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Abstract: Problem statement: Ffrequent patterns are patterns that appear in a data set frequently. 
Finding such frequent patterns plays an essential role in mining associations, correlations and many 
other interesting relationships among data. Approach: Most of the previous studies adopt an Apriori-
like approach. For huge database it may need to generate a huge number of candidate sets. An interest 
solution is to design an approach that without generating candidate is able to mine frequent patterns. 
Results: An interesting method to frequent pattern mining without generating candidate pattern is 
called frequent-pattern growth, or simply FP-growth, which adopts a divide-and-conquer strategy as 
follows. However, for a large database, constructing a large tree in the memory is a time consuming 
task and increase the time of execution. In this study we introduce an algorithm to generate frequent 
patterns without generating a tree and therefore improve the time complexity and memory complexity 
as well. Our algorithm works based on prime factorization and is called Prime Factor Miner (PFM). 
Conclusion/Recommendations: This algorithm is able to achieve low memory order at O(1) which is 
significantly better than FP-growth. 
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INTRODUCTION 

 
 Frequent patterns are patterns (such as itemsets, 
subsequences, or substructures) that appear in a data set 
frequently. For example, a set of items, such as milk 
and bread that appear frequently together in a 
transaction data set is a frequent itemset. A 
subsequence, such as buying first a PC, then a digital 
camera and then a memory card, if it occurs frequently 
in a shopping history database, is a (frequent) 
sequential pattern. Finding such frequent patterns plays 
an essential role in mining associations, correlations 
and many other interesting relationships among data. 
Moreover, it helps in data classification, clustering and 
other data mining tasks as well. Thus, frequent pattern 
mining has become an important data mining task and a 
focused theme in data mining research (Patel et al., 
2005; Ren et al., 2006; Verkhovsky, 2009; Zubair 
Rahman and Balasubramanie, 2008). 
 Frequent itemset mining leads to the discovery of 
associations and correlations among items in large 
transactional or relational data sets. With massive 
amounts of data continuously being collected and 
stored, many industries are becoming interested in 
mining such patterns from their databases. The 

discovery of interesting correlation relationships among 
huge amounts of business transaction records can help 
in many business decision-making processes, such as 
catalog design, cross-marketing and customer shopping 
behaviour analysis. 
 A typical example of frequent itemset mining is 
market basket analysis. This process analyzes customer 
buying habits by finding associations between the 
different items that customers place in their “shopping 
baskets”. The discovery of such associations can help 
retailers develop marketing strategies by gaining insight 
into which items are frequently purchased together by 
customers. For instance, if customers are buying milk, 
how likely are they to also buy bread (and what kind of 
bread) on the same trip to the supermarket? Such 
information can lead to increased sales by helping retailers 
do selective marketing and plan their shelf space. 
 

MATERIALS AND METHODS 
 
 Most of the previous studies adopt an Apriori-like 
approach, which is based on the anti-monotone 
Apriori heuristic: “If any length k pattern is not 
frequent in the database, its length (k+1) super-pattern 
can never be frequent”. 
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 The essential idea is to iteratively generate the set 
of candidate patterns of length (k+1) from the set of 
frequent-patterns of length k (for k≥1) and check their 
corresponding occurrence frequencies in the database. 
The Apriori candidate generate-and-test method 
significantly reduces the size of candidate sets, leading 
to good performance gain. However, it suffers from two 
nontrivial costs: 
 
• It may need to generate a huge number of 

candidate sets. For example, if there are 104 
frequent 1-itemsets, the Apriori algorithm will need 
to generate more than 107 candidate 2-itemsets. 
Moreover, to discover a frequent pattern of size 
100, such as {a1…a100}, it has to generate at least 
2100-1~1030 candidates in total 

• It may need to repeatedly scan the database and 
check a large set of candidates by pattern matching. 
It is costly to go over each transaction in the 
database to determine the support of the candidate 
itemsets 

 
 Can we design a method that mine the complete set 
of frequent itemsets without candidate generation? An 
interesting method in this attempt is called frequent-
pattern growth, or simply FP-growth, which adopts a 
divide-and-conquer strategy as follows. First, it 
compresses the database representing frequent items 
into a frequent-pattern tree, or FP-tree, which retains 
the itemset association information. It then divides the 
compressed database into a set of conditional databases 
(a special kind of projected database), each associated 
with one frequent item or “pattern fragment,” and 
mines each such database separately. The FP-growth 
method transforms the problem of finding long frequent 
patterns to searching for shorter ones recursively and 
then concatenating the suffix.  
 When the database is large, it is sometimes 
unrealistic to construct a main memory based FP-tree. 
An interesting alternative is to first partition the 
database into a set of projected databases and then 
construct an FP-tree and mine it in each projected 
database. Such a process can be recursively applied to 
any projected database if its FP-tree still cannot fit in 
main memory. A study on the performance of the FP-
growth method shows that it is efficient and scalable for 
mining both long and short frequent patterns and is 
about an order of magnitude faster than the Apriori 
algorithm. It is also faster than a tree-projection 
algorithm, which recursively projects a database into a 
tree of projected databases. 
 FP-growth uses the least frequent items as a 
suffix, offering good selectivity. The method 
substantially reduces the search costs. For the given 
suffix like “I j” FP-growth finds all possible prefix for 

“I j” which their support count is greater than minimum 
support count. But for this operation a tree must be 
created and updated which for large database it needs 
high amount of memory. 
 This study is to design an approach for the frequent 
pattern mining without candidate generation which is 
efficient and fast even for large database. The most 
significant benefit of this approach is low memory 
complexity as compared to FP-growth. Our approach 
called Prime Factor Miner (PFM) is similar to FP-
growth where the least frequent item is candidate as a 
suffix then all frequent patterns which end with the 
given suffix are generated. The PFM is based on the 
prime factorization from the number theory and does 
not require the creation of a tree structure. 
 This study is organized as follows. First the related 
study is presented and the FP-growth algorithm is 
discussed and explained by an example. After that our 
proposed approach is presented while result section 
presents the result and discuss about time and memory 
complexity. Discussion and conclusion are given in the 
final sections. 
  
Related study: We have categorized previous studies 
into two parts. The first part focuses on the FP-growth 
algorithm and explains the algorithm through example 
while the second part focuses on some previous works 
related to this study. 
 
FP-growth algorithm: For this part we examine the 
FP-growth algorithm over a hypothetical dataset for a 
sailing company. This example is picked up from the 
textbook Data-Mining Concepts and Techniques (Han 
and Kamber, 2006). The dataset is a collection of 
transaction records. Each transaction has a unique ID 
and each item is represented by an index Ij. The dataset 
is represented in Table 1. 
 The algorithm starts with the first scan of the 
database which derives the set of frequent items (1-
itemsets) and their support counts (frequencies).Let the 
minimum support count is 2. The set of frequent items 
is sorted in the order of descending support count. This 
resulting set or list is denoted as L. Thus, we have: 
 

L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2} 
 
 An FP-tree is then constructed as follows. First, 
create the root of the tree, labeled with “null”. Scan 
database D a second time. The items in each transaction 
are processed in L order (i.e., sorted according to 
descending support count) and a branch is created for 
each transaction. 
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Table 1: Transactional data for a sailing company 
TID List of items IDs 
T100 I1, I2, I5 
T200 I2, I4 
T300 I2, I3 
T400 I1, I2, I4 
T500 I1, I3 
T600 I2, I3 
T700 I1, I3 
T800 I1, I2, I3, I5 
T900 I1, I2, I3 

 

 
 
Fig. 1: An FP-tree registers compressed, frequent 

pattern information 
 
 For example, the scan of the first transaction, 
“T100: I1, I2, I5,” which contains three items (I2, I1, I5 
in L order), leads to the construction of the first branch 
of the tree with three nodes, <I2:1>, <I1:1> and  
<I5: 1>, where I2 is linked as a child of the root, I1 is 
linked to I2 and I5 is linked to I1. The second 
transaction, T200, contains the items I2 and I4 in L 
order, which would result in a branch where I2 is linked 
to the root and I4 is linked to I2. However, this branch 
would share a common prefix, I2, with the existing path 
for T100. Therefore, besides of incrementing the count 
of the I2 node by 1, a new node, <I4:1> is created 
which is linked as a child of <I2:2>.  
 In general, when considering the branch to be 
added for a transaction, the count of each node along a 
common prefix is incremented by 1 and nodes for the 
items following the prefix are created and linked 
accordingly. 
 To facilitate tree traversal, an item header table is 
built so that each item points to its occurrences in the 
tree via a chain of node-links. The tree obtained after 
scanning all of the transactions is shown in Fig. 1 with 
the associated node-links. In this way, the problem of 
mining frequent patterns in databases is transformed to 
that of mining the FP-tree.  

Table 2: Mining the FP-tree by creating conditional (sub-) pattern 
bases   

 Conditional Conditional Frequent 
Item pattern base FP-tree pattern 
I5 {{I2, I1: 1}, <I2: 2, I1: 2> {I2, I5: 2}, 
 {I2, I1, I3: 1}}  {I1, I5: 2}, 
    {I2, I1, I5: 2} 
I4 {{I2, I1: 1}, {I2:1}} <I2: 2> {I2, I1:2} 
I3 {{I2, I1: 2}, <I2: 4, I1: 2>, {I2, I3: 4}, 
 {I2: 2}, <I1: 2> {I1, I3: 4}, 
 {I1: 2}}   {I2, I1, I3: 2} 
I2 {{I2: 4}} <I2: 4> {I2, I1: 4} 

 
 The FP-tree is mined as follows: Start from each 
frequent length-1 pattern (as an initial suffix pattern); 
construct its conditional pattern base (a “subdatabase” 
which consists of the set of prefix paths in the FP-tree 
co-occurring with the suffix pattern), then construct its 
(conditional) FP-tree and perform mining recursively 
on such a tree. The pattern growth is achieved by the 
concatenation of the suffix pattern with the frequent 
patterns generated from a conditional FP-tree. Mining 
of the FP-tree is summarized in Table 2.  
 We first consider I5, which is the last item in L, 
rather than the first. The reason for starting at the end of 
the list will become apparent as we explain the FP-tree 
mining process. I5 occurs in two branches of the FP-
tree of Fig. 1. (The occurrences of I5 can easily be 
found by following its chain of node-links.) The paths 
formed by these branches are <I2, I1, I5: 1> and  
<I2, I1, I3, I5: 1>. Therefore, considering I5 as a suffix, 
its corresponding two prefix paths are <I2, I1: 1> and 
<I2, I1, I3: 1>, which form its conditional pattern base. 
Its conditional FP-tree contains only a single path,  
<I2: 2, I1: 2>; I3 is not included because its support 
count of 1 is less than the minimum support count. The 
single path generates all the combinations of frequent 
patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.  
 For I4, its two prefix paths form the conditional 
pattern base, {{I2 I1: 1}, {I2: 1}}, which generates a 
single-node conditional FP-tree, <I2: 2> and derives 
one frequent pattern, <I2, I1: 2>. Similar to the above 
analysis, I3’s conditional pattern base is {{I2, I1: 2}, 
{I2: 2}, {I1: 2}}. Its conditional FP-tree has two 
branches, <I2: 4, I1: 2> and <I1: 2>, as shown in Fig. 1, 
which generates the set of patterns, {{I2, I3: 4}, {I1, I3: 
4}, {I2, I1, I3: 2}}. Finally,  
I1’s conditional pattern base is {{I2: 4}}, whose FP-
tree contains only one node, <I2: 4>, which generates 
one frequent pattern, <I2, I1: 4>.  
 
Pervious works: FP-growth (Han et al., 2000) is a 
well-known algorithm that uses the FP-tree data 
structure to achieve a condensed representation of the 
database transactions and employs a divide-and-conquer 
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approach to decompose the mining problem into a set of 
smaller problems. In essence, it mines all the frequent 
itemsets by recursively finding all frequent itemsets in 
the conditional pattern base which is efficiently 
constructed with the help of a node link structure. A 
variant of FP-growth is the H-mine algorithm (Pei et al., 
2001). It uses array-based and trie-based data structures 
to deal with sparse and dense datasets, respectively. 
Patricia Mine (Pietracaprina and Zandolin, 2003) 
employs a compressed Patricia trie to store the datasets. 
FP-growth (Grahne and Zhu, 2003) uses an array 
technique to reduce the FP-tree traversal time. In FP-
growth based algorithms, recursive construction of the 
FP-tree affects the algorithm’s performance. 
 Eclat (Zaki et al., 1997) is the first algorithm to 
find frequent patterns by a depth-first search and it has 
been devised to perform well. It uses a vertical database 
representation and counts the itemset supports using the 
intersection of tids. However, because of the depth-first 
search, pruning used in the Apriori algorithm is not 
applicable during the candidate itemsets generation. 
The Eclat (Zaki et al., 1997) uses the vertical database 
representation. They store the difference of tids called 
diffset between a candidate k itemset and its prefix k-1 
frequent itemsets, instead of the tids intersection set. 
They compute the support by subtracting the cardinality 
of diffset from the support of its prefix k-1 frequent 
itemset. This algorithm has been shown to gain 
significant performance improvements over Eclat 
(Grahne and Zhu, 2003). However, when the database 
is sparse, diffset will lose its advantage over tidset. 
 VIPER (Shenoy et al., 2000) and Mafia (Burdick 
et al., 2005) also use the vertical database layout and 
the intersection to achieve a good performance. The 
only difference is that they use the compressed 
bitmaps to represent the transaction list of each 
itemset. However, their compression scheme has 
limitations especially when tids are uniformly 
distributed. The search strategy of the algorithm 
integrates a depth-first traversal of the itemset lattice 
with effective pruning mechanisms that significantly 
improve mining performance. 
 The dEclat algorithm (Zaki and Gouda, 2003) 
makes use of the vertical database representation where 
each item maintains a set of transaction ids where this 
item is contained. They store the difference of ids, 
called the diffset, between the candidate itemset and its 
prefix frequent itemsets, instead of the ids intersection 
set. They    compute   the   support   by    subtracting the 
cardinality of diffset from the support of its prefix 
frequent itemset. 

Table 3: Variable and their definition 
Symbol List of items IDs 
L Set of all frequent itemsets with length 1. 
SUP Support count of an itemset like “T” or an item like “I”. 
T A pattern or itemset like {a, b, c}. 
M Set of all possible patterns or itemsets. 
FP A frequent pattern like “T” which SUP (T) 
  > minimum support. 
Fj Set of all frequent patterns which end with “Ij”. 
F Set of all possible frequent patterns (Definition 2.5) 
  over the set “M” (Definition 2.3). 
Fi Set of all frequent patterns which their last item is “Ij ∈ L”. 
Ij An item 

 
The proposed approach: The fundamental theorem 
of arithmetic says that every positive integer has a 
unique prime factorization. What the FP-growth does 
is getting a common suffix and then extracts all 
possible prefixes and after joining them to the suffix a 
frequent pattern is created. In the FP-growth algorithm 
it is not important that we are looking for all frequent 
patterns end to a particular suffix like “I5” or we want 
to extract all of the frequent patterns. In contrast with 
FP-growth our algorithm for mining of all frequent 
patterns end to a particular suffix like “I5”, does not 
create entire of the tree but just focuse on prefixes 
related to that particular suffix. 
 Without generating a tree, our algorithm called 
Prime Factor Miner (PFM) extracts the frequent 
prefixes and generates the frequent itemset which end 
with that suffix. In Table 3 all of the used symbols and 
acronyms which are used are presented.  
 The following provides some primitive definitions 
which are necessary to clarify the frequent pattern 
mining problem. 

 
Definition 1: “L” is defined as a set of all frequent 
itemsets with length 1 and is denoted as follows: 
 
L = {I1: SUP (I1), I2: SUP (I2), …, In: SUP (In)} 
 
Where: 
Ii = A frequent itemset with length 1 
“SUP(Ii)” = A support count of itemset 
 “Ii” = Greater than minimum support count 
“L” = Sorted descending based on support 

count, which means SUP (Ii) > SUP 
(Ii+1) 

 
 For instance referring to Table 1 the L set is  
{I2:7, I1:6, I3:6, I4:2, I5:2}. 
 
Definition 2: A pattern or itemset “T”  with length m is 
represented as T = {I1, I2, …, Im} such that “Ij” 
represents the item in “jth” position of “T”. For example 
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if T = {a, b, c} then “I1” is the item “a”. All of the 
patterns “Ti” is sorted in “L” order which means SUP 
(Ii) > SUP (I (i+1)). 
 
Definition 3: Set “M” is defined as a set of all patterns 
or itemsets which is also called the transaction table and 
is represented as:  
 
M = {T1, T2, …, Tn} 
 
 Where, “T” is a pattern or itemset (Definition 2.2).  
 
Definition 4: A frequent pattern “FP” is a pattern like  
T = {I1, I2, …, Ik} such that the “SUP (T)” is greater 
than minimum support count.  
 
Definition 5: The set “Fj” is defined as a set of all 
frequent patterns where their last item is “Ij” that  
“Ij ∈ L”. It means “Ij” is a suffix for all of the patterns in 
“Fj” set. For example if “I3” is “h” then “F3” is set of all 
frequent patterns like “abh” or “asdfh” where the last 
item is “h”. Note that when “i ≠ j” then “Fj∩Fi = ∅” 
which means there is no frequent pattern like “T” that at 
the same time ends with two different items “Ii” and “Ij”. 
 
Definition 6: The set “F” is a set of all possible 
frequent patterns (Definition 5) over the set M 
(Definition 3). It is clear that we can partition all of the 
frequent patterns or set “F” by their last item such as 
Definition   5.  Therefore   set   “F”   is   represented   as 
F = {F1, F2, …, Fm} such that: 
 
• m ≤ number of items = |L| 
• Fi ∩ Fj =∅. 
• Fi = {T1,T2, …, Tk} such as 

• “Fi” is a set of all frequent patterns ends with 
“Ii” (Definition 6) 

• “Ti” is a frequent pattern 
• “Ti” = {I1, I2, …, Ii} 

 
Frequent pattern mining problem: The problem of 
mining the frequent patterns of set “M” is reduced to 
the problem of mining “Fj” sets. Frequent pattern 
mining for “Fj” is achieved by extracting all prefixes 
(subpattern) such that if joining the prefixes to the 
related suffix “Ij” the result pattern is a frequent pattern. 
In the following the PFM algorithm is explained. The 
Fig. 2 presents the first phase of the algorithm.  
 The first phase of PFM is similar to the FP-growth. 
In this phase PFM derives the set of frequent items (1-
itemsets) and their support counts (frequencies) which 
are greater than the minimum support count. This set is 
called “L” and is sorted in the order of descending 
support count. For example by considering Table 1 the 
result is L = {I2: 7, I1: 6, I3: 6, I4: 2, I5: 2}.  

 
 
Fig. 2: The first phase of PFM (data pre-processing) 
 
Table 4: Sorted transactional data based on “L” set order (descending 

on support count) 
TID List of items Ids 
T100 I2, I1, I5 
T200 I2, I4 
T300 I2, I3 
T400 I2, I1, I4 
T500 I1, I3 
T600 I2, I3 
T700 I1, I3 
T800 I2, I1, I3, I5 
T900 I2, I1, I3 

 
 In addition in the scanning process, each transaction 
record is sorted based on the “L” set order. For example 
in Table 1 the transaction “T100” is “I1, I2, I5” thus 
according to the “L” set order it is sorted to “I2, I1, I5”. 
The result of sorting is presented in Table 4. 
 Fig. 3 presents the flows for the second phase 
which consists of 7 main steps: 
 
Step 1: In this step the last item or the most 

minimum support count in the set “L” is 
selected as the suffix, rather than the first. 
Then, when PFM finds all of the prefixes 
for this suffix, the next last item from the 
“L” is selected and the same process is 
repeated until there is no more unvisited 
item in “L”.  

Steps 2, 3, 4: After selecting a suffix such as “Ik”  PFM 
scans the transaction table (DB) or set 
“M” (Definition 2.3). From each itemset 
or pattern that contains “Ik” the related 
prefix which is called Candidate Prefix 
(CP) is extracted. For example by 
considering the transaction “T100” in 
Table 4 if the “Ik” is “I5” then “I2, I1” is 
the candidate prefix. 

 
 Instead of using a tree for counting the pattern 
support, PFM uses prime numbers and prime 
factorization. Each   item in    “L”    is assigned a prime  
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Table 5: Function H(x) structure  
x I2 I1 I3 I4 I5 
H(x) 2 3 5 7 11 

 
number in ascending order. For instance in our example 
after assigning the prime numbers, the L set becomes 
{I2 (2), I1 (3), I3 (5), I4 (7), I5 (11)}: 
 
Step 5: When all of the candidate prefixes have been 

extracted then for each candidate prefix like “Pi” 
a unique number called “GENE”  is generated as 
follow: 

 
 For Pi = {Pi1, Pi2, …, Pik}, Pij∈ L 
 

GENE (Pi) = 
k

ijj 1
H(P )

=∏  (1) 
 
 The “H(x)” function is just a simple mapping that 
for a given item like “x” it returns the related prime 
number for the item. The function H(x) for the example 
in Table 5 is presented. 
 According to the fundamental theorem of 
arithmetic there are no two different rows with the same 
“GENE” number: 
 
Step 6: The generated “GENE” numbers will be 

multiplied together. The result is called the 
“Genome” of the given suffix. The 
mathematical representation of “Genome” 
function is follows: 

 
iLen (p )n

k ij
i 1 j 1

Genome(M,l ) H(P )
= =

 
=  

 
 

∏ ∏  (2) 

 
Where: 
“n” = The total number of patterns 
“Len (Pi)” = The number of items for the pattern “Pi” 
 
 The processes of steps 2, 3, 4, 5 and 6 are repeated 
for all of the container rows or patterns and at the end 
of each cycle the value of “Genome” will be updated 
and multiplied with new “GENE” value. 
 Again consider the Table 4. We assume that the 
given suffix is “I5”. We can see there are two container 
patterns (T100, T800) for “I5”. The result of computing 
the “Genome” is presented in Table 6. For each container 
row the candidate pattern is marked by underline. 
 The “Genome” is a multiplication of these 
“GENE” numbers. In this example it would be 
(2*3)*(2*3*5) which can be simplified to 22*32*5 
which is a numerical representation for all of the 
prefixes that by joining to the “Ik” (in this example 
“I5”) the result is a frequent pattern.  

Table 6: PFM process over Table 4  
TID Patterns Gene 
T100 I2, I1, I5  H (I2)*H (I1) = 2*3 
T200 I2, I4  
T300 I2, I3  
T400 I2, I1, I4  
T500 I1, I3  
T600 I2, I3  
T700 I1, I3  
T800 I2, I1, I3, I5 H (I2) *H (I1) *H (I3) = 2 * 3 * 5  
T900 I2, I1, I3  

  

 
 
Fig. 3: The second phase of PFM (Generate frequent itemset) 
 
 The multiplicity or power of each prime factor in 
the Genome is the support count of the related item to 
that prime factor. This support count is just among the 
container patterns which contain “Ik”. Also all of the 
prime factors with multiplicity lower than minimum 
support must be removed.  
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 According to the computed “Genome” for the 
Table 6 the power of prime factor 3 which is for item 
“I3” is 1 where it is lower than minimum support thus 
the prime factor 5 must be removed. Finally the result 
of “Genome” for “Ik” after removing 5 is equal to 
22*32. The multiplicity of prime factor 2 which is for 
item “I2” shows that “I2” is repeated two times as part 
of prefix for the patterns that have “I5” as their suffix: 
 
Step 7: Finally PFM maps the prime factors to their 

related item. Thus from 22*32 we have  
{I2:2, I1:2} and this is known in FP-growth as 
Conditional FP-tree and we call it Frequent 
Prefix. Finally PFM generates all of the subsets 
for this set and add the given suffix to the end of 
each subset, the same as in FP-growth.  

 
 In this example the subsets are {I2}, {I1},  
{I2, I1},{} and by adding “Ik” which is I5 three 
frequent patterns {I2, I5}, {I1, I5}, {I2, I1, I5} are 
generated. For the support count it is clear that for each 
frequent itemset like {I2, I1, I5} the support count is 
the minimum support count between items. For instance 
the pattern {I2, I1, I5} has the support equal to 2. 
 
 

RESULTS 
 
 Our evaluation for PFM is done by computing the 
time and memory complexity. For the purpose of the 
evaluation, the algorithm is evaluated starting from the 
step where a suffix is given to the PFM algorithm. Given 
“Ik” all of the transaction rows or patterns must be 
checked to extract all of the container patterns, therefore 
in the worst case all of the rows must be checked. For 
each row or pattern which includes the “Ik” the “GENE” 
for that pattern must be computed. In the worst case we 
assume that the length of each pattern is “m” and it is the 
length of the longest pattern. According to equation (F2), 
we should change the “Len (Pi)” to “m”: 
  

n m

k ij
i 1 j 1

Genome(M,l ) H(P )
= =

 
=   

 
∏ ∏  

 
 Therefore the time complexity for this algorithm is 
O (n2).  
 For memory complexity it is clear that the 
maximum data we should keep in the memory is just a 
simple integer number for the Genome. But in contrast 
for FP-growth because of the FP-tree, for a transaction 
database with n records and maximum m items for each 
record we need a memory from O (n2), whereas as 
mentioned earlier, for PFM the memory order is O (1). 

It means we do not need to keep a bunch of data in a 
particular data structure like tree or array. 
 

DISCUSSION 
 
 Our result confirms that, the significant objective 
of this study is satisfied. This objective is achieving an 
algorithm with low memory consumption, which can be 
considered as the main benefit in compare with  
FP-Growth.  
 As mentioned through introduction chapter, when 
the database is large, it is sometimes unrealistic to 
construct a main memory based FP-tree. Especially if 
we are interested in long frequent patterns, the memory 
consumption becomes a critical problem.  
 PFM is based on number theory which means in 
this study a numerical approach to present and extract 
frequent patterns is devised. Hence, the maximum 
needed memory space is equal to the memory which is 
needed for numerical computations. 
Majority of numerical approaches, have this benefit, 
that they are free from high memory consumption, as 
well as PFM.  
 Moreover, must of previous studies, did not focus 
on a numerical approach, and this is one of the 
difficulties to decrease the memory consumption. 
 Therefore, it would be expected result to have O(1) 
as  memory  order  and  this result is proved in the 
result section. 
 

CONCLUSION 
 
 The main aim of PFM is to reduce the memory and 
time complexity. Without generating any tree PFM is 
able to extract all of the frequent patterns. Thus for a 
large database no tree data structure is required in the 
memory. Removing the tree generation step has 
definitely increases the speed of the approach.  
 FP-growth is a noble approach that allows frequent 
patterns to be identified without generating candidate. 
But for large database and frequently changing or real 
time database, creating this tree can be a time 
consuming process. 
 Frequent pattern mining using prime factorization 
is a fast and simple approach. Also when the database is 
changed, only the rows that have been changed are 
considered. This makes PFM algorithm suitable for real 
time transactional frequent pattern mining where 
modifications and frequent pattern mining are common. 
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