American Journal of Economics and Business Adnmatistn 3 (1): 58-65, 2011
ISSN 1945-5488
© 2010 Science Publications

Using Unique-Prime-Factorization Theorem to Mine Frequent
Patternswithout Generating Tree

Hossein Tohidi and Hamidah Ibrahim
Department of Computer Science
Faculty of Computer Science and Information Tecbgg|
University Putra Malaysia Serdang, Malaysia

Abstract: Problem statement: Ffrequent patterns are patterns that appear iata skt frequently.
Finding such frequent patterns plays an essertlalin mining associations, correlations and many
other interesting relationships among d#&pproach: Most of the previous studies adopt an Apriori-
like approach. For huge database it may need tergena huge number of candidate sets. An interest
solution is to design an approach that without getiveg candidate is able to mine frequent patterns.
Results: An interesting method to frequent pattern miningheut generating candidate pattern is
called frequent-pattern growth, or simply FP-growitiich adopts a divide-and-conquer strategy as
follows. However, for a large database, constrgctinarge tree in the memory is a time consuming
task and increase the time of execution. In thislstwe introduce an algorithm to generate frequent
patterns without generating a tree and therefoprane the time complexity and memory complexity
as well. Our algorithm works based on prime faetmion and is called Prime Factor Miner (PFM).
Conclusion/Recommendations. This algorithm is able to achieve low memory ordeO(1) which is
significantly better than FP-growth.

Key words: Data mining, frequent pattern mining, associatida mining

INTRODUCTION discovery of interesting correlation relationshysong
huge amounts of business transaction records dan he
i

s, ; e .

subsequences, or substructures) that appear itaseta i many bu.smess decision rT‘ak'“g processes, such_as
frequently. For example, a set of items, such a& mi catalog design, cross—marketlng and customer shgppi
and bread that appear frequently together in &ehaviour analysis. , L
transaction data set is a frequent itemset. A A typical example of frequent itemset mining is
subsequence, such as buying first a PC, then tadigi Market basket analysis. This process analyzesroesto
camera and then a memory card, if it occurs fretigen PUYing habits by finding associations between the
in a shopping history database, is a (frequentflifférent items that customers place in their "spiap
sequential pattern. Finding such frequent pattptags asl_<ets - The d|scovery_ of such associations _ca_qm he
an essential role in mining associations, correati retailers develop marketing strategies by gainisight

and many other interesting relationships among.date%:nl;[gtc\)’vr:g:rz 'tFecr)?sinasrtgnféiq?fegﬂztggggagfg gﬁgﬁitger:“
Moreover, it helps in data classification, clustgriand : ' yirs,

other data mining tasks as well. Thus, frequentepat how likely are they to also buy bread (and whatllaf

- : - bread) on the same trip to the supermarket? Such
mining has become an important data mining taskaand . . : o
focused theme in data mining research (Patel, information can lead to increased sales by helggtailers

2005; Renet al, 2006; Verkhovsky, 2009; Zubair do selective marketing and plan their shelf space.

Rahman and BalaSUbramanie, 2008) MATERIALSAND METHODS

Frequent itemset mining leads to the discovery of
associations and correlations among items in large Most of the previous studies adopt an Apriori-like
transactional or relational data sets. With massive@pproach, which is based on the anti-monotone
amounts of data continuously being collected andipriori heuristic: “If any length k pattern is not
stored, many industries are becoming interested ifrequent in the database, its length (k+1) supétepa
mining such patterns from their databases. Thean never be frequent”.
Corresponding Author: Hossein Tohidi, Faculty of Computer Science andrmftion Technology,

University Putra Malaysia Serdang, Malaysia
58

Am. J. of Economics and Business Administratioh):358-65, 2011

The essential idea is to iteratively generatessie “I;” which their support count is greater than minimum
of candidate patterns of length (k+1) from the st support count. But for this operation a tree must b
frequent-patterns of length k (fork) and check their created and updated which for large database dsnee
corresponding occurrence frequencies in the dagabashigh amount of memory.
The Apriori candidate generate-and-test method This study is to design an approach for the frague
significantly reduces the size of candidate sedihg Pattern mining without candidate generation whish i

to good performance gain. However, it suffers fiora ~ efficient and fast even for large database. Thetmos
nontrivial costs: significant benefit of this approach is low memory

complexity as compared to FP-growth. Our approach
f:alled Prime Factor Miner (PFM) is similar to FP-
growth where the least frequent item is candidatea a
suffix then all frequent patterns which end witte th
given suffix are generated. The PFM is based on the
Moreover, to discover a frequent pattern of Sizeprime factorization from the number theory and does

100, such as {a..ag, it has to generate at least not req_uire the _creation_ofatree structure_.
21007 _1 0 can%ﬁdaioeoi in total 9 This study is organized as follows. First the teda

- It may need to repeatedly scan the database ag’udy is presented and the FP-growth algorithm is
|

e It may need to generate a huge number o
candidate sets. For example, if there aré' 10
frequent 1-itemsets, the Apriori algorithm will mee
to generate more than 1@andidate 2-itemsets.

check a large set of candidates by pattern matchin scussed and epramed by an example. After that 0
It is costly to go over each transaction in the roposed approach is presented while result section

database to determine the support of the candidafy€sents the Fesu't ‘?‘nd discuss abo_ut time a_\nd ryemo
itemsets complexity. Discussion and conclusion are givethiz

final sections.

Can we design a method that mine the complete set)))
of frequent itemsets without candidate generatian? Related study: We have categorized previous studies
interesting method in this attempt is called frague into two parts. The first part focuses on the Féwgh
pattern growth, or simply FP-growth, which adopts aalgorithm and explains the algorithm through exampl
divide-and-conquer strategy as follows. First, it while the second part focuses on some previous svork
compresses the database representing frequent ittMsated to this study.
into a frequent-pattern tree, or FP-tree, whiclainst
the itemset association information. It then digidhe . . :
compressed database into a set of conditional ds¢ab FP-growth aIgor!thm. For this part we examine the
(a special kind of projected database), each amuki FP_-.grovvth algonthm_over a hyppthepcal datasetdor
with one frequent item or “pattern fragment,” and Sailing company. This example is picked up from the
mines each such database separately. The FP-growixtbook Data-Mining Concepts and Techniqesn
method transforms the problem of finding long frequ and Kamber, 2006)The dataset is a collection of
patterns to searching for shorter ones recursi@®ly transaction records. Each transaction has a urligue

then concatenating the suffix. . . _and each item is represented by an index lj. Thaséa
When the database is large, it is sometimes, represented in Table 1

unrealistic to construct a main memory based Fe-tre . . .
An interesting alternative is to first partition eth The algqr|thm s_tarts with the first scan of the
database into a set of projected databases and th@Atabase which derives the set of frequent items (1
construct an FP-tree and mine it in each projectedfemsets) and their support counts (frequenciesthe
database. Such a process can be recursively afplied minimum support count is 2. The set of frequenhge
any projected database if its FP-tree still carfitdh s sorted in the order of descending support coLinis
main memory. A study on the performance of the FPregylting set or lisis denoted as L. Thus, we have:
growth method shows that it is efficient and scidbr
mining both long and short frequent patterns and is
about an order of magnitude faster than the Apriori
algorithm. 1t is also faster than a tree-projection
algorithm, which recursively projects a databage m An FP-tree is then constructed as follows. First,
tree of projected databases. create the root of the tree, labeled with “null'cas
FP-growth uses the least frequent items as &atabase D a second time. The items in each tramsac
suffix, offering good selectivity. The method are processed in lorder (i.e., sorted according to
substantially reduces the search costs. For thengiv descending support count) and a branch is created f
suffix like “I;” FP-growth finds all possible prefix for each transaction.

59

L={2:7,11:6,13: 6, 14: 2,15: 2}

Am. J. of Economics and Business Administratioh):358-65, 2011

Table 1: Transactional data for a sailing company

TID List of items IDs
T100 11, 12, 15
T200 12, 14
T300 12,13
T400 11,12, 14
T500 11,13
T600 12,13
T700 11, 13
T800 11,12, 13,15
T900 11,12, 13
Support
[lanID ml:lm Nusic-]ink
A ¥

T
2.7 I

I1:
I3
14 1

15§

7
6
61 -
2
2

Fig. 1: An FP-tree registers compressed, frequent
pattern information

For example, the scan of the first transaction
“T100: 11, 12, 15,” which contains three items (I4, 15
in L order), leads to the construction of the fiosainch

Table 2: Mining the FP-tree by creating conditiofsiib-) pattern
bases

Conditional Conditional Frequent
Item pattern base FP-tree pattern
1) {12, 11: 13}, <l2:2,11: 2> {12, 15: 2},
{12, 11, 13: 1}} {11, 15: 2},
{12, 11, 15: 2}
14 {12, 11: 1}, {12:1}} <12: 2> {12, 11:2}
13 {12, 11: 23, <l2: 4, 11: 2>, {12, 13: 4},
{12: 2}, <I1:2> {11, 13: 4},
{11: 2}} {12, 11, 13: 2}
12 {12: 43} <I2: 4> {12, 11: 4}

The FP-tree is mined as follows: Start from each
frequent length-1 pattern (as an initial suffix tpat);
construct its conditional pattern base (a “subdzab
which consists of the set of prefix patisthe FP-tree
co-occurring with the suffix pattern), then constrits
(conditional) FP-tree and perform mining recursyvel
on such a tree. The pattern growth is achievedhby t
concatenation of the suffix pattern with the fregue
patterns generated from a conditional FP-tree. Mjni
of the FP-tree is summarized in Table 2.

We first consider 15, which is the last item in L,
rather than the first. The reason for startindhatend of
the list will become apparent as we explain thetriee-
mining process. I5 occurs in two branches of the FP
tree of Fig. 1. (The occurrences of 15 can easdy b
found by following its chain of node-links.) Thetpa
formed by these branches are <I2, 11, 15 1> and
<I2, 11, 13, I5: 1>. Therefore, considering |5 asufix,

of the tree with three nodes, <I2:1>, <I1:1> andits corresponding two prefix paths are <12, 11: dnd

<I5: 1>, where 12 is linked as a child of the rodt,is
linked to 12 and 15 is linked to 11. The second
transaction, T200, contains the items 12 and I4Lin
order, which would result in a branch where 12n&éd

to the root and 14 is linked to 12. However, thimmch
would share a common prefix, 12, with the existpagh
for T100. Therefore, besides of incrementing thento

<I2, 11, 13: 1>, which form its conditional pattebase.
Its conditional FP-tree contains only a single path
<I2: 2, 11: 2>; I3 is not included because its supp
count of 1 is less than the minimum support cotihe
single path generates all the combinations of eetu
patterns: {12, I5: 2}, {I1, I5: 2}, {12, 11, I5: 2}

For 14, its two prefix paths form the conditional
pattern base, {{I2 11: 1}, {I2: 1}}, which generasea

of the 12 node by 1, a new node, <l4:1> is createdingle-node conditional FP-tree, <I2: 2> and deyive

which is linked as a child of <12:2>.

one frequent pattern, <I2, 11: 2>. Similar to tHmoee

In general, when considering the branch to beanalysis, I3's conditional pattern base is {{|2; 1},
added for a transaction, the count of each nodegado 112° 2}, {I1: 2}}. Its conditional FP-tree has two

common prefix is incremented by 1 and nodes for th@

items following the prefix are created and linked
accordingly.

To facilitate tree traversal, an item header tasle
built so that each item points to its occurrengeshie
tree via a chain of node-links. The tree obtaingdra
scanning all of the transactions is shown in Figvith
the associated node-links. In this way, the prob&dm
mining frequent patterns in databases is transfdrioe
that of mining the FP-tree.

60

ranches, <I2: 4, I11: 2> and <I1: 2>, as shownif E,
which generates the set of patterns, {{I2, 13: 4}, 13:
43, {12, 11, 13: 2}}. Finally,
I1's conditional pattern base is {{I2: 4}}, whosePF
tree contains only one node, <I2: 4>, which gemarat
one frequent pattern, <12, 11: 4>.

Pervious works: FP-growth (Hanet al, 2000) is a
well-known algorithm that uses the FP-tree data
structure to achieve a condensed representatictheof
database transactions and employs a divide-andieonq

Am. J. of Economics and Business Administratioh):358-65, 2011

approach to decompose the mining problem into afset Table 3: Variable and their definition
smaller problems. In essence, it mines all theuieetj Symbol List of items IDs

itemsets by recursively finding all frequent itetssen L o Ssejg’;;'t' Lfl?r:*te;t;‘r‘??t‘esgtsse‘;":itli‘e"f??g‘rg-n i
the cond|t|ongl pattern base whlch_ is efficiently T A pattern or itemset like {a, b, c}.

constructed with the help of a node link structuke. m Set of all possible patterns or itemsets.

variant of FP-growth is the H-mine algorithm (léial, FP A frequent pattern like “T” which SUP (T)

2001). It uses array-based and trie-based datetistes j ;e?‘(')'f“gl‘luf'r‘; ;ﬂgﬁfgénems which end with I

to d.efal W't_h spar;e and dense datasets, respyctlve Set of all possible frequent patterns (Definit®5)
Patricia Mine (Pietracaprina and Zandolin, 2003) over the set “M” (Definition 2.3).

employs a compressed Patricia trie to store thasdtt. Fi Set of all frequent patterns which their lastritis “Ij O L".
FP-growth (Grahne and Zhu, 2003) uses an array An item

technique to reduce the FP-tree traversal time-RA
growth based algorithms, recursive constructiorthef ~The proposed approach: The fundamental theorem
FP-tree affects the algorithm’s performance. of arithmetic says that every positive integer las
Eclat (Zakiet al, 1997) is the first algorithm to Unique prime factorization. What the FP-growth does
find frequent patterns by a depth-first search s 1S getting a common suffix and then extracts all
been devised to perform well. It uses a verticshase ~ POSSible prefixes and after joining them to thefizut
representation and counts the itemset supportg tistn [€duent pattern is created. In the FP-growth algor
intersection of tids. However, because of the déipth It IS not important that we are looking for all dueent
search, pruning used in the Apriori algorithm ist no Foatetizpzfc?g(ljl g; fhgi?emﬂggtsuggelr'ﬁg :g C(())rmw“;;r;]t
applicable during the candidate itemsets gener.atior]:P_ rowth our al oritr?m forpminin .of all frequent
The Eclat (Zakiet al, 1997) uses the vertical databasep(,mgrns end to agparticular Suffix Iigke W5 dogst
rgpresentation. They s_tore thq difference (.)f tiakied create entire of the tree but just focuse 'on pesfix
diffset bereen a c:_;mdldate k |tems.et apd its prlgﬂ related to that particular suffix.
frequent itemsets, instead of the t|ds_ mtersect_;e_n Without generating a tree, our algorithm called
They compute the support by subtracting the caliyna prime Factor Miner (PFM) extracts the frequent
of diffset from the support of its prefix k-1 freept prefixes and generates the frequent itemset which e
itemset. This algorithm has been shown to gainith that suffix. In Table 3 all of the used symbaind

significant performance improvements over Eclatacronyms which are used are presented.
(Grahne and Zhu, 2003). However, when the database The following provides some primitive definitions

is sparse, diffset will lose its advantage oveseid which are necessary to clarify the frequent pattern
VIPER (Shenoyet al, 2000) and Mafia (Burdick mining problem.
et al, 2005) also use the vertical database layout and

the intersection to achieve a good performance. Theefinition 1: “L” is defined as a set of all frequent

only difference is that they use the compressegtemsets with length 1 and is denoted as follows:
bitmaps to represent the transaction list of each

itemset. However, their compression scheme hak ={I1: SUP (I1), I2: SUP (12), ..., In: SUP (In)}
limitations especially when tids are uniformly
distributed. The search strategy of the algorithmWhere:

integrates a depth-first traversal of the itemsetide i = Afrequent itemset with length 1

with effective pruning mechanisms that significgntl “SUP(li)” = A support count oftemset

improve mining performance. “Ii = Greater than minimum support count
The dEclat algorithm (Zaki and Gouda, 2003) - = Sorted descending based on support

count, which means SUP (li) > SUP

makes use of the vertical database representati@new (li+1)

each item maintains a set of transaction ids whigge
item is contained. They store the difference of, ids For instance referring to Table 1 the L set is
called the diffset, between the candidate itemsdtits {12:7, 11:6, 13:6, 14:2, 15:2}.

prefix frequent itemsets, instead of the ids irgetion

set. They compute the support by seobitrgthe Definition 2: A pattern or itemset “T with length m is
cardinality of diffset from the support of its peef represented as ¥ {I1, 12, ..., Im} such that “Ij”
frequent itemset. represents the item inyj position of “T". For example

61

Am. J. of Economics and Business Administratioh):358-65, 2011

patterns “Ti” is sorted in “L” order which means BU

if T ={a, b, c} then “I1” is the item “a”. All ofthe @
(1) > SUP (I (i+1)).

Definition 3: Set “M” is defined as a set of all patterns . Extract frequent
' :) X Firstscan DB » temset-length 1
or itemsets which is also called the transactitetand
is represented as: —
v Sort each transaction or itemset
M= {Tlr T21 ey Tn} Second scan DB > descending on support count
Where, “T" is a pattern or itemset (Definition 2.2 -

Definition 4: A frequent pattern “FP” is a pattern like
T ={11, 12, ..., Ik} such that the “SUP (T)” is grésr
than minimum support count.

Fig. 2: The first phase of PFM (data pre-procegsing

Table 4: Sorted transactional data based on “L’osgér (descending
on support count)

Definition 5: The set “Fj” is defined as a set of all 75 List of items Ids

frequent patterns where their last item is “Ij” tha 575 21115
“j O L" It means “Ij” is a suffix for all of the pattes in 1200 2. 14

“Fj" set. For example if “I13" is “h” then “F3" iset of all T300 12,13
frequent patterns like “abh” or “asdfh” where trastl T400 12,11, 14
item is “h”. Note that when “i j” then “FjnFi = 0" T500 11,13
which means there is no frequent pattern like ‘Héttat ﬁgg :i :g

the same time ends with two different items “litiy”. T800 211,13, 15

Definition 6: The set “F” is a set of all possible 900
frequent patterns (Definition 5) over the set M
(Definition 3). It is clear that we can partitiolt af the
frequent patterns or set “F” by their last item Isw&s
Definition 5. Therefore set “F” is repented as
F={F1, F2, ..., Fm} such that:

In addition in the scanning process, each traimsact
record is sorted based on the “L” set order. Fangle
in Table 1 the transaction “T100” is “I1, 12, I5hus
according to the “L” set order it is sorted to “I2, I5".
The result of sorting is presented in Table 4.
« m< number of items = |L| _Fig. 3 presents the flows for the second phase
« FinFj=0. which consists of 7 main steps:

e Fi={T1,T2, ..., Tk} such as
* “Fi” is a set of all frequent patterns ends with
“li” (Definition 6)
« “Ti"is a frequent pattern
o “Ti"={I1, 12, ..., li}

Step 1: In this step the last item or the most
minimum support count in the set “L” is
selected as the suffix, rather than the first.
Then, when PFM finds all of the prefixes
for this suffix, the next last item from the

Frequent pattern mining problem: The problem of 'L" is selected and the same process is
€ P gp j P repeated until there is no more unvisited

mining the frequent patterns of set “M” is reduded item in “L”.

th? . problem .Of minipg “FJ" sets. Frequent pqttern Steps 2, 3, 4: After selecting a suffix such as ®iEM
mining for “Fj” is achieved by extracting all preéis scans the transaction table (DB) or set

(subpattern) such that if joining the prefixes twet “M” (Definition 2.3). From each itemset
related suffix “lj” the result pattern is a frequgrattern. or pattern that contains “Ik” the related
In the following the PFM algorithm is explained. élh prefix which is called Candidate Prefix
Fig. 2 presents the first phase of the algorithm. (CP) is extracted. For example by

The first phase of PFM is similar to the FP-growth considering the transaction “T100” in
In this phase PFM derives the set of frequent itétas Table 4 if the “Ik” is “I5” then “12, 11" is
itemsets) and their support counts (frequenciesgiwh the candidate prefix.

are greater than the minimum support count. THigsse
called “L” and is sorted in the order of descending Instead of using a tree for counting the pattern
support count. For example by considering Tableel t support, PFM uses prime numbers and prime
resultis L = {12: 7, 11: 6, 13: 6, 14: 2, I5: 2}. factorization. Each itemin “L" is assignagrime

62

Am. J. of Economics and Business Administratioh):358-65, 2011

Table 5: Function H(x) structure Table 6: PFM process over Table 4
X 12 11 13 14 15 TID Patterns Gene
H(x) 2 3 5 7 11 T100 12,11, 15 H (I2)*H (I11) = 2*3
T200 12, 14
. . . : T300 12,13
number in ascending order. For instance in our @@m 1,4, 2 11, 14
after assigning the prime numbers, the L set besomersog 11,13
{12 (2), 11 (3), 13 (5), 14 (7), I5 (11)}: T600 12,13
T700 11,13
Step 5: When all of the candidate prefixes haven beeggg :g :i :g 5 H{2)™H (1)™H (13) =27 35
extracted then for each candidate prefix likg “P —
a unique number called “GENHs generated as
follow: @

For P|: {Pilr P|2, veey P,k}, PijD L

Step 1: I = Suffix selection

GENE (R) = [1.,H(R) 1)

Step 2: T = Read the
current record or
pattern from the

transaction DB

The “H(x)” function is just a simple mapping that
for a given item like “x” it returns the relatedime
number for the item. The function H(x) for the exden
in Table 5 is presented.

According to the fundamental theorem of g
arithmetic there are no two different rows with gaame 4 Step 3:
“GENE” number: 3 Is the scanned Now-
_ 2 Eoriains '
Step 6: The generated “GENE” numbers will be K
multiplied together. The result is called the é YES
“Genome” of the given suffix. The) M ,
: . « ” Step 4: P;= Extract the candidate
mathematical representation of “Genome prefix from the scanned pattemn o
function is follows: T
n (Len(n) ‘Step 5: Compute GENE(Pi)‘
Genome (M, H(E 2
wir 7 el ’
GENE (P;) * Genome
Where:
“‘n” = The total number of patterns
“Len (P)” = The number of items for the pattern™P T YEST Yore Pattem? >4
The processes of steps 2, 3, 4, 5 and 6 are ezpeat b
for all of the container rows or patterns and &t ¢émd Step 7: Interpret the GENOME to
of each cycle the value of “Genome” will be updated O et
and multiplied with new “GENE” value.
Again consider the Table 4. We assume that the
given suffix is “I5”. We can see there are two comer @

patterns (T100, T800) for “I5". The result of contipg
the “Genome” is presented in Table 6. For eachadost Fig. 3: The second phase of PFM (Generate freqgtemset)
row the candidate pattern is marked by underline.

The “Genome” is a multiplication of these The multiplicity or power of each prime factor in
“GENE” numbers. In this example it would be the Genome is the support count of the related tem
(2*3)*(2*3*5) which can be simplified to 23*5 that prime factor. This support count is just amadimeg
which is a numerical representation for all of thecontainer patterns which contain “Ik”. Also all dfe
prefixes that by joining to the “Ik” (in this exahep prime factors with multiplicity lower than minimum
“15") the result is a frequent pattern. support must be removed.

63

Am. J. of Economics and Business Administratioh):358-65, 2011

According to the computed “Genome” for the It means we do not need to keep a bunch of data in
Table 6 the power of prime factor 3 which is fanit particular data structure like tree or array.
“13" is 1 where it is lower than minimum supportuth
the prime factor 5 must be removed. Finally thailtes DISCUSSION

of "Genome” for "Ik” after removing 5 is equal to Our result confirms that, the significant objeetiv
273", The multiplicity of prime factor 2 which is for of this study is satisfied. This objective is aciig an
item “12” shows that “I2” is repeated two timespart g150rithm with low memory consumption, which can be
of prefix for the patterns that have “I5” as theiffix: considered as the main benefit in compare with
FP-Growth.
Step 7:Finally PFM maps the prime factors to their As mentioned through introduction chapter, when
related item. Thus from *23° we have the database is large, it is sometimes unrealistic
{12:2, 11:2} and this is known in FP-growth as construct a main memory based FP-tree. Especilly i
Conditional FP-tree and we call it Frequentwe are interested in long frequent patterns, thenomg
Prefix. Finally PFM generates all of the subsetsconsumption becomes a critical problem.
for this set and add the given suffix to the end of PFM is based on number theory which means in
each subset, the same as in FP-growth. this study a numerical approach to present andaeixtr
frequent patterns is devised. Hence, the maximum
In this example the subsets are {12}, {I1}, needed memory space is equa] to the memory which is
{12, 11},{} and by adding “Ik” which is I5 three needed for numerical computations.
frequent patterns {12, I5}, {11, I5}, {12, 11, I5}are Majority of numerical approaches, have this benefit
generated. For the support count it is clear thaefich that they are free from high memory consumption, as
frequent itemset like {I2, 11, I5} the support cduis well as PFM.
the minimum support count between items. For ircan Moreover, must of previous studies, did not focus
the pattern {12, 11, I5} has the support equal to 2 on a numerical approach, and this is one of the
difficulties to decrease the memory consumption.
Therefore, it would be expected result to have)O(1
RESULTS as memory order and this result is proved m th
result section.
Our evaluation for PFM is done by computing the
time and memory complexity. For the purpose of the CONCLUSION
evaluation, the algorithm is evaluated startingrfrthe
step where a suffix is given to the PEM algoriti®iven o complexity. Without generating any tree PFM is
k" all of the transaction rows or patterns must b gpje to extract all of the frequent patterns. TFarsa
Checked to extract a” Of the container patteﬂn‘srdfore |arge database no tree data structure is requrr&ﬂa
in the worst case all of the rows must be checked. memory. Removing the tree generation step has
each row or pattern which includes the “Ik” the /¥E’ definitely increases the speed of the approach.
for that pattern must be computed. In the worsé cas FP-growth is a noble approach that allows frequent
assume that the length of each pattern is “m” aigithe ~ patterns to be identified without generating caatid
length of the longest pattern. According to equm(ie2), But for large database and frequently changingeat r
we should change the “Len)Pto “m”: time da_ltabase, creating this tree can be a time
consuming process.
0l m Frequent pattern mining using prime factorization
Genome (M,} k= n (I‘J H(P 3 is a fast and simple approach. Also when the datatsa
=1\ = changed, only the rows that have been changed are
considered. This makes PFM algorithm suitable éad r
Therefore the time complexity for this algorithen i time transactional frequent pattern mining where

The main aim of PFM is to reduce the memory and

o (). modifications and frequent pattern mining are commo
For memory complexity it is clear that the
maximum data we should keep in the memory is just a REFERENCES

simple integer number for the Genome. But in cattra
for FP-growth because of the FP-tree, for a traimac Burdick, D., M. Calimlim, J. Flannick, J. Gehrkedan.
database with n records and maximum m items fdneac Yiu, 2005. MAFIA: A maximal frequent itemset
record we need a memory from O?(nwhereas as algorithm. IEEE Trans. Know. Data Engineer., 17:
mentioned earlier, for PFM the memory order is @ (1 1490-1504. DOI: 10.1109/TKDE.2005.183

64

Am. J. of Economics and Business Administratioh):358-65, 2011

Grahne, G. and J. Zhu, 2003. Efficiently using pref Verkhovsky, B.S., 2009. Integer factorization: Sioln
trees in mining frequent itemsets. Proceedingefth g algorithm for constrained discrete logarithm

ICDM 2003 Workshop on Frequent Itemset bl JC t Sci. 5 674-679. ISSN: 1549-
Mining Implementations, 19 December 2003, ggogGem. + ZOMpUE SCL, o ' '

Melbourne, Florida, USA, pp: 90. DOL: : . -
10.1.1.3.6241 Zaki, M.J. and K. Gouda, 2003. Fast vertical mining
Han, J. and M. Kamber, 2006. Data Mining Concept Using diffsets. Proceeding of the 9th ACM
and Techniques. 2nd Edn., Morgan Kaufman, SIGKDD International Conference on Knowledge
ISBN: 978-1558609013, pp: 242-245. Discovery and Data Mining, Washington, D.C.,
Han, J., J. Pei and Y. Yin, 2000. Mining frequent ACM Press, New York, pp: 326-335.
patterns without candidate generation. Proceeding po): 10.1145/956750.956788
of the ACM SIGMOD International Conference on Zaki, M.J., S. Parthasarathy, M. Ogihara and W. Li,
Management of Data, ACM Press, Dallas, Texas,) ;
2000, pp: 1-12. DOI: 10.1145/342009.335372 1997. New algorithms for fast discovery of
Patel, R., S.S. Rana and K.R. Pardasani, 2005. Mode association-rules. Proceeding of the 3rd
for load balancing on processors in parallel mining International Conference on Knowledge Discovery
of frequent itemsets. Am. J. Applied Sci., 2: 9289 and Data Mining, AAAI Press, pp: 283-286. DOI:
ISSN: 1546-9239 10.1.1.42.3283

Ren, J., X. Zhang and H. Peng, 2006. MFTPM:z hair Rahman, AM.J.M. and P. Balasubramanie,
Maximum frequent traversal pattern mining with 2008. An efficient algorithm for mining maximal

bidirectional constraints. J. Comput. Sci., 2: 70%- . . .
DOI: 10.3844/jcssp.2006.704.709 frequent item sets. J. Comput. Sci., 4: 638-645.

Shenoy, P., J.R. Haritsa, S. Sudarshan, G. Bhaatia ISSN: 1549-3636
M. Bawa et al, 2000. Turbo-charging vertical
mining of large databases. Proceeding of the ACM

SIGMOD International Conference on
Management of Data, ACM Press, Dallas, Texas,
2000, pp: 22-23.

DOI: 10.1145/335191.335376

65

