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Abstract: The paper presents an original analytical method used in 
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mechanical equivalent of the transistor in electronics, representing a very 
useful structural group, while the transistor is no longer a puzzlement from a 
long time period, the triad was not too studied analytically, generally being 
approached by graphic design methods, very elaborated, sometimes very 
difficult. For this reason, this paper tries to fill a gap in this field. A concrete 
example of calculation is also presented.  
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Introduction 

A triad is a widely used asurical group, consisting of 
four elements and six kinematic couplings (Fig. 1).  

The analytic cinematic of a triad was already 
presented in a previous paper (Petrescu et al., 2018). 

In presented paper one can show an original analytical 
method used in determining the forces within a triad 
structural group (Frăţilă et al., 2011; Pelecudi, 1967; 
Antonescu, 2000; Comănescu et al., 2010; Aversa et al., 
2016a; 2016b; 2016c; 2016d; 2017a; 2017b; 2017c; 
2017d; 2017e; Mirsayar et al., 2017; Cao et al., 2013; 
Dong et al., 2013; De Melo et al., 2012; Garcia et al., 
2007; Garcia-Murillo et al., 2013; He et al., 2013; Lee, 
2013; Lin et al., 2013; Liu et al., 2013; Padula and 
Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu 
and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 
2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 
2005c; 2005d; 2005e, 2016a; 2016b; 2016c; 2016d; 
2016e; 2013; 2012a; 2012b; 2011; Petrescu et al., 2009; 
2016a; 2016b; 2016c; 2016d; 2016e; 2017a; 2017b; 2017c; 
2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 
2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 
2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 
2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 
Petrescu and Calautit, 2016a; 2016b; Reddy et al., 
2012; Tabaković et al., 2013; Tang et al., 2013; Tong et al., 
2013; Wang et al., 2013; Wen et al., 2012; Antonescu 
and Petrescu, 1985; 1989; Antonescu et al., 1985a; 
1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 
2001; List the First Flights, From Wikipedia; Chen and 

Patton, 1999; Fernandez et al., 2005; Fonod et al., 2015; 
Lu et al., 2015; 2016; Murray et al., 2010; Palumbo et al., 
2012; Patre and Joshi, 2011; Sevil and Dogan, 2015; Sun 
and Joshi, 2009; Crickmore, 1997; Goodall, 2003; 
Graham, 2002; Jenkins, 2001; Landis and Dennis, 2005; 
Clément, Wikipedia; Cayley, Wikipedia; Coandă-1910, 
Wikipedia; Gunston, 2010; Laming, 2000; Norris, 2010; 
Goddard, 1916; Kaufman, 1959; Oberth, 1955; Cataldo, 
2006; Gruener, 2006; Sherson et al., 2006; Williams, 
1995; Venkataraman, 1992; Oppenheimer and Volkoff, 
1939; Michell, 1784; Droste, 1915; Finkelstein, 1958; 
Gorder, 2015; Hewish, 1970). 

Figure 2 shows the forces at a triad 6R.  
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Fig. 1: A triad is a widely used asurical group, consisting 

of four elements and six kinematic couplings 
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Fig. 2: The forces at a triad 6R 
 
Materials and Methods 

The inertial forces torsor (Fig. 2) is expressed with 
relations (I): 
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For a partial decoupling of the coupling reactions, a 

sum of moments from element 2 to point E, a sum of 
moments from element 3 from point F, is written first, 
a sum of moments from the entire triad to point D and 
a sum of moments relative to the G point on the 
elements (2, 3, 5). 

This creates a linear system of four degree equations 
with four unknowns 12

xR , 12
yR , 03

xR , 03
yR . It is solved by 

determinants and then two sums of forces are written 
over the entire triad projected on the axes x and y 
respectively, from which the last two reactions from the 
input couplers are obtained, 04

xR and 04
yR . 

There are sums of forces projected on the x and y 
axes, on element 2, then on element 3 and finally on 
element 4. They also donate the reaction pairs from the 
inner couplers of triad 6R. 

Results and Discussion 

As an example of calculation one will present a main 
mechanism of an original engine (Fig. 3). 

When the mechanism is driven by the piston, by 
eliminating the leading element, a triad-type structural 
group is obtained. 

We can write these forces and speeds (relations of 
the system 1). The first change of presented model, 
having seeable the classical model (the engine 
mechanism of an Otto motor), is that we can use two 
connecting-rod, (elements 2 and 3) and also the use of 
the B couple, a twin couple: Of rotation and translation. 
Proposed new motor mechanism could be a new 
mechanism and his practicality is completely different 
from the classical mechanism’s known. The nice 
advantage of this new mechanism is that it is regulated 
to own a high zone of constant acceleration of the 
mechanism piston (the part range five). The potency of this 
mechanism is that the same just like the Otto 
mechanism. The structural cluster 2-4 (a dyad) will 
improve the motor practicality while not harm of power. 
The mechanics relations with kinematic functions are the 
subsequent (1-11): 
 

2 2 2
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Fig. 3: MF1 kinematics outline 
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One can determine the momentary mechanical 
efficiency, when the mechanism works like a steam roller, 
if it determines the forces distribution from the crank to 
the piston (Fig. 4); relations 12-19: 
 

( )
( )

2 1

2 1

sin

cos
A

n m

m

F F

F Fτ

ϕ ϕ

ϕ ϕ

 = ⋅ −


= ⋅ −
 (12) 

 

( )2 1cos
C A m

a a
F F F

b b
τ τ ϕ ϕ= ⋅ = ⋅ ⋅ −  (13) 

 
( )
( )

2 3

2 3

cos

sin
C C

I

n n

I

F F

F Fτ τ

ϕ ϕ

ϕ ϕ

 = ⋅ −


= ⋅ −
 (14) 

 

( )
( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 3

2 3 2 1 2 3

2 1 2 3

2 1 2 3

2 1 2 3

cos

sin sin cos

cos sin

sin cos

cos sin

C

C

I I

T n n

m

m

m

F F F F

F F

a
F

b

F a

b

τ

τ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 = + = ⋅ − +


⋅ − = ⋅ − ⋅ −

+ ⋅ ⋅ − ⋅ −



 − ⋅ − +
 = ⋅   ⋅ − ⋅ −
   

 (15) 

 

3

3

sin

cos
U T

R T

F F

F F

ϕ

ϕ

= ⋅


= ⋅
 (16) 

y 
5 

D 

MOTOR FLORIO 1 – (MF1) 
 Copyright 2003 Florian PETRESCU 

l3 

0 

3 

 ϕ3 

e 

4 
C 

2 

yD 

B 

0 

l0 

l2 

 ϕ2 

1 
A 

l1 

O 

0 
X 

Annex Fig. 7     MF1 kinematics outline 

 ϕ1 



Florian Ion Tiberiu Petrescu et al. / American Journal of Engineering and Applied Sciences 2018, 11 (2): 901.913 
DOI: 10.3844/ajeassp.2018.901.913 

 

904 

 
 

Fig. 4: The MF1 distribution of forces, when the mechanism works like a steam roller 
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It can determine the instant mechanical yield when 

the mechanism works as a motor, if one determines the 
forces distribution from the motor piston to the motor 
crank (Fig. 5); see relations (20-25): 

 

3

3

sin

cos
N m

R m

F F

F F

ϕ

ϕ

= ⋅


= ⋅
 (20) 

( )
( )

2 3

2 3

cos

sin
C

n N

N

F F

F Fτ

ϕ ϕ

ϕ ϕ

 = ⋅ −


= ⋅ −
 (21) 

 

( )3 2 3sin sin
A C m

b b
F F F

a a
τ τ ϕ ϕ ϕ= ⋅ = ⋅ ⋅ ⋅ −  (22) 

 

( )
( )

1 1 2

2 1 2

sin

cos
A

u n

u

F F

F Fτ

ϕ ϕ

ϕ ϕ

 = ⋅ −


= − ⋅ −
 (23) 

 

( ) ( )

( ) ( )

1 2 3

2 3 1 2

2 3 1 2

sin

cos sin

sin cos

u u u mF F F F

b

a

ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + = ⋅ ⋅


  − ⋅ −
  ⋅  − ⋅ − ⋅ −   

 (24) 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

2 3 1 2

3

2 3 1 2

1 3

0 1 3 2 1 2 3 2

2 2 1 2

cos sin
sin

sin cos

cos cos

cos sin cos cos

cos cos

iM

N b

a

n

l b

a

l

a

N

n

ϕ ϕ ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

µ

  − ⋅ −
  = − ⋅  − ⋅ − ⋅ −   


= + ⋅
 − + − −



−−




=


  (25) 

FU FT 

ϕ3 

FR 

D 

ϕ2 

ϕ2-ϕ3 

Fn 

CFτ  

ϕ3 
0 

B 

Fn 

ϕ2-ϕ1 

ϕ1 

a Fm 

C 

ϕ1 

X O 

ϕ2 

A 

MOTOR FLORIO 1-MF1 
 2003 Florian PETRESCU 
The Copyright-Law  
Of March, 01, 1989 
 U.S. Copyright Office 
 Library of Congress 
 Washington, DC 20559-6000 
202-707-3000 



Florian Ion Tiberiu Petrescu et al. / American Journal of Engineering and Applied Sciences 2018, 11 (2): 901.913 
DOI: 10.3844/ajeassp.2018.901.913 

 

905 

 
 

Fig. 5: The MF1 distribution of forces, when the mechanism works like a motor 
 

The dynamic yield of the mechanism is the same at any 
moment (when the motor mechanism works as a steam 
roller and when it’s working as a engine). It can be 
calculated approximately with the relationship (26). It can 
calculate the exactly instantly dynamic yield of the motor 
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One determines now the dynamic motor velocity (30) 
and the dynamic motor acceleration of the piston (31): 
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Internal combustion engines carry us every day and 

doing this for 150 years. Although they started to be 
partially replaced by other engines (eg electric) the engines 
type diesel or Otto still remain the most used and loved.  

MOTOR FLORIO 1-MF1 
 2003 Florian PETRESCU 
The Copyright-Law 
of March, 01, 1989 
U.S. Copyright Office 
Library of Congress 
Washington, DC 20559-6000 
202-707-3000 

ϕ3 
D 

FR 
ϕ3 FN 

ϕ2-ϕ3 

C
Fτ  

ϕ3 
ϕ2 

C 
Fm 

0 

b 

FN 

B 

Fn ϕ2 

ϕ1 
a 

Fu2 

A 

A
Fτ  

ϕ1-ϕ2 Fu1 
ϕ1 

X 
Fn O 



Florian Ion Tiberiu Petrescu et al. / American Journal of Engineering and Applied Sciences 2018, 11 (2): 901.913 
DOI: 10.3844/ajeassp.2018.901.913 

 

906 

Even if you would like immediate replacement of all 
vehicles equipped with internal combustion engines with 
electric motors, the work would not be possible than in 
40-50 years, due to higher fleet reached today, which 
already exceeds one billion cars.  

In current conditions, the only way to further reduce 
pollution caused by the huge car park is to further improve 
the characteristics of these engines and incur new rules to 
limit their pollution. For this reason we want to present in 
this study a new model of internal combustion engine, 
capable of running with reduced exhaust emissions. 

When the motor constructive parameters values are 
different from the usual used values, the dynamic motor 
speeds and the dynamic motor acceleration of the new 
motor piston (see equations 30-31), are not the same as 

the classical kinematics known values (see relations 8-
11), (Fig. 6 and 7). 

In this study was presented briefly a prototype 
internal combustion engine and the dynamic 
kinematics calculations.  

In dynamic operation (Amoresano et al., 2013), a 
motor mechanism works so that cinematic speeds are 
aligned after forces direction, which are imposed in turn 
by the linkages of mechanism. 

This phenomenon occurs in any mechanism on 
dynamic regimes, when the rotation speed of the crank is 
higher than 100 [rpm]. For exemplification one presents 
below this distribution to a usual engines which is 
working in four times (Fig. 8), (Petrescu and Petrescu, 
2014a; 2014b; 2014c). 

 

 
 

Fig. 6: The kinematical and dynamic velocities 
 

 
 

Fig. 7: The kinematical and dynamic accelerations 
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Fig. 8: The forces and velocities distribution in an engine mechanism, when it is operated of the crank (element 1) 
 

Correct design of an internal combustion engine is 
made by lowering the ratio λ = r / l. Where r is the length 
of the crank and connecting rod length it is l. Stroke h 
must be and it as small as possible. 

This goal is achieved by reducing the crank radius r. 
If we want to keep intact displacement (engine capacity) 
will have to grow the bore (R). 

Modern engines (very high speed) will have an almost 
imperceptible race (stroke) and a great bore. The piston of 
such a motor will gain the appearance of a saucepan.  

Conclusion 

The paper presents the dynamic study of a triad in an 
original vision of the authors.  

Was presented and an original engine model. This type 
of motor can improve the changes of gases and may 
decrease significantly the level of vibration, noises and 
emissions. In addition at this mechanism (of the new 
presented motor) and efficiency is higher. 

These adjustments may be provided for some special 
dynamic calculation with an improved dynamic system, 
new created by authors.  

Only any mechanisms have the same parameters for 
the classical and for the dynamic kinematics (gears, cams 
with plate followers).  

To the presented motor mechanism the dynamic-
kinematics is different from the classical-kinematics 
known, but when the constructive parameters are setting 
on normal values, the dynamic motor velocities and 
accelerations take the same values as the classical motor 
speeds and accelerations known. 

In the presented article was showed a new model of 
an internal combustion engine, able to running with 
reduced exhaust emissions.  

The new mechanism was designed and intended for 
industrial production. 

As long as we produce electricity and heat by burning 
fossil fuels is pointless to try to replace all thermal engines 
with electric motors, as loss of energy and pollution will be 
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even larger. However, it is well to continuously improve the 
thermal engines, to reduce thus fuel consumption. 
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