
American Journal of Environmental Sciences 4 (3): 229-237, 2008 
ISSN 1553-345X 
© 2008 Science Publications 

Corresponding Author: Alec Torres, Departamento de Ciencias y Tecnicas del Agua y del Medio Ambiente, 
  University of Cantabria, ETSI de Caminos, Canales y Puertos, Avda. de los Castros s/n, 
  Santander 39005, Spain 

229 

 
A Depth Estimation System for Laboratory Studies using Video Imagery 

 
1Alec Torres and 2Rodolfo Silva 

1Departamento de Ciencias y Tecnicas del Agua y del Medio Ambiente, University of Cantabria, 
ETSI de Caminos, Canales y Puertos, Avda. de los Castros s/n, Santander 39005, Spain 

2Instituto de Ingeniería, Universidad Nacional Autónoma de México, 
Cd Universitaria, 04510 DF, México 

 
Abstract: A simple video-based system has been developed for depth estimation based on wave 
propagation characteristics. A numerical simulation of a long-crested monochromatic wave propagating 
over a beach with straight and parallel contours is used for testing the depth inversion system. An oblique 
video, simulating field conditions, is recorded, digitized and rectified for its further analysis. Pixel intensity 
time series from a virtual array in the rectified images are analyzed using the depth estimation technique 
developed by Stockdon and Holman. The linear dispersion equation is applied for depth estimation at every 
cross-shore position and the resulting values are compared with the depth values used to feed the numerical 
model. Error analysis confirms good performance for depth estimation using this video-system for 
completely controlled conditions in small-scale experiments. The relative depth estimation error for this 
idealized case is 2.3%. This accuracy is explained by the use of a linear model for the wave propagation 
simulation. The methodology proposed here allows the testing of a new video-system and separation of 
errors resulting from the depth inversion algorithm from those inherent to photogrammetry techniques in 
small areas. The use of this system could easily be extended for physical models and field studies. 
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INTRODUCTION 
 
 Knowledge of sea bottom topography is of great 
importance in coastal engineering[1]. Often studies 
which have great environmental impact require data of 
the spatial and temporal evolution of the sea bottom in 
order to quantify the proportion and direction of 
sediment transport. This information can be used to test 
or calibrate numerical or empirical models or be used 
for making decisions concerning, for example, dredging 
or beach nourishment projects. Traditional survey 
techniques to obtain bathymetric information are 
precise, however they are normally expensive and some 
times impossible to implement given that the wave 
climate should be calm.  
 On the other hand, the bathymetric estimation of 
the nearshore topography traditionally requires 
surveying equipment, a boat and more than one person, 
thus making it expensive and often impractical. 
Although technological advances and the use of Global 
Positioning Systems (GPS) have led to new techniques 

being developed[2], it is worth looking for alternative 
approaches. One of these is the use of depth inversion 
algorithms combined with remote sensing techniques. 
 The use of video images, for the quantification of 
nearshore processes, has become popular in the last 
decades. This technique is known as photogrammetry 
defined as the art, science and technology of obtaining 
reliable information about physical objects and the 
environment through processes of recording, measuring 
and interpreting photographic images[3]. This method is 
based on the hypothesis that almost every nearshore 
phenomena that can be discerned visually can be 
quantified using video processing techniques[4]. Recent 
methods using photogrammetry for nearshore depth 
estimation are treated in the present work. 
 There are several approaches for wave number 
estimation using sensor arrays[4,5], but not many have 
used PCA before[6,7]. Wallace and Dickinson[8] used the 
Complex Empirical Orthogonal Functions (CEOF) 
analysis for extraction of wave phase information in 
atmospheric studies. Horel[9] also used this  method  for 
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identifying travelling waves in geophysical data sets. 
Merrifield and Guza[6] defined the wave number as the 
gradient in the resulting spatial phase from the CEOF 
analysis.  
 Water depth estimation is made using spatially 
extensive arrays in order to determine both wave 
number components, kx and ky, in addition to the 
frequency information. Depth inversion algorithms 
were first used during World War II when scientists 
began to take interest in wave propagation 
characteristics in order to predict surf conditions and 
bathymetry for military purposes.  The  bathymetry  and 
wave characteristics were estimated from the early 
time-lapse aerial photography of the ocean surface. 
Holland[10] found that for surface gravity waves, in 
water depths outside the surf zone region, the linear 
dispersion relation was highly accurate with a depth 
estimation of 6% different from the observed depth. 
 In the last two decades, measurements of shoaling 
wave characteristics have been made using video 
techniques following the methodology introduced by 
Lippmann and Holman[11]. Lippmann and Holman[12] 
found good correlation between time series of pressure 
sensor and pixel intensity in the surf zone. They also 
found that the celerity spectra compares favourably 
with solitary wave theory. They were able to estimate 
wave directional phase speed in the surf zone using 
video techniques. Stockdon and Holman[7] estimated 
the nearshore bathymetry based on video images. The 
propagation of water waves were measured using pixel 
intensity time series collected from a cross-shore array. 
The cross-shore component of the wave number was 
computed as proposed by Merrifield and Guza[6]. Water 
depth was computed using the linear dispersion relation 
and the results were compared with bathymetry maps, 
finding a mean percent error of 13%. More recently, 
Curtis et al.[13], describe a method for video 
measurement  of  wave  direction  in  an  idealized 
coastal inlet physical model, based on the estimated 
root-mean-square  average  wave  number  as  proposed 
by Herbers et al.[5]. 
 The purpose of this study is to develop and validate 
a simple video-based system for depth estimation in an 
idealized planar beach. The experiments were carried 
out in the lab using a numerical wave propagation 
simulation representing completely controlled 
conditions. The study first encompasses the image 
rectification, wave number and wave frequency 
estimation from pixel intensity time series. Secondly, 
the estimation of water depth in the numerical model 
simulation is achieved using the wave characteristics 

estimated before. Finally, the differences between 
estimated and real depth are discussed in terms of the 
possible sources of error. 
 

SYSTEM DESCRIPTION 
 
 The video-based system test is comprised of the 
data processing from a wave propagation numerical 
simulation for a given deep-water wave height H0, 
period T0, incident wave angle �0 and nearshore 
bathymetry h(x,y). The finite-difference model for the 
wave propagation is based on the algorithm proposed 
by Dalrymple[14]. This explicit numerical model 
computes the wave refraction and shoaling of linear and 
nonlinear water waves over irregular bathymetry. The 
model uses a central difference scheme in cross-shore 
direction  x, giving an error of order �x2[14].  The  linear 
solution of this model was chosen to be consistent with 
the use of the linear dispersion equation for depth 
estimation. As a result the differences between 
observed and estimated depths would be directly related 
to the rectification and wave number estimation method 
applied. Using the numerical model mentioned before, 
(1) is then applied to introduce time dependence. Based 
on earlier observations of correlation between time 
series of pressure sensor and pixel intensity[12], surface 
elevation plots (2DH) are created for every time step 
and further used as a frame in an array (movie). 
 

     ( ) ( )x y

H(x,y)
x, y, t cos k (x,y)x k (x,y)y t

2
η = + − σ  (1) 

 
where kx and ky represent the cross-shore (x) and long-
shore (y) wave number components respectively; H = 
wave height given by the propagation model described 
before; � = 2�/T where T = wave period; t = time. 
However, some complication arises as the wave 
approaches the shore because the wavelength decreases. 
For this reason, the propagation mesh grid was sub-
divided into three regions with �x = �y = 10, 1 and 
0.2 m, respectively. The simulation was done in gray-
scale, where greater intensities correspond to wave 
crests and lower intensities to wave troughs. A snapshot 
from the numerical model simulation previously 
described is shown in Fig. 1, where it is easily observed 
that wave length and wave angle decrease as the wave 
train approaches the shore. 
 The resulting intensity pattern from the simulation 
is similar to the one obtained by Curtis et al.[13] when 
placing Micro-spheres in the Coastal and Hydraulics 
Laboratory (CHL) wave basin.  
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Fig. 1: Snapshot of the numerical model wave 

propagation simulation (2DH) 
 
 In the field, recorded pixel intensity time series are 
shifted by a phase lag with respect to wave crest, 
depending on light source location. However, the 
extracted phase information from the time series 
remains the same. Because the video analysis technique 
for depth estimation relies only upon phase, the use of 
the wave simulation described above is justified. 
 
Data collection: A wave propagation simulation using 
an idealized bathymetry was projected onto a wall. A 
video camera set at an oblique angle filmed the 
simulated field conditions as shown in Fig. 2. Five 
ground control points were surveyed over the projection 
area and the video was recorded for further analysis. 
 
Data processing 
Image extraction: The video was imported from a 
digital video camera to a dual processor. Each file was 
opened as uncompressed DV/NTSC footage, rendered 
and exported as QuickTime files using Sorensen 3 
compression technology. This reduced file size with 
little or no loss of quality. For each movie clip, still 
frames in GIF format were extracted from the raw 
footage with a reduction rate from 29.97 frames per 
second to 8 frames per second, ensuring systematic 
sampling. 
 
Image rectification: An image is the 2-D 
representation of a 3-D world, therefore one necessary 
requirement  for quantifying the information recorded is  

 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Experiment setup 
 
the knowledge of this transformation. The image 
rectification, defined as the process of making 
equivalent vertical photographs from tilted photos[3], 
was performed using a planar projective transformation 
of the form, 
 

               
11 12 13

21 22 23

31 32 33

X h h h x
Y h h h y
Z h h h z

� � � �� �
� � � �� �=� � � �� �
� � � �� �	 
 � �	 


 (2) 

 
or more briefly i ij iX H x= , where iX  and ix  represent 

the rectified and image coordinate vectors respectively 
and H is the transformation matrix which accounts for 
rotation, scaling and image distortion. Once the matrix 
H is obtained, which relates the true coordinates to the 
image coordinates, the matrix is multiplied by every 
coordinate point and the corresponding rectified 
positions are obtained. The intensity found at (x, y, z) is 
mapped to (X, Y, Z). The use of a planar projective 
transformation method for image rectification presented 
some advantages over other methods, in that it does not 
require any information about the intrinsic and extrinsic 
parameters of the camera, since they are implicit in the 
solution of the system of (2). For this reason the method 
was deemed suitable for small-scale experiments due to 
the simplicity of surveying a large number of Ground 
Control Points (GCPs). 
 The image rectification algorithm, used in the 
present study, is based on the planar projective 
transformation method previously described. The inputs 
are the GCPs coordinates, the desired resolution 
(m/pixels) and the output image size (m�n). The 
program requires at least four GCPs to solve (2) for H 
by a least squares method using Singular Value 
Decomposition (SVD). Once the transformation matrix 
H is determined, the program rectifies the sequence of 
images. The values of each rectified grid coordinate  are 
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transformed through (2) to determine its corresponding 
image location. The pixel intensity value found in that 
location from the original oblique image is mapped to 
the rectified grid location in the rectified image matrix. 
Finally, the rectified image is transformed from RGB to 
gray-scale image and stored in a m�n�p matrix 
containing all rectified images. 
 
Wave frequency estimation: For wave frequency and 
wave number estimation, the video technique first 
requires the collection of pixel intensity time series at 
an array of pixel locations. As a wave propagates 
through a fixed point on the free surface, the intensity 
of the surface reflection varies from light to dark. As 
mentioned before, in the field this variation depends on 
the viewing angle of the camera relative to the wave 
direction and to the light source location. The forward 
face of the wave will have a higher intensity than the 
back face[13] as shown in Fig. 3. 
 From the video analysis, only phase information 
can be obtained and wave height cannot be determined. 
The wave period estimation is performed using spectral 
analysis of pixel intensity time series, where the 
spectral peak frequency is selected. 
 
Wave number estimation: The Principal Component 
Analysis (PCA) method has been applied in several 
coastal studies. This method is also known as Empirical 
Orthogonal Functions (EOF). The objective of PCA is 
to describe the spatial and/or temporal changes of any 
process by the minimum number of eigenfunctions. The 
advantage of this method is that the first mode 
eigenfunction accounts for the largest portion of the 
variance of data. However, there is a limitation; PCA 
detects only standing oscillations, not travelling 
waves[9]. For that reason, the method was extended to 
be able to detect propagation phenomena. An extension 
to the PCA method is the Complex Principal 
Component Analysis (CPCA) or CEOF, from which 
propagating phenomena can be analyzed. 
 Stockdon and Holman[7] estimated the wave 
number components from the analysis of wave phase 
structure using a frequency domain EOF from a pixel 
intensity array. The present study used an equivalent 
CPCA in the time domain instead. The analysis 
procedure of CPCA is similar to that of PCA, except 
that the analysis first involves converting the data from 
a real series of numbers to a complex series. 
 The Hilbert transformation is applied to the 
original time series, uj(t), in order to obtain the 
imaginary component. From the resulting complex time 
series,  the phase information between stations is found, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: Intensity variation from light to dark along the 

wave profile. Experiment conducted at the FIT 
wave flume 

 
j j ˆU (t) u (t) iu(t)= + , where the imaginary part is the 

Hilbert transformation of the real part. The covariance 
matrix of jU (t)  is *

jk j k t
C U (t)U (t)= . 

 An important observation at this point is that the 
CPCA in the time domain is equivalent to that found 
from a frequency domain PCA with the cross-spectrum 
integrated over all frequencies[6]. 
 The eigenfunctions, nB (x) , where n denotes mode 

number, are obtained from C, [ ]nB (x) PCA C=  and the 
temporal expansions are given by, 

               
N

n j n
j 1

A (t) U (t)B (x)
=

=
  

 
where both nB (x)  and nA (t)  are complex. The complex 
time series can be represented as: 
 

               ( ) ( )
N

j n n
n 1

U (t) A t B x
=

=
  

 
 Where the first mode explains close to 100% of the 
variance, the spatial phase can be calculated using, 
 
            [ ]1

n n ntan ImB (x) ReB (x)−φ = −  
 
 Finally, wave number components are calculated in 
phase from the cross-shore and long-shore gradients 
as[6]: 
 

                            x

d
k

dx
φ=  (3) 
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and 
 

                             y

d
k

dy
φ=  (4) 

 
 Where the wave angle is given as: 
 

                    y

x

k
arctan

k
� �

θ = � �
	 


 (5) 

 
Water depth estimation: As a result of the application 
of the dynamic free surface boundary condition during 
the formulation of small amplitude  wave  theory,  the 
so-called dispersion equation is derived, 
 
                     2 gk tanh khσ =  
 
 This can also be expressed as, 
 
                     0c c tanh kh=  
 
 This relation describes the way in which a field of 
propagating waves of many frequencies would separate 
or disperse due to the different celerities of the various 
frequency components[2]. From a different point of 
view, the dispersion equation relates wave celerity cand 
water depth h. Knowing the wave number components 
and the wave frequency, the water depth h(x,y), can be 
estimated as: 
 

               ( )

2
1tanh

gk
h x, y

k

− � �σ
� �
	 
=  (6) 

 
where 2 2

x yk k k= + ; 2 Tσ = π ; g = gravitational 

acceleration (9.81 m sec�1) and h = water depth. 
 All depth prediction methods that use these 
characteristics of shoaling waves to predict bottom 
topography are referred to as depth inversion 
algorithms (DIAs)[1]. Once the cross-shore and long-
shore components of the wave number and the peak 
frequency are estimated from the video images, the 
depth at every position can be calculated using (6). 
 

RESULTS 
 
Performance of the image rectification method: In 
order to show the performance of the rectification 
method (planar projective transformation) used here, a 
small and a large-scale case were examined. 

Case 1: Small scale test: A square of known 
dimensions was drawn on the floor using gray tape. 
Four GCPs were surveyed and an oblique picture 
(Fig. 4a) was taken and rectified (Fig. 4b). The outer 
dimensions of the square were 1�1 m and the tape 
width was 4.9 cm everywhere. The output image 
resolution was chosen to be 3.3 mm pixel�1 on a 
600�600 pixel matrix. 
 Known distances from the object were compared 
with the rectified scaled image and the Root Mean 
Square error (RMS) was estimated for each 
measurement. 
 

                

2N
i i

i 1 i

X x
X

RMS
N

=

� �−
� �
	 
=



 (7) 

 
where X is the actual measurement, x is the video 
estimated and N is the number of observations. 
 The error analysis consisted of the estimation of 
the tape thickness at several locations from the rectified 
image shown in Fig. 4b and subsequent comparison 
with the surveyed data. Using (7) an RMS error of 5% 
for length was estimated. 
 
Case 2: Large scale test: Image rectification from a 
multiple-camera system at El Puntal Spit (Santander, 
Spain) was used to test the rectification algorithm 
performance under field conditions. A total of 16 
permanent and temporal GCPs were used and its 
rectification is shown in Fig. 5. 
 Although less accurate than commercially available 
systems, this rectification code allows qualitative 
analysis from large-scale images. However, the 
algorithm has a strong dependence on GCPs since the 
parameter of the camera (extrinsic and intrinsic) are 
implicit  in  the  solution  of (2).  Another  disadvantage 
presented while using this method is that it requires at 
least four GCPs in order to perform the rectification, 
which is sometimes hard to achieve in the field. 
Recently, more advanced methods for image 
rectification have been developed. Holland et al.[4] 
presented a method that requires two GCPs, or even one 
GCP, given the intrinsic parameters of the camera 
through the calibration process. 
 Due to the good performance of the rectification 
method in the small-scale case, this was used to rectify 
the video taken from the numerical wave propagation 
simulation projected onto a wall in order to determine 
water depth as sketched in Fig. 2. 
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Fig. 4: a) Oblique and b) rectified images from the small scale test 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: a) Oblique and b) rectified images from El Puntal Spit (Santander, Spain) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Power spectrum obtained from synthetic data 

Depth estimation 
Numerical model data: Time series of wave data, 
generated by the numerical model described in 
Section 2, were used for depth error estimation by using 
the wave number estimation method proposed by 
Merrifield and Guza[6]. The case corresponds  to  water 
1 m deep, with a long-crested wave of an 8 sec period, 
approaching the shore with a 30° angle over a mild-
sloping beach (1:40). The resulting spectrum is shown 
in Fig. 6 with a peak frequency of 0.125 Hz 
corresponding with the 8 sec period. 
 The wave number components were estimated 
using CPCA, (3) and (4) where the gradients were 
computed from deep water to shore. As expected, the 
magnitude of the cross-shore wave number component 
kx increases as the wave propagates onshore (Fig. 7a) 
and  the  long-shore component ky  remains  constant  at 

(b) (a) 

(b) 

(a) 
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Fig. 7: Estimated and real a) cross-shore and b) long-

shore wave number components 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Estimated and real water depth as a function of 

cross-shore position 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Power spectrum from pixel intensity time series 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10: Video-based estimated and real wave number 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Video-based estimation and real water depth 

as a function of cross-shore position 
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every cross-shore position for the case of straight and 
parallel contours (Fig. 7b). For this reason the long-
shore component only needs to be determined at one 
cross-shore position in this experiment. Numerical 
oscillations were observed near the boundary, however 
they disappear a distance away where estimated values 
tend towards real values. 
 From the wave number components obtained at 
cross-shore distance x = 1000 m, a wave angle 
estimation of 27.58° compares well with the real value 
of 27.52° at the same position. Once the cross-shore 
and long-shore components of the wave number and the 
peak frequency are known, the water depth can be 
estimated using (6).  
 Figure 8 shows water depth estimated from 
intermediate waters to a position just before the breaker 
zone along a selected transect. The space average 
difference between the true and the estimated depths 
was of D = 0.027  m along the profile and its mean 
relative error R 1.2%= . The error in this case results 
merely from the use of CPCA for wave number 
estimation, since the data were numerically generated 
with a linear model. 
 
Video-based  system  data:  Wave  characteristics 
were the same as used by the numerically generated 
data case. An oblique video, simulating field 
conditions, is recorded, digitized and rectified for its 
analysis. Pixel intensity time series were collected at 
different cross and long-shore positions from the 
recorded video of a wave propagation simulation. The 
sampling frequency was set equal to 2 Hz for a 112-s 
record. 
 The wave period was obtained as the average 
power spectrum from pixel intensity time series 
collected at different positions (Fig. 9). The resulting 
period was of T = 8.04 sec which agrees with the real 
value of 8 sec used for feeding the model.  
 In addition, a pixel intensity analysis was done in 
the space domain. Wave number estimation from the 
CPCA at two different cross-shore positions was 
estimated. The proposal being to evaluate the 
performance of the video technique with increasing 
distance from the position of the camera Fig. 10. Wave 
number estimation along a transect close to the camera 
is expected to be more accurate with other estimates 
farther away. However, no significant difference was 
observed for small areas. 
 Finally, in Fig. 11 the real and the video-based 
estimation of the water depth are shown. The mean 
error along the transects was D 0.116=  m, with a mean 
relative error of R 2.3%= . In this case, the errors on the 

video-based water depth estimation for the wave 
propagation simulation are  associated  with  the  image 
rectification process and with the use of only the first 
mode of the CPCA for wave number estimation. The 
difference between error estimation from the numerical 
model data and the video-based data contributes to the 
total error introduced from the video technique. 
 The use of the linear solution for the wave 
propagation resulted in an unrealistic decrease in depth 
estimation error for estimates closer to shore. This 
situation does not happen in reality, as discussed by 
Stockdon and Holman[7]. In this study non-linear 
effects, wave current interaction, diffraction, reflection 
and wave breaking were omitted in the numerical 
model. 
 

CONCLUSIONS 
 
 Although less accurate than using in-situ 
instruments in the field, the use of photogrammetry for 
depth estimation from wave shoaling characteristics is 
an approach that allows a non intrusive and inexpensive 
monitoring of coastal processes. It is feasible that a 
system based on a simple rectification algorithm can be 
developed for both qualitative and small-scale 
quantitative purposes. 
 A simple video-based system, using the depth 
estimation technique developed by Stockdon and 
Holman[7], was implemented and tested for depth 
estimation from a numerical wave propagation 
simulation. The technique is based on complex 
principal component analysis of pixel intensity time 
series for wave number estimation. The combined use 
of numerical modelling and video photogrammetry 
proposed here is efficient for the qualitative and 
quantitative evaluation of video-based systems when 
controlled experiments are desired and/or laboratory 
facilities such as a wave basin are not available. This 
approach to test depth inversion algorithms is much less 
expensive than the use of physical models and provides 
completely controlled conditions and avoids laboratory 
problems of light refraction and reflection. The 
limitations would depend on the complexity of the 
numerical model chosen to perform the simulation. 
 Analysis of the performance of the system shows 
that the depth estimation error related to the wave 
number estimation technique is of the same order of 
magnitude as that related with the rectification 
technique (�1%). 
 The technique described in this paper can be easily 
used for studying spatial and temporal bathymetric 
changes and the results obtained inexpensively with 
positive economic and environmental implications. 
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