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Abstract: Problem statement: (CG) algorithms, which we had investigated in this study, were widely 
used in optimization, especially for large scale optimization problems, because it did not need the 
storage of any matrix. The purpose of this construction was to find new CG-algorithms suitable for 
solving large scale optimization problems. Approach: Based on pure conjugacy condition and 
quadratic convex function two new versions of (CG) algorithms were derived and observed that they 
were generate descent directions for each iteration, the global convergence analysis of these algorithms 
with Wolfe line search conditions had been proved. Results: Numerical results for some standard test 
functions were reported and compared with the classical Fletcher-Reeves and Hestenes-Stiefel 
algorithms showing considerable improving over these standard CG-algorithms. Conclusion: Two 
new versions of CG-algorithms were proposed in this study with their numerical properties and 
convergence analysis and they were out perform on the standard HS and FR CG-algorithms.  
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INTRODUCTION 

 
 The problem of interest can be stated as finding a 
local x* to the unconstrained optimization problem:  
 

nmin f (x),   x R∈   (1)  
 
where, f: Rn → R is continuously differentiable and its 
gradient is available and denoted by g. There are 
different type of iteration algorithms for solving the 
problem given in (1); all these algorithms uses the 
iteration of the form: 
  

k 1 k k kx x d+ = + α   (2) 

 
Where: 
X0 = Starting point and  
αk = Step-size computed by line search procedure  
dk = A descent direction 
 
 If f∈C2 and the Hessian matrix G = ∇2f(x) is 
available and positive definite then an ideal choice for 
dk is the Newton direction[7] given by: 
 

1
k 1 k 1d G g−

+ += −  (3) 

 
 It is shown that when Gk is positive definite and xk 

is lies in some neighborhood of x* then the sequence 

{x k} generated by (2) and (3) converges and order of 
convergence is second order. These local convergence 
properties represent the ideal local behavior which 
other algorithms aim to emulate as far as possible[6], in 
spite of these desirable properties of Newton’s 
algorithm also it has some drawbacks such as dealing 
with n × n matrix and when xk is remote from x* the 
algorithm may not defined when Gk is not positive. 
Therefore, other algorithms can be used for solving the 
problem (1) such as Quasi-Newton algorithms which 
are modifications of Newton’s algorithm and uses 
direction of the form: 
 

k 1 k 1 k 1d H g+ + += −  (4) 

 
where, Hk+1 is an approximation of the inverse Hessian 
matrix. The Conjugate Gradient (CG) algorithm is 
suitable approach to solve the minimization problem 
given in (1) when n is large. If the (CG) algorithm is 
used to minimize non-quadratic objective functions the 
related algorithm is called the non-linear (CG) 
algorithm[12,14,15]. The search directions for CG-
algorithm has the following form: 
 

k 1 k 1 k kd g d+ += − + β  (5) 

 
 Here βk is a scalar known as the (CG) parameter. 
Different CG-algorithms correspond to different 
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choices for the parameter βk, therefore a crucial element 
in any (CG) algorithm is the definition of formula βk; 
some well-known (CG) algorithms include the 
Hestenes-Stiefel (HS) algorithm, the Fletcher-Reeves 
(FR), the Polak-Ribiere (PR) and the Dai-Yuan (DY) 
algorithms[4,9,10,11]: 
 

 
T

HS k 1 k
k T

k k

g y

d y
+β =   (6) 

 
T

FR k 1 k 1
k T

k k

g g

g g
+ +β =   (7) 

 
T

PR k 1 k
k T

k 1 k

g y

g g
+

+

β =   (8) 

 

 
T

DY k 1 k 1
k T

k k

g g

d y
+ +β =  (9) 

 
where, yk = gk+1-gk. 
 Hager and Zhang[8] shown that CG-algorithms with 

T
k 1 k 1g g+ +  in the numerator of βk  has strong global 

convergence properties with exact and inexact line 
searches especially with the following Wolfe 
conditions: 
 

T
k k k k 1 k k kf(x α d ) f(x ) cα g d  + ≤ +  (10a) 

 
T T

k k k k 2 k kg(x α d ) d  c g d+ ≥  (10b) 

 
where, 0<c1<c2<1. For some CG-algorithms stronger 
version of Wolfe conditions i.e., (10a) and: 
 

T T
k 1 k 2 k kg d  - c g d+ ≤  (11) 

 
 Are need to ensure global convergence and hence 
stability[8]. But these algorithms has poor performance 
in practice. On the other hand the CG-algorithms with 

T
k 1 kg y+  in the numerator has uncertain global 

convergence for general non-linear functions but has 
good performance in practice. One of the open 
questions in optimization is whether can we construct a 
(CG) that has both global convergence and good 
numerical performance in practical computation? In this 
study we try to derive new CG-algorithms with global 
convergence property and acceptable performance in 
practice. All the algorithms mentioned earlier (Newton 
algorithm, Quasi-Newton algorithm and CG-
algorithms) are called conjugate direction algorithms 

since they generates a conjugate directions i.e., the 
search directions generated by these algorithms satisfies 
the following equation: 
  

T
i jd Gd  0   i j = ∀ ≠   (12) 

 
 When the objective function is quadratic and 
convex function and step size αk is exact. For general 
non linear functions, we know by the mean value 
theorem that there exists some γ∈(0, 1) such that: 
  

1 T T 2
k k 1 k k 1 k k k kα  d y    d f(x γα d ) d−

+ += ∇ +  

 
 Therefore, it is reasonable[5] to replace (12) with 
the following conjugacy condition: 
 

T
k 1 kd y  0+ =  (13) 

 
 Which is called pure conjugacy condition. 
  Dai and Liao[5] combined the search direction given 
in (3) or (4) with secant equation to modify the pure 
conjugacy condition (13) as follows: 
  

k 1 k 1 k 1d B g+ + += −  (14) 

 
where, Bk+1 symmetric positive n×n matrix, satisfying 
the quasi-Newton or (secant) equation: 
  

k 1 k kB y   s+ =  (15) 

 
where, sk = xk+1- xk, therefore: 
 

T T
k 1 k k 1 k 1 k

T T
k 1 k 1 k k 1 k

d y  (B g ) y  

         g (B y ) g s

+ + +

+ + +

= −

= − = −
 (16) 

 
 This relation shows that (13) hold if the line search 
is exact i.e., T

k 1 kg s  0+ = . However practical numerical 

algorithms normally adopt inexact line searches. For 
this reason, it seems more reasonable to replace the 
conjugacy condition (13) with the condition: 
 

T T
k k k 1 kd y tg s+= −  (17) 

 
where, t>0 is a scalar. The main object of this study is 
to find new (CG) algorithms with new search directions 
dk having the same form of (5). This is done in 
materials and algorithms as well as the descent property 
and global convergent property will be proved and 
numerical results will be reported and compared with 
some standard CG algorithms. 
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MATERIALS AND ALGORITHMS 
 
Derivation of two new versions of CG-algorithms: It 
is known that all conjugate direction algorithms 
generate conjugate directions at least theoretically[6] and 
hence the key element for derivation of the new 
algorithms is the pure conjugacy condition (13), also in 
derivation of all conjugate direction algorithms it is 
assumed that the objective function is convex and 
quadratic, therefore we begin with convex quadratic 
function q(x) defined by: 
 

( ) T1
q x x Gx

2
=   (18) 

 
where, x∈Rn and G is positive definite n×n matrix. 
Since q(x) is strictly convex then G is diagonal and 
gradient of q(x) is given by: 
 

q(x) Gx∇ =   (19) 
 
 The main property of quadratic function is: 
 

k 1 k k 1 kg g G(x x )+ +− = −  
 
or 
 

k ky Gs=  (20) 

 
 From (18-20) we can write: 
  

T
1 k k

n nT
k k

s y
G I

y y
−

×=  (21a)  

 
 Therefore Newton direction (3) for function 
defined in (18) can be written as: 
 

T
N k K
k 1 k 1T

k K

s y
d g

y y+ +

 
= − 

 
  (21b) 

 
 Use the conjugacy condition (13) because Newton 
directions are conjugate with exact line searches: 
  

T
T Tk k
k 1 k k 1 kT

k K

s y
d y  g y 0

y y+ +

 
= − = 

 
 (22) 

 
 Similarly CG algorithms generates conjugate: 
 

CG T T T
k 1 k k 1 k k k kd  y  g y d y 0+ += − + β =  (23) 

 
 Use (22) and (23) to get: 

T T
k k k 1 k

k T T
k k k k

s y g y
(1 )

y y d y
+β = −  (24) 

 
T T

k k k 1 k
k 1 k 1 kT T

k k k k

s y g y
d g   (1 )  d  

y y d y
+

+ += − + −   

 
Put sk = αkdk 

 
T T

k k k 1 k
k 1 k 1 kT T

k k k k

s y g y
d g   (1 )  s

y y s y
+

+ += − + −  (25) 

 
Where: 
 

T T
v1 k k k 1 k

k T T
k k k k

s y g y
(1 )

y y s y
+β = −  (26) 

 
 We can therefore modify the Eq. 25 and 26 by 
using the idea of Dai and Laio[5] and combining the 
quasi-Newton condition with pure conjugacy condition: 
 

T 1 T
k 1 k k 1 k

T 1 T
k 1 k k 1 k

d y (G g ) y

           g G y g s

−
+ +

−
+ +

= −

= − = −
 (27) 

 
or 
 

 
T

T Tk k
k 1 k k 1 kT

k k

s y
 g y g s 0

y y + +− + =  (28) 

 
and 
 
 T T T

k 1 k k 1 k k k kd y g y d y 0+ += − + β =  (29) 

 
 From (28) and (29) we get: 
 

T T T
v2 k k k 1 k k k 1

k T T T
k k k k k

s y g y s g
 (1 )

y yk d y d y
+ +β = − +   (30) 

 
 And letting sk = αkdk: 
 

T T T
k k k k 1 k k 1

k 1 k 1 kT T T
k k k k k k

s y y g s g
d g {(1 ) }  s

y y s y s y
+ +

+ += − + − +
  

 It seems from (30) if exact line search used i.e 
T

k k 1s g 0+ =  then (30) reduces to (26). 

 For convenience, we summarize the above 
algorithms as the following algorithms. 
 
Algorithm 1: (New V1 Algorithm): The search 
direction of this new algorithm is defined as: 
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v1
k 1 k kd g  d+= − + β  

 
when v1β  computed as in (26). If Powell restart 
satisfied then k 1 k 1d g+ += −  else dk+1 = d and compute 

initial k
k k 1

k 1

d

d−
−

α = α go to step (2). 

 Similarly we can summarize the new v2 
algorithm as. 
 
Algorithm 2: (New V2 Algorithm): The search 
direction of this new algorithm is defined as: 
 

v2
k 1 k kd g  d+= − + β  

 
when v2β  computed as in (30). If Powell restart 
satisfied then dk+1 = gk+1 else dk+1 =d and compute initial 

k
k k 1

k 1

d

d−
−

α = α  go to step (2). 

 
Convergence analysis: In the investigated of the global 
convergence analysis of many iteration algorithms, the 
following assumption is often needed. 
 
Assumption 1: 
 
• The level set S = {x∈Rn: f(x) ≤f(x0) is bounded. 
• In some neighborhood N of S f is continuously 

differentiable and its gradient is lipschitz 
continuous i.e., ∃ a constant L>0 s.t: 

 
 g(x) g(y)      L  x y x,   y N− ≤ − ∀ ∈   (31) 

 
 Note that assumption A implies that ∃ a constant 

γ>0 such that: 
 
 k kg    x  N≤ γ ∀ ∈  (32) 

 
 In order to ensure global convergence of our 
algorithms we need to compute the step size αk. The 
Wolfe line search consists of finding αk satisfying (10a) 
and (10b). The following lemma, called the Zoutendijk 
condition is often used to prove global convergence of 
(CG) algorithms. It was originally given by 
Zoutendijk[16] and Wolfe[13].  
 
Lemma 1: Let the assumption 1 holds, the sequence 
{x k} be generated by (2) and (5) and dk is descent 
direction T

k k   k  i. e    g d   0∀ < . If αk satisfies the Wolfe 

conditions (10a) and (10 b) or strong Wolfe conditions 
(10a) and (11) then we have: 

( )2T
k K

2
k 0 K

g d

d

∞

=

< +∞∑  (33) 

 
for proof[16] or[13]. 
 In the investigated of the global convergence 
analysis for many CG-algorithms. The descent or 
sufficient descent condition plays an important role. In 
the following theorem we show that the new v1 
algorithm produces sufficient descent directions i.e., 

T
k k kg d c g≤ −  where c is some positive scalar. 

 
Theorem 1:  If the assumption 1 holds and αk satisfies 
the Wolfe conditions then the search directions 
generated by (25) are descent directions ∀k. 
 
Proof: For initial direction (k = 0) we have: 
 

2T
1 1 1 1 1d g  g d g    0= − → = − <  

 
 Suppose T

j jg d    0            j 1....k< ∀ = : 

 
T T

T T Tk k k 1 k
k 1 k 1 k 1 k 1 k 1 kT T

k k k

T T
T T Tk 1 k k 1 k

k 1 k 1 k 1 k k 1 kT T
k k k k

s y g y
g d g g 1 g s

y y s y

g y g y
g g g s  - g s

s y y y

+
+ + + + +

+ +
+ + + +

 
= − + − 

 

= − +

o  

 
 From lipschitz condition T T

k k 1 k k 1y g    L  s g .+ +≤  

 
2 2T T

T T k 1 k k 1 k
k 1 k 1 k 1 k 1 T T

k k k k

g s g s
d g     g g L L

s y y y
+ +

+ + + +

   
≤ +    

   
 

 
 Again form Lipschitz condition: 
 

T T
k k k k T T

k k k k

L 1
y y L y s

y y y s
≤ → ≥  

 
 Therefore: 
 

2 2T T
T T 2k 1 k k 1 k

k 1 k 1 k 1 k 1 T T
k k k k

g s g s
g d  g g L  L  

s y s y
+ +

+ + + +

   
≤ − + −   

   
 

 
 Note that from Wolfe conditions T

k ks y    0>  then 

we have two cases either L≥1 or 0< L<1, if L≥1 then dk 
is a descent direction for all k. On the other hand if 
0<L<1 then we have: 
 

T T T T T
k k k k 1 k k k k 1 k ks y  s g -s g s g   since s g 0+ += > <  
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Also: 
 

T T T 2 T
k 1 k 1 k 1 k 1 k k 1 k k 1g d - g g L s g - L s g+ + + + + +≤ +  

 
If: 
 

T
k k 1s g 0+ <  

 
then: 
 

T
k 1 k 1g d 0+ + <  

 
 Since 0<L<1 and if T

k k 1s g 0+ >  then: 

 
T T 2 T

k k 1 k 1 k 1 k k 1L s g    g g   L  s g+ + + +< +  

 
and hence T

k 1 k 1d g   0+ + < ; so the proof of the Theorem 1 is 

completed. 
 
Theorem 2:  The global convergence of the new v1: 
Consider the iterative procedure xk+1 = xk+αkdk where 
dk is defined by (25) and suppose that the assumption 1 
holds. If αk satisfies the Wolfe conditions (10a) and 
(10b) then Algorithm 1 either stops at stationary point 
i.e., kg  0=  or kk

Lim  inf g 0
→∞

= . 

 
Proof: The proof of theorem (2) is by contradiction i.e., 
if theorem (2) is not true then kg  0≠  then there exists 

a positive scalar γ>0 such that: 
 

kg   ,  k> γ ∀  
 
then: 
 

T T
T T T Tk k 1 k k 1

k 1 k 1 k 1 k 1 k k 1 k k 1T T
k k k k

y g y g
d g  g g  s g  s g

s y y y
+ +

+ + + + + += − + −  (34) 

 
 Use second Wolfe condition (10b) and Lipschifz 
condition for T T

k y k ky y L  s y≤ . Therefore: 
 

T
T T Tk k 1

k 1 k 1 k 1 k 1 2 k kT
k k

T
Tk k 1

2 k kT
k k

y g
d g  g g c  L  s g

y y

y g
c s g

y y

+
+ + + +

+

≥ − +

−
 

 
 Note that: 
 

T T T T
k k k 1 k 1 k k 1 k k

T T T
k 1 k 1 k k 1 k k 1

y y   g g  - 2g g   g g   

            g g  - g g   y g

+ + +

+ + + +

= +

≥ =
 

2T T
k 1 k 1 k 1 k kd g g g s+ + +≥ − + λ   (35) 

 
 When  γ = c2(L-1); Divide both sides of (35) 

by 2

k 1g + and take the squares to get:  

 
2 2 2 2T

k k kk 1 k 1
2 22

k 1 k 1

s g cos1 d g
1

g g
+ +

+ +

  θ
 + ≥
 λ  

 

 
 Since: 
 

( )2 2 2T 2
k k k k kg s  s  g cosθ=  

 
then: 
 

2
T

2 2 2 2k 1 k 1
k k k2 22

k k 1

1 d g
  1 g cosθ  γ  cos θ

λ  s g
+ +

+

 
 + ≥ ≥
 
 

 

 
 Taking the summation of the   above equality from 
k = o to k = ∞ yields: 
 

( )2 2TT
k k 2 2k 1 k 1

2 2 22
k 0 k 0 k 0k k 1 k

g s1 d g
1 γ cos

λ  s g s

∞ ∞ ∞
+ +

= = =+

 
 + ≥ ≥ = ∞
 
 

∑ ∑ ∑  

 
 Contradiction with Zountendijk theorem. Therefore 

kg 0= . 

 
Note: To study the convergence analysis of the new 
Algorithm 2 we will give only the conditions for 
descent property since the algorithm is not in general 
generates descent directions except under suitable 
conditions. 
 
Theorem 3: If the gradient of the objective function is 
Lipschitz continuous with L>0 and if: 
 

( ) 2T
k k 1 T

k 1 k 1T
k k

s g 3
L g g

s y 4
+

+ +≤  (36) 

 
 Then  the  search directions generated by 
Algorithm 2 are descent directions. 

Proof: For initial direction 2T
1 1   1 1 1d g d g g 0= − → = − <  

now let T
j jg d 0 , j 1...k-1< =  assuming (36) holds for ∀ j 

then: 
 

T T T
k 1 k 1 k 1 k 1 k k k 1d g g g d g+ + + + += − + β  
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 It is clear that for exact line searches the directions 
are descent for all k. We assume that the parameter αk 
satisfies Wolfe conditions therefore: 
 

( )

T
T T Tk 1 k

k 1 k 1 k 1 k 1 k k 1T
k k

2TT
k 1 kTk k 1

k k 1T T
k k k k

g y
d g g g s g

s y

g sy g
                s g

y y s y

+
+ + + + +

++
+

= − +

− +

 

 
 Therefore using Lipschitz condition: 
 

T T
k 1 k k 1 k
T T
k k k k

g y g s

y y y s
+ +≤  

 
 Then: 
 

 
T

T T Tk 1 k
k 1 k 1 k 1 k 1 k k 1T

k k

g y
d g g g s g

s y
+

+ + + + +≤ − +  (37)  

 
 But:  
 

( )( ) ( )( )
( )

TT
Tk k

T T k 1 k k 1 k
k 1 k k k 1

2T T
k k k k

s y
g 2 s g y

g y s g 2

s y s y

+ +
+ +

 
 
 =  

 

 Use the fact T 2 21
2u v   (u v )≤ +  with 

( )T
k k

k 1

s y
u g

2
+=  

and T
k k 1 kv 2(s g ) y+=  to get: 

 

( )( )

( ) ( )
( )

( )
( )

( )

T T
k 1 k k k 1

T
k K

2 2T T T T
k k 1 k 1 k k 1 k k

2T
u k

2T T
2 k k 1 k k

k 1 2T
k k

2T
2 k k 1

k 1 T
k k

g y s g 1

s y 2

1
s y g g 2 s g y y

2

s y

s g y y1
g

4 s y

L s g1
g

4 s y

+ +

+ + +

+
+

+
+

≤

+

= +

≤ +

  (38) 

 
 Use (38) in (37) to get: 
 

( )

( )

2T
2 2 k k 1T

k 1 k 1 k 1 k 1 T
k k

2T
2 k k 1

k 1 T
k k

s g1
d g g g L

4 s y

s g3
g L

4 s y

+
+ + + +

+
+

≤ − + +

= − +

 (39) 

 Hence the search directions are descent if (36) 
satisfied and the proof of the theorem (3) is 
completed. 
 

RESULTS 
 
 Here  we reported some numerical results obtained 
with the implementation of the new v1 and v2 
algorithms on a set of unconstrained optimization test 
problems taken from[2,3]. We have selected (15) large 
scale unconstrained optimization problems in extended 
or generalized form; for each test function we have 
considered numerical experiments with the number of 
variables n = 100, 1000, 10000. 
 These two new versions are compared with two 
well-know CG-algorithms; the first is the Hestenes and 
Stiefel (HS) algorithm which is one of the best and 
well-known CG-algorithms[5] in practice and always 
generates conjugate directions independent of line 
search and objective functions. The second is the 
original Fletcher and Reeves (FR) algorithm. All these 
algorithms are implemented with the standard Wolfe 
line search conditions (10a) and (10b) with c1 = 0.0001 
and c2 = 0.9 where initial step-size k 01 / gα =  and the 

initial guess for other iterations i.e., (k>0): 
 

k k 1 k 1 k* d / d− −α = α  (40) 

 
 In the all these cases, the stopping criteria is the 

-6
kg 10≤ . Problems numbers indicat for: 1 is the 

Extend trigonometric, 2 is the Extend Rosenbrok, 3 is 
the Penlty, 4 is the Perturbed Quadratic, 5 is the 
Rayadan 1, 6 is the Extended three exponential terms, 7 
is the Generalized tridigonal 2, 8 is the Extended 
Powell, 9 is the Extended wood, 10 is the  Quadratic 
QF1, 11 is the Quadratic QF2, 12 is the Extend 
tridigonal 2, 13 is the Almost pertumbed quadratic,  14 
is the Tridiognal perturbed quadratic, 15 is the 
ENGAL1 (CUTE). 
 Because the main costs in the numerical 
optimization are the Function And Gradient Evaluations 
(FGEV) and also the number of Iterations (IT), hence 
our comparison are based on the function, gradient 
evolutions (which they are equal in these CG-
algorithms by employing cubic fitting technique as a 
line search subprogram). Also in the comparison we 
considered the ability of the algorithms to solve 
particular test problems. 
 All codes are written in double precision 
FORTRAN (2000) with F77 default compiler settings. 
These codes are originally written by Andrei[1,2] and 
modified by the authors. 
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Table 1: Comparison of different CG-algorithms with different test functions and different dimensions 
  HS algorithm  New V1 algorithm  New V2 algorithm FR algorithm 
  ---------------------------- ----------------------------- ---------------------------- -------------------------- 
P. No. n IT FGEV IT FGEV IT FGEV IT FGEV 
1 100 19 35 21 38 18 33 19 35 
 1000 39 67 36 67 31 56 38 65 
 10000 34 59 39 72 34 59 32 60 
2 100 34 72 34 72 32 70 47 93 
 1000 35 77 35 81 34 74 78 131 
 10000 35 83 35 82 35 82 54 106 
3 100 9 25 11 29 11 29 10 27 
 1000 329 10306 22 49 49 902 24 191 
 10000 19 259 99 2791 14 42 92 2406 
4 100 102 155 86 130 110 168 95 150 
 1000 380 595 368 581 353 543 349 568 
 10000 1092 1703 1064 1664 1203 1879 1417 2160 
5 100 80 122 91 146 99 156 102 161 
 1000 390 720 372 658 339 602 * * 
 10000 * * 1442 2516 1402 2596 * * 
6 100 14 23 15 23 13 22 15 25 
 1000 30 435 12 21 14 23 127 3531 
 10000 147 4175 91 2350 84 2131 164 4620 
7 100 42 62 37 29 36 58 37 67 
 1000 67 102 61 100 63 98 73 115 
 10000 57 96 64 100 64 102 180 300 
8 100 75 141 98 181 89 169 180 313 
 1000 75 143 121 227 156 288 * * 
 10000 81 153 160 294 123 228 * * 
9 100 32 60 34 66 32 60 71 110 
 1000 28 54 32 62 28 54 47 84 
 10000 31 61 36 69 43 80 47 86 
10 100 100 152 97 149 95 142 108 174 
 1000 353 542 333 518 385 598 313 520 
 10000 1106 1731 1061 1670 1113 1759 1193 1742 
11 100 119 180 105 166 104 165 130 196 
 1000 396 619 357 561 362 572 364 593 
 10000 1668 2468 1236 1967 1307 2089 1839 2905 
12 100 38 61 44 70 39 63 40 65 
 1000 40 64 41 66 39 63 34 68 
 10000 284 8112 358 8415 198 5328 160 3964 
13 100 104 157 85 120 92 144 98 157 
 1000 365 570 311 489 317 493 314 519 
 10000 1241 1970 1204 1892 1240 1932 1276 1981 
14 100 26 47 101 164 97 153 106 166 
 1000 82 1664 337 530 341 535 335 941 
 10000 1186 1847 1181 1842 1261 1983 1187 1846 
15 100 29 50 20 50 27 47 34 57 
 1000 81 1940 67 1423 93 2192 142 3616 
 10000 213 6245 134 3650 253 7601 203 5655 
*: The algorithmfail to converge  
 
Table 2: Comparison of different CG-algorithms with respect to the 

number of best (IT and FG) 
 FR HS New v1 New v2 Equivalence 
 algorithm algorithm algorithm algorithm relations 
 ------------- ------------- ------------- ------------- ---------------- 
n IT(FGEV) IT(FGEV) IT(FGEV) IT(FGEV) IT(FGEV) 
100 -(-) 5(5) 3(2) 6(7) 1(1) 
1000 3(-) 2(1) 6(7) 3(6) 1(1) 
10000 3(-) 2(3) 6(7) 3(2) 1(3) 

 
 In Table 1 we have compared HS, FR, new v1 and 
new v2 algorithms for three values of n. The symbol * in 
Table 1 means that the algorithm is unable to solve the 
particular problem in less than the maximum number of 
iterations which it is 2000 in our comparisons. 

 From Table 1 we have observed that the new v2 
algorithm is the better than the others for n = 100, in 
terms of the number of results against (IT and FGEV). 
Details of the best results of these compared algorithms 
are shown in Table 2. From this Table we have 
observed also that for n = 1000, the new v1 is also the 
best and for n = 10000, the new v1 is the best, overall 
45 problem dimensions test operations. 
 

CONCLUSION 
 
 The suggested algorithms like the original CG-
algorithms are gave better numerical results in terms of 
IT and FGEV which are clearly well-defined from 
Table 2. 
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 We have observed by the two new versions of the 
CG-algorithms which are suggested in this study that 
they are arrive at the limit point while the original HS 
and FR algorithms are failed. 
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