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Abstract: Problem statement: The content of this note was to assess the forecasting accuracy of 
various models of the Spanish stock market returns. Approach: We use daily data on the IBEX 35 for 
the time period January 4th, 2001-March 28th, 2006 and employ both fractional and non-fractional 
models. Results: The results on the prediction errors for the out-of-sample forecasts indicate that the 
fractional models outperform the non-fractional ones. Conclusion: Standard forecasting criteria 
suggest that the ARFIMA (1, d, 0) model with d = -0.017 and the AR (1) coefficient equal to 0.068 is 
the best specification for this series. That implies that the stock market prices display a very small 
degree of mean reversion behavior. 
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INTRODUCTION 

 
 According to the Efficient Market Hypothesis 
(EMH) in its weak form, asset returns incorporate all 
relevant information and hence, when conditioning on 
historical returns, future asset returns should be 
unpredictable (Fama, 1970). However, if asset returns 
display long memory, they exhibit persistent 
dependence between observations far away in time, 
which is inconsistent with EMH since past prices can 
help predict future prices.  
 This note investigates the stochastic behavior of the 
Spanish stock market using fractional and nonfractional 
models. For the former it is assumed that degree of 
differencing required to get I (0) stationary returns in 
logs is a real value, whilst the latter are specified as 
stationary Auto Regressive Moving Average (ARMA) 
models, that is, we assume that the returns are I (0). 
 A lot of the literature claims that stock market 
prices are no stationary I (1) and, therefore, that stock 
market returns are stationary I (0) (Shamiri and Isa, 
2009). However, as Caporale and Gil-Alana (2002) and 
Sowell (1992) stress, the unit root tests normally 
employed impose too restrictive assumptions on the 
behavior of the series of interest, in addition to having 
low power. These authors suggest instead using tests 
which allow for fractional alternatives. The fractionally 
integrated models have been already used in financial 
time series analysis (Cheong, 2008). Here, we follow 

the same approach and consider the possibility that 
Spanish stock returns might be fractionally integrated. 
  

MATERIALS AND METHODS 
 
 We use the Spanish stock market IBEX 35 for the 
time period January 4th, 2001-28th March, 2006, 
leaving out the last 20 observations (March 1st, 2006-
March 28th, 2006) for forecasting purposes. The IBEX 
35 is a value-weighted index that includes the 35 most 
traded stocks on the Spanish stock market. Every six 
months, the effective trading volumes of all stocks are 
analyzed in order to adjust their weights and compute 
the index for the following six months. The analysis is 
based on daily stock market closing prices and, as 
standard in the literature, stock returns are calculated as 
100×(log Pt-log Pt-1), where Pt is the stock market index 
at closing daily dates in period t. 
 

RESULTS 
 
 First, we estimate the order of integration in the 
stock market returns, in the time and in the frequency 
domain, assuming that the differenced process is white 
noise. In the time domain, we use Sowell (Peters, 1994) 
procedure based on maximum likelihood estimation, 
while in the frequency domain we use a Whittle 
approximation (Dahlhaus, 1989). In both cases we 
obtain an estimate of 0.024. This implies that the log of 
IBEX is I (d) with d slightly above 1(1.024). Moreover, 
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the null hypothesis of I (0) returns is rejected at the 5% 
significance level, though not at the 10%.  
 As an alternative approach, we next assume that 
the log IBEX is I (1) and look at different ARMA (p,q) 
models for the first differences (returns). We estimate 
models with p and q equal to or smaller than 3 and the 
best specification (according to various likelihood 
criteria) seems to be an AR (1) process, though the AR 
coefficient is very close to 0(0.05105). As a third 
possibility, we consider the case of a fractional I (d) 
process with the disturbances being weakly auto 
correlated. In such a case, the chosen model is an 
ARFIMA (1, d, 0), with d equal to-0.017 and the AR 
coefficient again very close to 0 (0.06881). Here, 
according to this approach, the null hypothesis of I (0) 
returns cannot be rejected at conventional statistical 
levels. Specifically, the three selected models are: 

 
• Model A: 0.024

t t(1 L) x− = ε  

• Model B: t t 1 tx 0.051x−= + ε  

• Model C: 0.017
t t t t 1 t(1 L) x u ; u 0.068u−

−− = = + ε  
 
in all cases with white noise εt. 
 Table 1 shows the 1-20 period-ahead prediction 
errors for the three specifications above. It can be seen 
that Model B produces the lowest prediction error only 
1-period ahead. In the remaining cases lower errors are 
obtained with the fractional models (A and C). 
 Next, we compare the three models in terms of 
various forecasting criteria. The accuracy of different 
forecasting methods is a topic of continuing interest and 
research (Ibrahim et al., 2009; Harvey et al., 1997; 
Makridakis and Hibon, 2000), for a summary and 
review of forecasting competition). Standard measures 
of forecast accuracy are the following: Theil’s U, the 
Mean Absolute Percentage Error (MAPE), the Mean-
Suared Error (MSE), the Root-Mean-Squared Error 
(RMSE), the Root-Mean-Percentage-Squared Error 
(RMPSE) and Mean Absolute Deviation (MAD) (Witt 
and Witt, 1992). Let yt be the actual value in period t; ft 

the forecast value in period t and n the number of 
periods used in the calculation (in our case, 20). Then: 
 

• Theil’s U: 
( )

( )

2

t f

2

t t 1

y f

x x −

−

−

∑
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• Mean Absolute Percentage Error (MAPE): 

( )t t tx f / x

n

−∑  

• Mean Squared Error (MSE): 
( )2

t tx f

n

−∑  

Table 1: Prediction errors of the selected models 
Period Model A Model B Model C 
1 0.0135523658 0.0133796312 0.0142780738 
2 -0.0080015361 -0.0078249045 -0.0076481868 
3 -0.0050211195 -0.0045752666 -0.0044408152 
4 -0.0000518086 0.0002891424 0.0004175665 
5 -0.0051789829 -0.0049274639 -0.0048039942 
6 -0.0065236748 -0.0061807701 -0.0060622157 
7 0.0057446342 0.0060354770 0.0061493684 
8 0.0056523844 0.0061521880 0.0062618228 
9 0.0057205306 0.0062327660 0.0063384972 
10 -0.0016277772 -0.0008783640 -0.0007761531 
11 0.0004852574 0.0009036900 0.0010026038 
12 0.0009654163 0.0014172310 0.0015131503 
13 0.0004531243 0.0008763280 0.0009694912 
14 0.0038031118 0.0041269410 0.0042175460 
15 0.0005364111 0.0009557590 0.0010440233 
16 0.0008390153 0.0015239690 0.0016101056 
17 -0.0042191888 -0.0038058880 -0.0037218041 
18 0.0035679138 0.0040401390 0.0041223331 
19 -0.0099241473 -0.0096495660 -0.0095692249 
20 -0.0058341022 -0.0055391480 -0.0054604956 

 
Table 2: Forecasting criteria with a time horizon of 20 periods 
 Model A Model B Model C 
MAPE 0.8941656477 1.0381058509 0.9990610372 
MSE 0.0000311247 0.0000318911 0.0000308051 
RMSP 0.3961572101 0.4788347112 0.0000000001 
RMSE 0.0055789575 0.0056472281 0.0055502341 
MAD 0.0043851253 0.0045203738 0.0044657316 
U Theil 0.5969771102 0.5191564002 0.5014857370 

 
• Root-Mean-Percentage-Squared Error (RMSP): 

( )2

t t tx f / f

n

−∑  

• Root-Mean-Squared Error (RMSE): 
( )2

t tx f

n

−∑  

• Mean Absolute Deviation (MAD): t tx f

n

−∑  

 
 Table 2 shows the results based on the above 
criteria. We note that, according to the MAPE and 
MAD, the pure fractional model (Model A) seems to be 
the best specification. However, based on the other 
criteria, the fractional auto regression (Model C) 
appears to be the most appropriate one. In any case, 
these statistical criteria indicate that the fractional 
models (with or without weak autocorrelation) 
outperform the non-fractional model B in all cases. 

 
DISCUSSION 

 
 The results presented so far as based on criteria 
which are purely descriptive devices. Several statistical 
tests for comparing different forecasting models are now 
available. One of them, widely employed in the time 
series literature, is the asymptotic test for a zero expected 
loss differential due to (Diebold and Mariano, 1995).  
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Table 3: Modified DM statistic: 20-step ahead forecasts 
 Model A Model B Model C 
Model A X -1.040 -1.092 
Model B X X -1.034 
Model C X X X 

 
Harvey et al. (1997) note that the DM test statistic 
could be seriously over-sized as the prediction horizon 
increases and therefore provide a modified Diebold-
Mariano test statistic given by: 
 

n 1 2h h (h 1) / n
M DM DM

n

+ − + −− =  

 
Where: 
DM = The original Diebold-Mariano statistic 
h = The prediction horizon 
n = The time span for the predictions 
 
 Using the M-DM test statistic based on the RMSE 
loss function, we further evaluate the relative forecast 
performance of the three models by making pair wise 
comparisons considering a 20-period horizon. The 
results are shown in Table 3. The evidence points out in 
favor of Model C as the best specification though none 
of the three statistics are statistically significant. The 
same happens when other loss functions are employed. 
 

CONCLUSION 
 
 In this note we have examined the forecasting 
ability of various fractional and non-fractional models 
to describe the stochastic behaviour of the Spanish 
stock market returns. The results show that the 
fractional models outperform the non-fractional one in 
practically all cases. Moreover, the fact that the order of 
integration is found to be slightly different from zero 
suggests that there is some degree of forecast ability in 
the stock market returns, which can be seen as evidence 
against the Efficient Market Hypothesis (Fama, 1970) 
and rather in line with the Fractional Market Hypothesis 
of (Peters, 1994).  
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