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Abstract: An important function of a hospital’s Infectious Disease and Pharmacy programs is to review 
and compare the most recent antibiogram with that of the previous year to determine if significant 
changes in antibiotic susceptibility results are noted and to communicate this information and its 
consequences to the medical staff. However, there are currently no formal analytical (decision-making) 
models in use to determine if the rate of resistance to an antibiotic from one year to the next has 
significantly changed more or less than one would expect due to sampling error and test reliability. The 
purpose of this article, therefore, is to demonstrate the utility of using a well-established and simple 
nonparametric statistical technique (chi-square) for analyzing annual variations in cumulative 
antibiogram data and to determine whether such variations are significantly different from chance and to 
what to degree. The chi-square model outlined here is a simple, practical, quick, low burden and easy to 
understand and execute approach that greatly improves the analysis of antibiogram data and decision-
making by practitioners. More work and research is needed to develop additional inferential statistical 
methods and models that can be applied to antibiogram data.  
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INTRODUCTION 

 
 The Clinical and Laboratory Standards Institute 
(CLSI, formerly the National Committee for Clinical 
Laboratory Standards) defines an antibiogram as an 
overall profile of antimicrobial susceptibility results of 
a microbial species to a battery of antimicrobial 
agents[1]. Antibiograms have long been used as an 
epidemiological tool to characterize the susceptibility 
patterns and profiles of bacterial species over time in 
clinical settings and they are also believed to play an 
important role as a guide to empiric antimicrobial 
therapy[1]. Antibiograms are most often presented in the 
form of large 2 x 2 tables that compare different 
organism-antimicrobial agent susceptibility 
combinations in a one-to-one correspondence. The data 
in standard antibiogram tables lists the percentage of 
isolates for a single bacterial species that are susceptible 
to an array of different antibiotics. It is recommended 
that antibiograms be created on an annual basis in order 
to compare susceptibility results for a bacterial species 
versus specific antibiotics over time[1]. Indeed, an 
important function of a hospital’s Infectious Disease 
and Pharmacy programs is to review and compare the 
most recent antibiogram data with that of the previous 
year to determine if significant changes in antibiotic 
susceptibility results are noted. It is expected that 
“significant” changes in a hospital antibiogram will be 
communicated to physicians who in turn will consider 
these changes when prescribing antibiotics empirically. 
However, the antibiogram review process has been, for 

the most part, an informal and somewhat subjective 
task requiring numerous comparisons of antibiotics and 
bacterial species. There are currently no formal 
analytical (decision-making) models in use to determine 
if the rate of resistance to an antibiotic from one year to 
the next has significantly changed more or less than one 
would expect due to sampling error and test reliability. 
For example, what does it mean statistically, logically 
and interpretively to say that the rate of ampicillin 
resistance in Escherichia coli in Hospital A went from 
36% in 2004 to 41% in 2005? This question becomes 
all the more important considering that the different 
methods used to do routine susceptibility testing in 
laboratories, although reliable, are somewhat variable 
and a perfect test-re-test correlation cannot be 
assumed[2-4]. The purpose of this article, therefore, is to 
demonstrate the utility of using a well-established and 
simple nonparametric statistical technique for analyzing 
annual variations in cumulative antibiogram data and to 
determine whether such variations are significantly 
different from chance and to what to degree.  
 
Chi-square and independent samples: Chi-square 
(χ2) is one of the most widely used statistical tests for 
nominal (categorical) data and has been applied to a 
wide range of issues and problems where frequency 
data is involved[5]. One of the key requirements of the 
chi square test is that the data categories are 
independent and mutually exclusive. Antibiogram data 
is nominal data in that a particular bacterial species 
(e.g., E. coli, n = 1000) may include two sub-
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populations relative to any particular antibiotic tested 
against the bacteria (i.e., a resistant sub-population and 
a susceptible sub-population). Antibiogram data is also 
independent and mutually exclusive. For example, if 
36% of E. coli in a given year are resistant to 
ampicillin, then the remaining 64% are susceptible to 
ampicillin. In some cases, a bacterial isolate may be 
neither resistant nor susceptible to an antibiotic, but 
demonstrate intermediate level susceptibility. In most 
cases, intermediate isolates are included in the resistant 
category, as such isolates are non-susceptible. The 
recommendations established for the development and 
analysis of cumulative antibiograms by the CLSI 
dictate (1) that a single patient may contribute only a 
single unique bacterial species in a one-year period to 
the data pool and (2) that only clinically relevant 
cultures (i.e., excluding surveillance or screening 
cultures) be incorporated into the analysis and category 
designations, thereby eliminating samples that may 
artificially skew the susceptibility data[1]. 
 
The χχχχ2 formula: An example of how the chi-square 
statistic is used in cumulative antibiogram analysis is 
provided below. We want to know if the observed 
resistant and susceptible rates for a particular bacterial 
species relative to a particular antibiotic during one year 
are significantly different from the rates we expect to 
observe. In order to make this determination, we use the 
chi-square test. The chi-square value is calculated using 
the following standard equation: 
  

   χ2 = � 
fe

fefo 2)( −  

 
 The χ2 value above is derived from the sum of the 
observed values minus the expected values squared (ƒo 
- ƒe)2 divided by the expected value (ƒe). Clearly, as the 
χ2 equation demonstrates, if the observed values are 
equal to the expected values, the χ2 value is zero 
indicating no difference between what we observed and 
what we expected to observe based on the χ2 
distribution probabilities. 
 
Expected values: In the χ2 analysis, the expected 
values can generally be derived through one of three 
ways: through chance (probability), through an a priori 
theory or hypothesis, or through existing data and 
research. The latter model is often referred to as the 
“empirical” model and is the model used here for 
generating the expected antibiogram values. For over a 
decade, most clinical microbiology laboratories have 
created and disseminated antibiogram data and tables, 
resulting in an extensive “local” data repository. Due to 
variations in different hospital settings (such as level of 
acuity and patient populations), antibiogram data tends 
to vary between hospitals making local historical data 
the best estimate of expected antibiogram values for a 

particular hospital. Because antibiogram data generally 
tend not to vary over short time periods (e.g., 2-3 years 
vs. 5-10 years), especially if a moderate degree of 
resistance is already established[6], the average 
antibiogram data for a hospital during the three year 
period prior to the year in question is a reasonable 
choice to be used as the expected value. This three year 
average is the least burdensome and most easily 
obtained empirical expectancy estimate and it is similar 
to the moving three year averages that are often used in 
many different types of trend analyses in several 
different areas for data that is somewhat chaotic or 
noisy due to several uncontrolled random factors that 
net out to a random effect in 99.9% of the cases[7,8]. One 
may average a larger number of prior data points to 
obtain the empirical expectancy estimate, but ones 
needs to be careful about the number of points one uses 
to create the empirical expectancy estimates, as 
averaging out many data points may both blunt and 
disguise rapidly emerging “local” changes as opposed 
to large “global” changes and major parameter shifts. 
The goal here, however, is to detect statistically 
significant shifts in rates rapidly and reliably and as 
they are emerging in the categories of interest, by 
creating an empirical criteria for objectively rather than 
subjectively evaluating and making decisions about the 
percentages.  
 It should be noted that one of the assumptions of χ2 

is that no expected category should be less than one[5]. 
This is an important point to consider regarding 
antibiogram data because if we do not expect to see 
resistance to an antibiotic by a specific bacterial species 
at all in an institution (such as vancomycin resistance in 
Staphylococcus species), then the presence of resistance 
to any degree is significant (clinically and 
epidemiologically) regardless of the sample size, 
metric, test statistic or level of significance used. The 
same rationale would hold for bacterial species and 
antibiotics where we would expect virtually complete 
resistance (such as ampicillin resistance in Klebsiella 
species). 
 
Sample size: One of the important assumptions of χ2 is 
a sufficiently large sample. Applying χ2 to small 
samples increases the risk of Type II errors to an 
unacceptable level[5]. Sample size is not usually an 
issue with antibiogram data as the sample sizes are 
most often large (greater than 100), although 
infrequently encountered bacteria will obviously have 
lower testing frequencies. Nevertheless, the CLSI M39-
A2 document now recommends that antibiogram 
analysis only be done on bacterial species with a 
frequency of 30 or greater. This criterion is reasonable 
to apply to the χ2 analysis of antibiogram data discussed 
here and corrective adjustment procedures may be used 
for data from samples of less than 30 observations.  
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Example: This section of the article demonstrates the 
process by which antibiogram data can be translated 
into a χ2 statistic that can be used to determine whether 
the average susceptibility data derived from a hospital 
antibiogram over the last three year period for 
individual bacteria-antibiotic comparisons (ƒe) is 
different from the most recent antibiogram data (ƒo). 
The example used here represents actual antibiogram 
data analyzed by the authors from a community hospital 
setting following the M39-A2 guidelines for 
antibiogram preparation. For illustration purposes, only 
a single bacterial species (Pseudomonas 
aeruginosa)/single antibiotic (ceftazidime) comparison 
is made. This selection was made because P. 
aeruginosa is a critically important human pathogen 
and ceftazidime is a drug considered to be highly 
effective against this species[9]. Consequently, annual 
variations in ceftazidime susceptibility to P. aeruginosa 
need to be understood in a non-arbitrary manner. 
 The problem we are faced with is as follows and is 
similar to situations that often arise in the area of 
clinical microbiology and infectious disease 
epidemiology for many different bacteria-antibiotic 
comparisons. Specifically, in 2004, P. aeruginosa was 
susceptible to ceftazidime 83% of the time—an 11% 
decrease in ceftazidime susceptibility from the previous 
year, which was 94%. We also know that the rates of 
ceftazidime susceptible P. aeruginosa from 2001 
through 2003 were 89% (n=118), 91% (n=128) and 
94% (n=127), respectively. Intuitively it appears (1) 
that ceftazidime resistance in P. aeruginosa from 2001 
through 2003 was stable if not slightly declining and (2) 
that a significant reduction in ceftazidime susceptible P. 
aeruginosa occurred from 2003 to 2004. But just how 
significant is this reduction and could this reduction be 
sampling error or/and chance variation and not a real or 
rapid negative shift in susceptibility? These are 
questions the �2 analysis answers.  
 Table 1 shows the values used in the χ2 calculation. 
The null hypothesis in this situation is that the 2004 P. 
aeruginosa ceftazidime susceptibility results do not 
differ significantly from the average susceptibility 
results from the prior three years. Thus, the expected 
rate of ceftazidime resistance is 9% of the 121 P. 
aeruginosa isolates, or 0.09x121 = 11 cases. The 
expected rate of ceftazidime susceptible P. aeruginosa 
is 91% of 121, or 0.91x121 = 110 cases. Using these 
counts, the χ2 value is calculated to determine if the 
susceptibility rates between the expected and observed 
data is significantly different. Because one of the cells 
in Table 1 (Expected cases/Resistant) is small and 
because there is only one degree of freedom, the Yates 
correction (although controversial) is applied to this 
case to reduce the chance of artificially increasing χ2 
thereby making it more difficult to establish 
significance and thus reducing Type I error (accepting a 
false hypothesis) in this particular type of decision-

making context and situation where one may need to be 
more statistically “conservative” than in other situations 
(see text below).  
 Adding the quotients in Table 1 (values in the last 
row) gives us a �2 value of 9.02 with one degree of 
freedom. This value is significant at the .01 level (p = 
0.0026) and statistically confirms suspicion that the 
reduced P. aeruginosa susceptibility to ceftazidime in 
2004 was significant compared to our expected value, 
which is the average susceptibility rates during the last 
three years. In statistical terms, this �2 value leads us to 
reject the null hypothesis, which stated that there was 
no significant difference between the observed and 
expected frequencies. This �2 value provides the formal 
warrant to explore issues that may be leading to 
decreased ceftazidime susceptibility for P. aeruginosa, 
such as the make up of the hospital formulary, 
prescribing practices of physicians and susceptibility 
trends at other local hospitals. 
 In the example in Table 1, both intuition and the �2 

statistic are consistent with one another. That is, we 
intuitively expected the difference in susceptibility rates 
to be significant and our statistic confirmed this 
suspicion. However, most antibiogram comparisons are 
not so intuitive leaving us with less confidence in our 
informal judgments and this situation and case is where 
statistics is most helpful. We can easily imagine a 
situation where the observed values described above 
(83% susceptible and 17% resistant) vary. In Table 2, 
the susceptibility values for P. aeruginosa and 
ceftazidime are modified by 2 percentage points to 
demonstrate how the �2 statistic can assist in making 
antibiogram decisions when the data is not so intuitive 
or obvious. 
 Table 2 shows that as the percent of ceftazidime 
susceptible P. aeruginosa isolates increases by 2%, the 
�

2 values decrease (keeping ƒe constant). The observed 
data analyzed in Table 1, which is the first entry in 
Table 2 (17%R and 83%S) is significantly different 
from the expected values at both the .05 and .01 level. 
Obviously, these results are statistically significant. 
However, if we increase the susceptibility percentage 
from 83% to 85%, it becomes more difficult to 
informally determine if this value is significantly 
different from the historical data at the hospital (i.e., the 
prior three year period). This difficulty is represented in 
Table 2 where an 85% susceptible rate is significant at 
the .05 level but not at the .01 level. How should this 
result be interpreted?  
 When dealing with antibiotics that are critically 
important in treating infections caused by certain 
bacterial species (as is the case for ceftazidime in 
treating P. aeruginosa infections), it seems appropriate 
to set alpha at .05 (vs. .01) and to tolerate a higher risk 
of sampling error when the decision-making preference 
is to accept and act on a “slight or close” variation 
between the expected and observed antibogram values. 
For bacterial species-antibiotic comparisons that are 
deemed to be less critical at any point in time, it appears  
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Table 1: Values used in the χ2 calculation.a 
 Resistant Susceptible Total 
Observed cases (ƒo)  21 100 121 
(2004) (17%)  (83%) 
Expected cases (ƒe)b 11 110 121  
(prior 3 year average) (9%)  (91%)        
|ƒo-ƒe| 9.5 -9.5 0 
(|ƒo-ƒe|)2 90.25 90.25  
 (|ƒo-ƒe|)2/ƒe 8.2 0.82 χ2.01(1) = 9.02 
aYates correction applied. 
bExpected values based on the average of the three years prior to 2004 (2001, n = 118; 2002 n = 128 and 2003, n = 127).  
 
Table 2: Modified observed Pseudomonas/ceftazidime susceptibility data and associated �2 values keeping ƒe constant at 9% resistant and 91% 

susceptible with 1 degree of freedom (n = 121).  Yates correction applied. 
 Observed data Significant at alpha 
As percentage As actual �

2 .10 .05 .01 
(%R/%S)  counts (R/S) 
17/83 21/100 9.02 Yes Yes Yes 
15/85a 18/103 4.22 Yes Yes No 
13/87a 16/105 2.02 No No No 
11/89a 13/108 0.22 No No No 
aHypothetical data for the basis of graded comparison. 
R = Resistant; S = Susceptible 
 
reasonable to set alpha at .01 when the intent is not to 
accept and act on a slight or close variation between the 
expected and observed antibiogram values. The 
rationale for setting a more stringent alpha level (.01) 
for non-critical (or less important) antibiotic-bacterial 
species comparisons is that we want to be more 
confident that when we take action and expend limited 
healthcare resources on less important comparisons 
there is clearly good reason to do so and that there is a 
lower chance that we are acting on a variation based on 
sampling error.  
 Following this scheme and rationale, individuals 
responsible for determining the significance of annual 
variations in cumulative antibiograms would be 
responsible for determining which antibiotic and 
bacterial species comparisons are most significant and 
to set alpha accordingly. It would also seem helpful 
from a decision-making standpoint to code (perhaps by 
color) the squares in the antibiogram table that 
represent values that are significant at the .01 and .05 
level and use this information to quickly and easily 
gauge the degree of variation from expectation in the 
antibiogram and to decide which data points require 
follow up. Arrows could be added to the squares to 
show the direction of the variation (i.e., arrow up for 
increased resistance and arrow down for decreased 
resistance), as bidirectional changes in antibiogram data 
can and do occur. Using a color and arrow scheme 
allows anyone looking at the data to quickly gauge both 
the direction and magnitude of the antibiogram 
variations. Although bidirectional shifts in antibiotic 
susceptibilities occur, the trend is clearly and 
alarmingly moving toward increased levels of 
resistance—an unavoidable consequence of bacterial 
evolution which is extremely complex and difficult to 
predict[10].  

 It is important to point out that if the expected 
values used in the calculations in Table 1 and 2 were 
derived from the random probability model rather than 
the observation model, the �2 values would be much 
larger for the probability model and that this would 
represent false and misleading findings. Indeed, using 
the probability model (50%R and 50%S) for the 
expected values to analyze the data in the last column in 
Table 2 (11%R and 89%S) would generate a �2 value of 
73 (a highly significant value with essentially a zero 
probability of occurring by chance), instead of a �2 
value of 0.22 using the empirical three year average 
model, which is not significant at the .10 level (p = 
0.64). Of course, for antibiotic and bacterial species 
comparisons that do approach a 50% susceptible rate, 
there would be less of a discrepancy between the 
probability model and the empirical model. However, 
antibiogram susceptibility results approaching 50% are 
not common, which is further justification for using the 
empirical model. Similarly, if only the prior year’s data 
was used as the expectancy estimate (i.e., 2003, 6%R 
and 94%S) and thus the comparison point for 2004, the 
resulting �2 value of 56 would be highly significant 
with essentially a zero probability of occurring by 
chance. Again, because the phenomena of antibiotic 
resistance is highly complex, dynamic and somewhat 
chaotic[10] and because susceptibility test results are 
subject to variation within and between different testing 
systems[2-4], comparisons using a single point 
expectancy estimate (e.g., the previous year’s data) are 
likely to contain more sampling error than the most 
recent three year estimate, which is more “insulated” 
from unknown and random factors that may 
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sporadically impact the data (aside from the sources of 
variation that are well described and known).  

 
DISCUSSION 

 
 The �2 approach used here is a formal, systematic 
and non-capricious method to determine whether 
annual antibiogram data is significantly different from 
recently complied data (i.e., the three previous years) as 
well as the magnitude of that difference. This model, 
like most statistical models, is most helpful in making 
decisions where large amounts of data need to be 
processed and summarized for the purposes of making 
important decisions. The type of analysis outlined here 
may be applied to the antibiogram as a whole or to 
specific susceptibility data where disagreement or lack 
of consensus regarding the significance of results is 
encountered. It would be simple and rather easy to 
create the �2 function used here in a software program 
such as Excel and to quickly analyze all antibiogram 
data for a hospital. As mentioned above, it would also 
seem helpful from a decision-making standpoint to 
code (perhaps by color) the squares in the antibiogram 
table that represent values that are significant at the .01 
and .05 level and use this information to decide which 
data points require follow up. Arrows could be added to 
the squares to show the direction of the change. Using a 
color and arrow scheme allows anyone looking at the 
data to quickly gauge both the direction and magnitude 
of the antibiogram variations.   
 There are certainly other more sophisticated types 
of statistical analyses and models that could be applied 
to antibiogram data such as a z-test for comparing two 
independent proportions, logit analysis and Cramer’s V 
to describe linear associations and trends for designs 
that are greater than the above standard 2x2 design. It 
should also be pointed out and stressed that 
nonparametric tests (such as �2) lack statistical 
sensitivity as compared to parametric tests and that the 
results of nonparametric tests need to be much larger to 
reach significance. Parametric tests are, therefore, much 
more powerful, much better at detecting weak effects 
and much better at giving accurate effect sizes or 
magnitudes of difference. For example, the counts in 
the third row in Table 2 (16 resistant and 105 
susceptible) produced a �2 value of 2.02 which was not 
significant at the .l level, however analyzing these same 
values using Fischer’s z-test for independent 
proportions[11] produced a z score of 1.5, which is 
significant at the .1 level and very close to reaching 
significance at the .05 level (p = 0.06).  
 Although parametric tests are more sophisticated 
and sensitive to weak effects, it is quite reasonable to 
use the easier and less sensitive (nonparametric) �2 
model as outlined here to ensure that the differences 
observed between actual and expected antibiogram 
values are large enough to justify the time, cost and 
effort of following up on such changes, many of which 

may represent the somewhat chaotic and unpredictable 
nature and fluctuations of antibiotic susceptibility over 
time. In instances where greater sensitivity in detecting 
changes in antibiotic susceptibility is desired, Fischer’s 
z-test for independent proportions is a more logical 
metric than the less sensitive �2 test. The most effective 
antibiogram analysis model may actually involve the 
use of the nonparametric �2 test and Fischer’s z test for 
independent proportions. Fischer’s z test can detect 
early and subtle variations in susceptibility (and put one 
on notice), while the less sensitive �2 test can be used to 
determine if and when it is time to act. In this sense and 
in this context, the z test acts as an early warning 
system that gives one time to prepare for the situation 
and get a response in place and the �2 results signal that 
it is time to make a decision about whether or not to 
respond. 
 Regardless of the statistical model or models used 
to analyze antibiogram data, the decision to use a 
particular test, or series of tests and to establish alpha 
levels and the types of errors we are willing to risk (i.e., 
Type I or II) should be framed in a larger decision-
making model. The focal point of this article and work 
is on formal decision-making and decision-making 
processes, systems and logics, more so than on a 
particular statistical method. In summary, the �2 model 
outlined here is a simple, practical, quick, low burden 
and easy to understand and execute approach that 
greatly improves the analysis of antibiogram data and 
decision-making by practitioners. More work and 
research is needed to develop additional inferential 
statistical methods and models that can be applied to 
antibiogram data. 
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