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Abstract: The two-reservoir problem with through flow is a common feature in wastewater treatment 
plants.  The start of the through flow may cause water surface oscillations in the reservoirs and velocity 
variations in the connecting pipe during the initial unsteady phase that may adversely affect the 
operation and under certain conditions may cause overtopping of the upstream reservoir.  The classical 
solution based on the rigid mass theory is inapplicable as velocity variations within the pipe system are 
ignored.  One-dimensional mass and momentum conservation equations, based on the elastic theory, 
with a new set of boundary conditions are solved using the method of characteristics to investigate the 
water surface oscillations in the two reservoirs and minimum velocity in the connecting pipe as a result 
of the start of a through flow.  The impact of a constant or variable friction factor on the velocity and 
water surface oscillations in the connecting pipe is found to be negligible.  The magnitude and the time 
it takes to establish the through flow are found to be important parameters for the system.  Optimum 
time of linear increase of a given inflow rate to the final steady state discharge is investigated for an 
actual facility.  A ramp time of 40 seconds is found to reduce the maximum water surface level from 
40 cm to 9.4 cm and increase the minimum velocity in the system to 85% of the final steady state 
velocity. 
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INTRODUCTION 

 
 Wastewater treatment facilities are commonly built 
with multiple reservoirs that are connected through 
pipes.  The fluid with waste material is continuously 
moved from one reservoir to another with prescribed 
inflow at the upstream reservoir and outflow from the 
downstream reservoir.  As the system is started from 
rest the flow takes sometime to reach a steady state.  
During the initial unsteady phase, oscillations in the 
water surface levels in the two reservoirs and flow 
velocity in the pipe occur.  The velocity oscillations 
cause very low and sometimes negative velocity that 
may cause deposition of the waste material in the 
connecting pipe.  The oscillations in the water surface 
levels may adversely affect the operation and under 
certain conditions may cause overtopping of the 
upstream reservoir.  The classical solution of the water 
surface oscillations in a two-reservoir system[3], which 
is based on the rigid mass theory, is not valid for 
predicting oscillation pattern in the two reservoirs with 
through flow.  Therefore, the full mass and momentum 
conservation equations based on the elastic properties 
of the fluid and pipe must be solved numerically. 
 In this study, the mass and momentum 
conservation equations are solved using the method of 
characteristics.  Appropriate boundary conditions for 
the upstream and downstream reservoirs are devised to 
obtain solution for the two-reservoir problem with 

through flow.  The method is applied to predict the 
unsteady flow pattern in a real water treatment plant 
due to the start of a through flow.  The results of water 
surface oscillation in the upstream and downstream 
reservoirs, the maximum and minimum velocities in the 
pipe, and the time it takes for the system to reach steady 
state are discussed.  A method that can be easily 
adopted to reduce the amplitude of the water surface 
oscillations and increase the minimum velocity in the 
system is discussed. 
 
Rigid mass theory: The water surface oscillations 
pattern in a two-reservoir system resulting from an 
initial perturbation of the water surface level has been 
solved traditionally using the mass and momentum 
equations.  The mass and momentum equations used for 
this analysis are derived assuming the mass in the 
connecting pipe acts as a solid body.  This means the 
whole mass is assumed to move as a single unit with a 
single velocity throughout the fluid system.  The pipe 
friction acts as a damping factor that reduces the 
amplitude of the velocity and water surface oscillations 
with time.  The situation is depicted in Fig. 1.  The 
equations used to predict the oscillations of the water 
surface and velocity in a two-reservoir system can be 
found in any fluid mechanics book[3] and are given 
below 
 

1 1 2 2Z A Z A ZA= =                 (1) 
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where t  is time, 1Z  and 2Z  are the water surface 
elevations in the two reservoirs with respect to the 
equilibrium position, 1A  and 2A  are the surface areas 
of the two reservoirs, Z  and A  are the water surface 
elevation and area in the connecting pipe, f  is the 
friction factor, L  is the length of the pipe, eL  is the 
equivalent length of the pipe, i.e., length of the pipe 
plus additional length to account for minor losses, and 
V  is the velocity of the water mass in the pipe. 
 

 
Fig. 1: Schematic of water level oscillations in two 

reservoirs 
 
 Equations (2) and (3) can be solved for Z  and V  
using any numerical scheme, e.g. fourth order Runge-
Kutta method.  Equation (1) is then used to determine 
the corresponding change in water surface level in the 
two reservoirs.  The solution of these equations is 
oscillatory in nature with pipe friction providing 
damping. 
 In this study, a two-reservoir problem is revisited 
with through flow that occurs in most water treatment 
plants.  The mass and momentum conservation 
equations are used to model oscillations pattern that sets 
up due to the start of a through flow.  In addition, the 
velocity oscillations pattern within the connecting pipe 
is determined that will provide flow development time 
within the pipe. 
 

 
Fig. 2: Rectangular grid for the method of 

characteristics 
 
Mass and momentum conservation equations: The 
mass and momentum conservation equations based on 
the elastic properties of the fluid and pipe, as given by 
Streeter et al. [4], are given below 
 

21 1 0p p Va
t s sρ ρ

∂ ∂ ∂
+ + =

∂ ∂ ∂
                (4) 
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∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂
              (5) 

 
where s  is the distance along the pipe; ρ  is the density 
of the fluid; p is the pressure; z is the pipe elevation; 
and a  is the wave propagation speed that depends on 
the properties of the fluid (density and bulk modulus of 
elasticity), pipe (modulus of elasticity, pipe wall 
thickness, and diameter), and the way the pipe is 
anchored[2].  The mass and momentum equations 
describe the variation of velocity and pressure along the 
whole length of the pipe.  These equations can be 
solved using the method of characteristics.  The 
discretized form of the positive and negative 
characteristic equations, based on equations described 
above, can be easily obtained (see for example 
Watters[5]) and are given below 
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where H  represents the piezometric head or the 
elevation of the hydraulic grade line, s∆  is the size of 
the spatial discretization, and t∆  is the size of the 
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temporal discretization.  The two equations described 
above have two unknowns, velocity and piezometric 
head, at time ( )1n t+ ∆  and can be determined 
explicitly from the values at the previous time step, 
n t∆ , as shown in Fig. 2.  The equations for determining 
the velocity and piezometric head at the new time level 
for all the interior nodes are given below 
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where 
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The friction factor, f , can be modified to include the 
minor losses within a computational cell.  The modified 
friction factor is applied only to the side where a minor 
loss exists.  If K  is the minor loss coefficient, the 
modified friction factor is given by 
 

Df f K
s

′ = +
∆

               (14) 

 
The friction factors for the left and right cells are 
calculated based on the average velocity within these 
cells at the previous time step. 
 To calculate the velocity for the prescribed 
piezometric heads at the upstream and downstream 

ends, that is at nodes 1 and N , the following two 
equations are used, respectively 
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The values of RH , RV , LH , and LV  are calculated 
using the equations given above.    The piezometric 
heads at nodes 1 and N  are calculated from the 
reservoir elevations at the end of the previous time step.  
The water surface elevations of the two reservoirs at the 
end of each time step are calculated as follows 
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where inQ  is the inflow rate into the upstream reservoir 
and outQ  is the outflow rate from the downstream 
reservoir.  The outflow rate is calculated based on the 
water surface level at the previous time step in the 
downstream reservoir. 
 To simulate the classical problem of oscillations of 
water levels in the two reservoirs, the inflow and 
outflow in the above equations are ignored.  To 
simulate the case of through flow, the inflow rate and a 
function relating the outflow rate to the water surface 
elevation in the downstream reservoir must be known.  
The inflow discharge, which can be constant or time 
varying, is usually controlled and known.  The outflow 
from the reservoir can be controlled by weir or pumped 
at a known rate.  In this study, it is assumed that the 
inflow is steady and known and the outflow is over a 
sharp crested weir.  A sharp crested weir formula that 
relates discharge to the head over the weir is used with 
a coefficient of discharge of 0.6. 
 

Classical Two Reservoir Oscillations Problem 
  
 The aim of this test is to compare the solution of 
the classical method with the full mass and momentum 
equations, which are solved using the method of 
characteristics.  For this test, the upstream reservoir is 
20 square meters and the downstream reservoir is 30 
square meters.  The two reservoirs are connected by a 
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700-m long, 0.6-m internal diameter, 1.5-cm thick PVC 
pipe.  The friction factor is assumed constant 
throughout the simulation at 0.015, however, the 
variation of friction factor with Reynolds number can 
be easily incorporated in the solution procedure.  The 
value of the wave speed, a , is calculated to be about 
288 m/s.  The water level in the upstream reservoir is 
perturbed 15.0 m above the equilibrium position.  The 
resulting solutions from the classical method and the 
method of characteristics, with wave speed of 288 m/s, 
400 m/s, and 1232 m/s, are shown in Fig. 3.  The results  
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Fig. 3: Water surface variation in the upstream 

reservoir 
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Fig. 4: Velocity variation in the pipe at the center of 

the pipe 
 
show that as the wave speed increases the solution from 
the elastic theory approaches that of the classical 
theory.  The wave speed of 1232 m/s is for a pipe 
fabricated of steel.  All the wave speeds are calculated 
assuming the pipe is rigidly anchored with no axial 

strain.  Fig. 3 shows that the classical solution is an 
approximation of the full elastic theory with a large 
wave speed.  For small wave speed, there is a phase 
shift as well as amplitude increase in the water surface 
oscillations compared to the classical solution.  The 
velocity variations with time obtained from the two 
methods for various wave speeds at the middle of pipe 
(point 3 in Fig. 1) are shown in Fig. 4.  For the classical 
method the whole water mass within the pipe is moving 
with the same velocity, whereas in the case of the 
method of characteristics, the velocity variation with 
time shown in Fig. 4 is at the center of the pipe.  For 
small wave speed, the velocity oscillations are out of 
phase compared to the solution obtained from the 
classical method, however the amplitude compares 
quite well. 
 

Reservoir Oscillations Due to Through Flow 
 
 Next, the full mass and momentum equations are 
solved to determine the oscillations pattern of the water 
surfaces in the reservoirs and the velocity in the pipe 
due to the start of a through flow.  The example 
selected is based on the set up of an actual water 
treatment plant with an upstream reservoir area of 2.42 
m2 and a downstream reservoir area of 965 m2.  Both 
reservoirs are circular in shape.  The length of the cast 
iron pipe connecting the two reservoirs is 42.7 m, with 
pipe diameter of 76.2 cm (2.5 feet), and wall thickness 
of 22 mm.  The wave speed through the pipe, assuming 
rigidly anchored pipe with no axial strain, is calculated 
to be 3990 m/s.  The design flow through the system is 
710 cubic meters per hour (4.5 millions gallons per 
day).  The friction factor during the solution process is 
calculated based on the steady flow condition using the 
explicit equation given by Haaland[1].  The equation is 
valid for the Reynolds number between 40000 and 810 .  
For the above pipe size, the minimum velocity for 
which this equation can be used is about 5 mm/s and 
the Reynolds number for final steady state velocity 
(maximum velocity in the pipe) is 53.1 10× , which is 
well below the maximum Reynolds number.  The 
friction factor based on the final steady state velocity is 
0.0167. 
 The outflow from the downstream reservoir is over 
a sharp crested weir extending over the whole 
circumference of the reservoir.  However, other types of 
outflows, such as a limited length of weir, spillway, or 
water pumped out at constant rate, etc., can be easily 
incorporated.  Simulations are performed for the above 
scenario using a variable friction factor (i.e., friction 
factor for each cell is calculated based on the average 
velocity in the cell) and a constant friction factor of 
0.0167 throughout the development period.  Fig. 5 
shows the variation of the computed water surface 
oscillations in the upstream reservoir for a constant and 
variable friction.  The results show that the oscillations 
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of water surface level have slightly higher amplitude in 
the case of variable friction.  The variable friction has 
no impact on the wavelength of the oscillations.  The 
computed velocity variation at the middle of the 
connecting pipe shows similar trend.  The results show 
that the impact of a variable friction is negligible. 
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Fig. 5: Effect of friction on water surface oscillations 

in the upstream reservoir 
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Fig. 6: Water surface oscillation in upstream and 

downstream reservoirs 
 

Fig. 6 shows the variation of the computed water 
surface level in the upstream and downstream 
reservoirs.  Due to a larger surface area of the 
downstream reservoir and outflow over the weir, the 
oscillations in the downstream reservoir are almost 
negligible when compared to the upstream reservoir.  In 
the upstream reservoir, the maximum water surface 
level is 0.39 m above the initial level and the minimum 
level is -0.33 m below the initial level.  The final 
stabilized water level is 0.012 m above the initial water 
level.  These values compare very well with the field 

observations.  The computed velocity variations with 
time at the middle of the pipe are shown in Fig. 7.  The 
maximum velocity is 0.83 m/s, the minimum velocity 
after the first peak is 0.059 m/s, and the final steady 
state velocity is 0.432 m/s.  As the maximum velocity 
will mobilize solids in the flow, a very low velocity 
following a peak velocity may cause sudden deposition 
and operational difficulties. 
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Fig. 7: Variation of velocity at the center of the pipe 

 
The computed results show that the maximum 

water surface level is about 32.5 times higher than the 
final steady state water surface level, while the 
minimum velocity that occurs after the first peak is 
about 13.7% of the final steady state velocity.  To 
improve the operating conditions, i.e., reduce the water 
surface oscillation and increase the minimum velocity 
magnitude occurring after the first peak, two options 
are available.  The first option is to increase the surface 
area of the upstream reservoir, which may prove costly 
for the existing water treatment plants and even for new 
reservoirs.  The second option is to increase the flow 
rate slowly to the final steady state inflow rate.  
However, the time span of flow increase and the 
manner in which the flow increase is achieved are open 
to selection. 

In this study, a linear increase in discharge from 
zero to the prescribed discharge for different time span 
is analyzed.  The results are shown in Figs. 8 and 9.  
Fig. 8 shows an exponential type decay of the 
maximum water surface level in the upstream reservoir 
with increase in time over which the linear increase in 
the discharge takes place.  For example, if the flow 
increase from zero to the prescribed value is achieved 
in 40 seconds, the maximum water surface level above 
the initial level is reduced to 9.4 cm compared to 39 cm 
for the original case.  The figure also shows that a 
major reduction in the maximum water surface level is 
achieved in the first 40 seconds.  Fig. 9 shows the 
variation of minimum velocity at the center of the pipe 
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with change in flow increase time.  The minimum 
velocity reported is the one achieved after the first peak 
in the velocity.  The figure shows that if the flow 
increase is achieved in 40 seconds, the minimum 
velocity in the system after the first peak is 36 cm/s and 
is 83% of the final steady state velocity.  Thus a flow 
increase time of 40 seconds is adequate for the present 
study.  It should be mentioned that the results are valid 
for the set up discussed in this work, however, analysis 
can be carried out for different configuration by 
adapting the present methodology. 
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Fig. 8: Maximum water surface level in upstream 

reservoir 
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Fig. 9: Minimum velocity at the middle of the pipe 
 

 
 
 
 
 
 

CONCLUSIONS 
 

The full mass and momentum conservation 
equations based on the elastic theory are solved using 
the method of characteristics for predicting the water 
surface and velocity oscillations, for a two-reservoir 
system connected by a pipe, due to the start of a 
through flow.  Appropriate boundary conditions are 
devised for obtaining the solution.  As a first step, the 
solution obtained using the elastic theory is compared 
to the classical solution for the variation of the water 
surface elevation in a U-tube resulting from an initial 
forced difference in the water level.   The method is 
then used to predict the water surface level and velocity 
oscillations in an existing system due to the start of a 
through flow.  The results show that the maximum 
water surface level in the upstream reservoir is about 
32.5 times the final steady state water surface level and 
the minimum velocity after the first peak velocity is 
13.7% of the final steady state velocity. 
 In order to improve the operating conditions, a 
linear increase in discharge from zero to the prescribed 
value is investigated.  The results show that a 
significant reduction in maximum water surface level 
and increase in minimum velocity after the first peak 
velocity can be obtained if the discharge is increased 
linearly to the design discharge in 40 seconds.  The 
minimum velocity is increased from 13.6% to 85% of 
the final steady state velocity and the maximum water 
surface level is reduced from 39 cm to 9.4 cm above the 
initial water level.  Although the results obtained are 
valid only for the system analyzed in this study, the 
methodology developed can be adopted effectively for 
other systems both for analysis and rectification. 
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