. n
x nn

2

1 ˆx, f x x, f ( ) e d

(2 )

− ξσ ∂ = σ ξ ξ ξ
π
∫ ℝ ɶ  (65) 

 
If m

p,(x,y) S δσ ∈ɶ , then σ(x, ∂x) is a pseudo-diffierential 

operator belonging to the class m
p,OPS δ . In the above 

definitions, m is called the order of the operator. If ∂ɶ  is 
polynomial, then the corresponding operator σ is 
differential. If the symbols (x, y)∂ɶ can be decomposed 

asymptotically, as sums of homogeneous functions of 
degrees m-j, namely if Equation (66 and 67): 
 

( ) ( )
N

m N
m j 1,0

j 0

x,y x, y S −
−

=

σ − σ ∈∑ɶ ɶ  (66) 

 
Where: 
 

( ) ( )jx, ty t x, y , t y 1σ = σ ∈ ≥ɶ ɶ ℝ  (67) 

 
then they are called classical symbols. The highest 

order term in the above classical symbol expansion is 
called the principal symbol. An element m

p,OPS δσ ∈  is 

called elliptic pseudo differential operator, if for some 
R<∞ there is a constant c>0 such that Equation (68): 
 

( ) mx, y c y , y Rσ ≥ 〈 〉 ≥ɶ  (68) 

 
Sobolev spaces are spaces of functions aiming to 

quantify the “degree of the functions’ smoothness”. First 
and as a reminder, one defines the Lévesque spaces 
Equation (69): 

( ){ }n
p n n nL ( ) f : C : f x pd x= → < ∞∫ ℝℝ ℝ  (69) 

 
It turns out that these are Banach spaces when 

equipped with the Lp norm Equation (70): 
 

( )( )p n

1
p pn

L R
f f x d x= ∫  (70) 

 
For the triangle inequality to hold 1≤p≤∞ where L∞ is 

equipped with the sup norm. The classical Sobolev 
spaces ( )k,p nW , k,  p∈ℝ ℕ are defined as Equation (71): 

 

k,p n p n k,p p

k

W ( ) f L ( ) : f w f Lβ

β ≤

  = ∈ = ∂ < ∞ 
  

∑ℝ ℝ  (71) 

 
An alternative description of ( )k,p nW ℝ , which also 

allows for an extension to k ∈ R, is given via the Fourier 
transform and the Bessel potential spaces Equation (72): 
 

( )
( )

( ) ( )
p

p n

p n k
k 21 2

L

f L :

L
F 1 F f (x)−

 ∈
 
 =   

+ ξ  ξ  < ∞   
    

ℝ

ℝ  (72) 

 
A theorem of Caldero’n states that for k ∈ℕ , indeed 

( )k,p n k n
pW L ( )=ℝ ℝ . Among the above functional spaces, 

the most commonly used in Physics have, undoubtedly, 
been k n

pL ( )ℝ and ( )k,2 nW ℝ both of which are Hilbert 

spaces. The inner product (.,.)k of ( )k,2 nW ℝ is given in 

terms of the usual L2 inner product (.,.) by Equation (73): 
 

( ) ( )1 2 1 2
k

f , f k f fβ β

β ≤

= ∂ ∂∑  (73) 

 
Due to the equivalence of the norms 1 + |y| and 〈y〉 

of L2 one can extend this to an inner product in Wk,2, 
k ∈ℝ by Equation (74): 
 

( ) ( )n

2k * n
1 2 1 2

ˆf ,f k f ( )f d= 〈ξ〉 ξ ξ ξ∫ ℝ  (74) 

 
Which gives rise to the norm Equation (75): 

 

n

22 2k n

k
ˆf f ( ) d= 〈ξ〉 ξ ξ∫ ℝ  (75) 
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It may be worth observing that if nf S ( )∈ ℝ , then 
k n
pf L ( ), k∈ ∈ℝ ℝ . A pseudo-differential operator, such 

as m
x p,(x, ) OPS δσ ∂ ∈  can be extended to an operator acting 

between the Sobolev spaces ( ) ( )p n p n
k m kL L+ →ℝ ℝ or on 

the space of tempered distributions ( )nS' ℝ . 

Riesz transforms are multi-dimensional analogues 
of the Hilbert transforms. For n

ℝ the Riesz transforms 
Rl, l = 1,…, n are defined to be singular integral 
operators of convolution type, as follows: Let ( )nf S∈ ℝ . 

Then Equation (76): 
 

( )n
nl l

l n 1

n 1
x y2

(R f )(x) p. . f y d y
n 1 x y

2

+

+ Γ  − = υ+ −π
∫ ℝ  (76) 

 
where, p.υ. indicates the principal value of the 
integral and Γ(x) is the Euler gamma function.  More 
explicitly, the Riesz transforms can be seen as the 
convolutions Equation (77): 
 

( ) ( )l lR f (x) f * (x)= φ  (77) 

 
where, ( )n

l S'φ ∈ ℝ ; l = 1,…,n are tempered distributions 

given by the pairing Equation (78): 
 

( ) nl
l xn 1 n 1

2

n 1
lim x2

,h h x d x
0 x

≥∈+ +

+ Γ 
 〈φ 〉 =

∈→
π

∫  (78) 

 
For ( )nh S∈ ℝ . What is of particular interest for our 

purposes is that the Fourier transform of the Riesz 
transform is a Fourier multiplier, namely that for 

( )nf S∈ ℝ , we have Equation (79): 

 

( ) [ ]( )1 l
iR f (x) F i F f (x)−  ξ= − ξ ξ 

 (79) 

2. CONCLUSION 

In this study we attempted to check to what extent 
some of the, largely, phenomenologicallymotivated 
generalised uncertainty relations stem from algebras 

that are solvable, or nilpotent at least in some 
approximation. We found that if such proposed 
algebras do not contain a simple part that remains 
unaffected by the Inonu-Wigner type contraction of 
one of their deformation parameter (s), then they can 
be seen as being parts of a solvable algebraic 
structure. In appropriate limits of parameters 
depending on the Planck length and mass, such 
algebras can be seen to possess a nilpotent structure.  

It may be worth noticing that the solvable 
algebras/groups are in a sense complementary to the 
simple ones that we use extensively in various parts in 
Classical and Quantum Physics. This complementarily 
can be seen in two ways: The Killing-Cartan form on 
solvable Lie algebras is trivial but it is non-zero for 
simple algebras. Alternatively, any Lie algebra can be 
expressed as a semi-direct product of a solvable and a 
semi-simple Lie algebras, according to the Levi- 
Mal’tsev decomposition. We are cannot help but wonder 
on whether this complementarity persists at a more 
fundamental level and has any significance for Quantum 
Gravity or it is just a formal coincidence due to our 
treatment and approximations? 

If such a solvability and nilpotency are accepted, then 
it may be worth examining the form of the generalised 
measure theories that may be appropriate for formulating 
the corresponding covariant formalism. In our opinion, 
this raises obvious questions about the central role that the 
Hilbert spaces play in Classical and Quantum Physics. We 
believe that it may be worth further exploring the physical 
and formal reasons as well as the corresponding 
implications that may be behind such a role. 

The ADV algebra also raises some questions that 
may be of interest: Should we even allow for pseudo-
differential and smoothing operators in fundamental 
algebras? If so, what may be implications on locality or 
on the Markovian character of the classical and quantum 
evolution? What techniques could someone use to 
explore further such ideas? We believe that some of 
these questions may merit some attention in future work. 
Lastly, one cannot fail to see the resemblance of (53) to a 
simplicial structure. It may be of interest to explore 
consequences of such a simplical view, define 
appropriate boundary/coboundary operators and a (co-) 
homology theory (Spanier, 1994), generalise valuation 
theory (Klain and Rota, 1997). 
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