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Abstract: Relatively recent have occurred dual-clutch automated boxes, which 
promise a lot in the field and can be used successfully in cars and trains as well 
as in the aerospace industry. This paper wants not only to present such a 
gearbox but also to realize its dynamic synthesis, based on the engineering 
optimization of the mechanical efficiency achieved in each used speed gear. 
The presented method is original. In the paper are presented the original 
dynamic synthesis relations, based on the mechanical efficiency of the 
exchanger, determined separately for each of its speed gear used, for six 
forward and one on reverse. The applied method of calculation is based on a 
precise technology used to determine the mechanical efficiency of a gear, 
depending on the number of teeth of the two wheels in the gear, the angle of the 
pitch circle and the tilting angle of the wheel teeth in drive. 
 
Keywords: Classic Manual Gearboxes, Automatic Gearboxes, Semi-
Automatic Gearboxes, Continuous Variable Gearboxes, Dual-Clutch 
Automatic Gearboxes, Dynamic Synthesis 

 
Introduction  

The automatic gearbox has begun to be used on real-
world vehicles in the 1980s. Since it was taken up quite a 
bit from the airplanes and adapted immediately, it initially 
presented more problems than those used in aerospace 
systems. As electronics and automation developed, issues 
related to hydraulic drives and controls (which were often 
blocked and easily) were eliminated. Response time was 
also a real issue, which is why rally drivers and formula I 
have consistently refused to change their old manual 
gearboxes with some automatic ones. Today, the response 
times of a hybrid or automatic gearbox are much shorter 
and for a normal car, using an automatic gearbox can be a 
huge simplification of its operation and a way to make it 
much easier for the driver of the vehicle, a maximum 
driving efficiency of the vehicle, which also brings a real 
fuel economy, regardless of the route and even greater in 
crowded urban areas. The most common are the automatic 
gearboxes installed on the buses.  

Classic automated gearboxes have been made with 
the help of planetary gears being generally used in an 
automatic gearbox two or even three planetary gears 
mounted in series, in parallel or mixed to achieve the 
necessary gears, coupling and disengaging them 
automatically using hydraulic clutches and brakes.  

The mode of operation of these gearboxes is much 
more complicated than manual ones, the transmission of 

power being carried out by one or more planetary 
mechanisms where the determination of the mechanical 
efficiency is a little more difficult. This is not why we will 
bypass the design, construction and use of such a gearbox, 
but because they generally have had a tough response to 
the actual gear changes, as it was noticed by the 
manufacturers car professionals. All of the improvements 
that have been brought to them could not actually achieve 
a modern automatic gearbox with a fast transmission 
response, changing a gear somewhat generally thick.  

For this reason, another concept of dual-clutch 
automatic gearboxes (Fig. 1) has been designed, adapted 
and introduced in use, which is a symbiosis between the 
manual and the automatic box, which is extremely well 
designed so that the operation to make practical use of the 
classical principle of the manual gearbox with a very fast 
gear shift with the help of the synchronics already present 
in the manual gearbox, with the exception that they are 
no longer manually operated by the driver but 
automatically by a system computerized vehicle that 
feels the change in the vehicle's load and responds 
promptly to it by automatically changing gears by 
choosing the right one. Another major difference of the 
dual-clutch system is that two clutches are used in the 
construction and operation of this gearbox and at the 
same time two power transmission modules similar to 
the one in the manual gearbox.  
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Fig. 1: A dual-clutch automatic gearboxes 
 

The paper presents how to accurately determine the 
mechanical performance of a gearbox for passenger 
buses. Based on these relationships, an optimal 
synthesis of the performance of a dual-clutch automatic 
gearboxes can be achieved regardless of its operating 
status. The double clutch gearbox presented in the work 
can also be used in the aerospace industry.  

Hain (1971) proposes a method of optimizing the cam 
mechanism to obtain an optimal (maximum) transmission 
angle and a minimum acceleration at the output.  

Giordana et al. (1979) investigates the influence of 
measurement errors in the cinematic analysis of the cam. 

Antonescu and Petrescu (1985), presented an 
analytical method for the synthesis of the mechanism 
with cam and flat thrust plate.  

Angeles and Lopez-Cajun (1988) presented optimal 
synthesis of the cam mechanism and the oscillating flat 
stick.  

Taraza et al. (2001) analyzes the influence of the cam 
profile, on the angular velocity variation of the shaft and 
on the internal combustion engine power, load, 
consumption and emissions.  

Petrescu and Petrescu (2002b; 2005a; 2005b; 2005c) 
presented a method of synthesis of the rotary camshaft 
profile with rotary or rotatable cams, flat or roller, for 
obtaining high yields at the exit.  

An original method of calculating the gearing 
efficiency is presented and developed successively in 
the following works: (Petrescu and Petrescu, 2002c, 
2003a, 2005f; Petrescu et al., 2006; 2007; 2008a; 
2008b, 2009; 2016a, 2017x). 

Materials and Methods  

From a cinematic point of view, a double clutch 
gearbox is actually composed of two manual 
gearboxes arranged in parallel (one with blue and one 
with gray). Practically in the same case, we have two 
gearboxes, each with its own clutch, the first box 
containing the odd steps (1, 3, 5) and the second one 
containing the stairs (2, 4, 6): 
  
• A - transaxle input shaft (from engine, crankshaft)  
• B - transaxle output shaft (to longitudinal or cardan 

transmission) 
• a1 - clutch 1 for odd steps 1, 3 and 5  
• a2 - clutch 2, for pitch steps 2, 4 and 6 
• D - Input shaft 1 (tubular)  
• C - input shaft 2 
 

This configuration has the great advantage of 
allowing pre-selection of the gears. For example, 
when the car moves in the 1st gear, the power flow is 
transmitted from the engine to the wheels via the 
clutch 1 which is coupled. After a certain speed 
threshold, stage 2 is selected, but the power is also 
transmitted through stage 1 and clutch 1, as the clutch 
2 remains off. In this phase, we have two selected 
stages, 1 and 2, with the power transmitted through 
the clutch 1. When switching to gear 2, clutch 1 opens 
(disengages) and the clutch 2 closes (engages). 
Wheels 1, 3, 5, 2, 4, 6 rotate freely on their shafts and 
transmit power one by one only when coupled by their 
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synchronized actuators (electric motors). The output 
shaft receives its power permanently through the 
wheel 9 or from the wheel 7 times from 10. It is 
interesting that two power streams can be coupled 
simultaneously, one by the wheel 7 and the other by 
the wheel 10, without both transmitting the power at 
the same time, this is virtually dictated by the two 
clutches a1 and a2 that will never be coupled 
simultaneously, but only one of them; if none is 
engaged then the gearbox no longer transmits 
anything being set to zero. The real advantage of the 
system is that two power streams can be prepared 
simultaneously in two different stages, but coupling is 
done only for one of them; this ensures a rapid shift of 
gears, the box being not just faster than a classic 
automatic but even faster than manual ones.  

Due to the possibility to preselect the gear to be 
used, the gearing time can be reduced to 0.2 sec (two 
tenths of a second), without causing shock and 
vibration in the transmission.  

This mode of operation of the double clutch gearbox 
has the following advantages.  

Compared to a manual gearbox: 
 
• Very fast gear changes due to preselection  
• The gear change is done without interruption of 

the power flow without shock, noise, vibration, 
kick-in (the driver must no longer have the 
experience, changing the steps automatically); 
smooth and shock-free change of gears, thanks in 
particular to controlled clutch slippage 

Compared to a classic automated box with 
hydrotransformer: 
 
• faster gear shift due to preselection; 
• better mechanical performance due to lack of 

hydrotransformer and complex planetary 
mechanisms 

 
The gear units of a double clutch box are similar to 

those of a manual gearbox. Coupling of gears is also 
done by synchronization, the only difference being that 
in a double clutch box the coupling of the steps is done 
with electro-hydraulic or electric actuators controlled by 
a control computer and not directly by the driver.  

Depending on the type of clutch and the mode of 
operation, the double clutch boxes are classified into: 
 
1. box multi-disc clutches, wet, hydraulically operated 
2. box, single-clutch, dry, electrically operated clutches 
 

The double wet hydraulic clutch (Fig. 2) is used 
when the maximum torque exceeds 250 Nm. Besides the 
advantage of the larger transmitted torque, a wet 
multidisc clutch dissipates the heat more easily, which is 
why it does not wear off and the coupling and 
uncoupling is smoother and more shock free.  

In automobiles where the propellant develops below 
200-250 Nm, the use of dipped, monodisc clutches with 
electric drive has the advantage of lower fuel 
consumption due to the lack of oil pump, hydraulic 
system and lower friction losses (Fig. 3). 

 

 
 

Fig. 2: Double, "DualTronic" clutch, humid, hydraulically operated 
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Fig. 3: Double clutch dry 
 

Coupling and uncoupling to a dry clutch is less smooth 
but direct, mechanical and low in fuel consumption. 

Option 2 for small cars may be indicated for use, but 
not for trucks and buses, where version 1 is available 
with a wet DualTronic double hydraulic clutch, 
hydraulically powered, because the carmakers on these 
types of cars develop very high powers and couples 
elevated, with values exceeding frequently 250 Nm.  

The decision to equip the car with a wet or dry clutch 
double cluster is taken into consideration for several 
reasons. Table 1 below shows the characteristics of the 
two clutch solutions. 

 The double clutch gearbox can be used for any 
powertrain architecture: front, rear, or full throttle. Also 
this type of gearbox can transmit an engine torque of up 
to 1250 Nm. 

Due to its major advantages, the dual-clutch 
automatic gearbox penetrated rapidly, replacing the 
classic automatic gearbox, but also the manual gearbox. 

On buses and trolleybuses, this gearshift system is 
now the most widely used optimal option. 

All double clutch gearboxes are electronically 
controlled via a mini computer. Clutch drive and gear 
clutch are hydraulically operated via electro-hydraulic or 
electric valves using DC motors.  

From the point of view of the interaction with the driver 
there is no difference between a double clutch box and a 
classic automatic gearbox. Cars are equipped with program 
selectors (P, R, N, D) and the gearbox can operate both 
automatically and manually ("sequentially").  

Important Note: So, as with automatic gearboxes, the 
driver can switch the system over to the automatic pilot, 
or he can assign the right and obligation to drive the 
vehicle manually by manually changing the steps by 
manual (sequential) control. This is simple, from a 
program selector. 

Table 1: Comparative characteristics of the two clutch solutions  
 Double clutch Double clutch 
Criterion dry (mechanical)  wet (hydraulic)  
Controllable coupling/decoupling -  + 
Wear  -  +  
Heat dissipation  -  +  
Low temperature behaviors +  - 
Dimensions  -  +  
Mechanical inertia  -  +  
Coupling transmission capacity -  + 
Mass  +  -  
Comfort to the speed gear change -  + 
Fuel consumption  +  -  
The total cost  +  -  

 
Table 2: Name of the double clutch gearbox, according to the manufacturer  
Car manufacturer The name of the 
(transmission)  technology DCT  
Volkswagen (Borg Warner)  Direct Shift Gearbox (DSG)  
Porsche (ZF)  Porsche Doppel  
 Kupplunggetriebe (PDK)  
Ford (Getrag)  PowerShift  
Fiat (FPT)  Dual Dry Clutch Transmission 
 (DDCT)  
Mercedes-Benz (Getrag)  SpeedShift  
Mitsubishi (Getrag)  Twin Clutch Sport Shift 
 Transmission (TC-SST)  
Renault (Getrag)  Efficient Dual Clutch (EDC)  
 

Depending on the transmission or car manufacturer, 
double clutch boxes are named differently (Table 2), 
even if the operating principle is the same (similar). 

Due to the advantages of this gearbox, it is becoming 
an option for most car manufacturers and probably in ten 
years if something new is not coming, it will occupy a 
big market share. 

Even though today, both in the European and the 
global market, the share of dual clutch gearboxes is 
steadily increasing, it is right to present the situation 
as well (Fig. 4).  

A CVT is a combination of manual and classic 
automated planetary gearboxes, plus other mechanisms 
with rigid memory (cam-tap, cross of Malta or Geneva 
drive), but also other elements (two driven and other driven 
pulleys driven by a metal strap, varying the transmission 
ratio by means of an electro-hydraulic control module that 
controls the pressure in the cylinders of the two pulleys) and 
other systems, a CVT becoming constructively complex, 
hybrid variant with low market opportunities. Initially, its 
share was higher, reaching just 3.5% today. 

The Double Clutch (DCT), although relatively new, has 
already managed to surpass a CVT with a current 4% share.  

An AMT, that is, an automated, robotized gearbox, 
although it currently has a market share of 7% due to the 
high manufacturing costs and the high technology 
(difficult to access) technology and the complex system, is 
not increasing and even it is likely to start falling with the 
appearance of DCTs.  
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Fig. 4: Speed gearbox quotations up to date; CVT - Continuous variation box; DCT-dual clutch box; AMT - automated box (robotic) 

AT - classic automated hydro transformer box; MT - manual gearbox; AT - classic automated hydro transformer box; MT - 
manual gearbox 

 
The classic automatic AT gearbox with 

hydrotransformer and planetary gears has a large 
market share of 13.5% due to the fact that it 
represents the oldest change (the first gearbox other 
than the manual gearbox), but not it is known how 
long it will be able to keep this quotation on the 
market because the new DCT chia has just emerged, is 
fast growing and eats permanently not only from the 
hand box but also from ATs.  

Even though MTs, the oldest gearboxes (obviously 
the synchronous models, not those with wheel-ridden 
wheels that have faded away) still retain a 72% 

market relaxation rate, they are still in a permanent 
decline and the next 20-30 years will suffer a dramatic 
drop, losing priority in the auto market. 

Results 

The power transmission  in  Stage I of a dual 
clutch automatic gearbox can be seen in Fig. 5: a1-z1'-
z1-z7-z9. 

For the dual clutch automatic gearbox (Fig. 1), the 
system relations (1; Fig. 5) will be used to determine the 
first gear: 
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Fig. 5: The power transmission in stage I of a dual clutch automatic gearbox 

 
The power transmission in Stage II of a dual clutch automatic gearbox can be seen in Fig. 6: a2-z2'-z2-z10-z9. For the 

dual clutch automatic gearbox, system relationships (2; Fig. 6) will be used to determine the mechanical efficiency of 
the second gear: 
 

( ) ( )

( ) ( ) ( ) }

( ) ( )( ) ( )

2 2
. . 3

2 ' 2 2 ' 0 2 '

2
3

2 0 2 2 ' 2 0

2 2
2 '

2 '2
2 2 2 2 4 2
2 ' 0 0 2 '

2
. .

10,9 10

1
2 2 cos 4 cos cos

2

2 cos 4 cos cos

cos
2

cos cos 1 2 1 2 cos 1
3

1
2 c

2

a e

a e

tg
z tg z

z tg z z z tg

z

z tg a tga z

tg
z

β
ε β α β β

π

β α β β α

β
η

β π β ε ε π β ε

β
ε

π

+   = ⋅ + ⋅ ⋅ + ⋅ ⋅ +  ⋅ 

 + + ⋅ ⋅ + ⋅ ⋅ + − + ⋅ 

⋅
=

+ + − − ± −

+
= ⋅ + ⋅

⋅
( ) ( )

( ) ( ) ( ) }

( ) ( )( ) ( )

( )

2
3

0 10

2
3

9 0 9 10 9 0

2 2
10

10,9
2 2 2 2 4 2
10 0 0 10

2 9 2 9
2 '9 2 '2 10,9

2 ' 10 2 ' 10

2 '9

os 4 cos

2 cos 4 cos cos

cos
2

cos cos 1 2 1 2 cos 1
3

.II

II

tg z

z tg z z z tg

z

z tg a tga z

z z z z
i i i i

z z z z

β α β β

β α β β α

β
η

β π β ε ε π β ε

η η η

  ⋅ + ⋅ ⋅ +  

 + + ⋅ ⋅ + ⋅ ⋅ + − + ⋅ 

⋅
=

+ + − − ± −

⋅
= = = − ⋅ − =

⋅

≡ = 2 ' 2 10,9η


























⋅

 (2) 

 
The power transmission in stage III of a dual clutch automatic gearbox can be seen in Fig. 7: a1-z3'-z3-z7-z9. The 

system relationships (3) will be used to determine the third step mechanical efficiency: 
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Fig. 6: The power transmission in stage II of a dual clutch automatic gearbox 
 

 
 

Fig. 7: The power transmission in stage III of a dual clutch automatic gearbox 
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Fig. 8: The power transmission in stage IV of a dual clutch automatic gearbox 
 

 
 

Fig. 9: The power transmission in stage V of a dual clutch automatic gearbox 
 

The power transmission in stage IV of a dual clutch automatic gearbox can be seen in Fig. 8: a2-z4'-4-z10-z9. The 
system relationships (4) will be used in determining the fourth step mechanical efficiency: 
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The power transmission in step V of a dual clutch automatic gearbox can be seen in Fig. 9: a1-z5'-z5-z7-z9. The 
system relationships (5) will be used to determine the fifth-gear mechanical efficiency: 
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Fig. 10: The power transmission in stage VI of a dual clutch automatic gearbox 
 

 
 

Fig. 11: The power transmission in stage VII (M.R.) of a dual clutch automatic gearbox 
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The power transmission in stage VI of a dual clutch automatic gearbox can be seen in Fig. 10: a2-z6'-z6-z10-z9. The 
system relationships (6) will be used to determine the sixth step mechanical efficiency: 
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Discussion 

The computational relationships presented can 
successfully synthesize a modern double-clutch gearshift 
because the calculations are very accurate. This method 
set all tooth pairs in simultaneous engagement, which is 
why the theory is not just precise but also adapted to 
reality, describing successfully the operation of a gear 
with inclined teeth, whether cylindrical or tapered.  

As one mentioned before, although this interesting 
gearbox has been introduced relatively recently to cars, it 
can be successfully designed in aviation, replacing the 
classic automated box (Frăţilă et al., 2011; Pelecudi, 
1967; Antonescu, 2000; Comănescu et al., 2010;   
Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 
2017b; 2017c; 2017d; 2017e; Mirsayar et al., 2017;   
Cao et al., 2013; Dong et al., 2013; De Melo et al., 2012; 
Garcia et al., 2007; Garcia-Murillo et al., 2013; He et al., 
2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; 
Padula and Perdereau, 2013; Perumaal and Jawahar, 
2013; Petrescu and Petrescu, 1995a; 1995b; 1997a; 
1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 
2005a; 2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 
2016c; 2016d; 2016e; 2013; 2012a; 2012b; 2011; 
Petrescu et al., 2009; 2016a; 2016b; 2016c; 2016d; 
2016e; 2017a; 2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 
2017h; 2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 
2017o; 2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 
2017v; 2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 
2017ac; 2017ad; 2017ae; Petrescu and Calautit, 2016a; 
2016b; Reddy et al., 2012;  Tabaković et al., 2013; 
Tang et al., 2013; Tong et al., 2013; Wang et al., 2013; 
Wen et al., 2012; Antonescu and Petrescu, 1985; 1989; 
Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 1994; 
1997; 2000a; 2000b; 2001; List the first flights, From 
Wikipedia; Chen and Patton, 1999; Fernandez et al., 
2005; Fonod et al., 2015; Lu et al., 2015-2016;     
Murray et al., 2010; Palumbo et al., 2012; Patre and 
Joshi, 2011; Sevil and Dogan, 2015;  Sun and Joshi, 
2009; Crickmore, 1997; Donald, 2003; Goodall, 2003; 
Graham, 2002; Jenkins, 2001; Landis and Dennis, 2005; 
Clément, Wikipedia; Cayley, Wikipedia; Coandă, 
Wikipedia; Gunston, 2010; Laming, 2000; Norris, 2010; 
Goddard, 1916; Kaufman, 1959; Oberth, 1955; Cataldo, 
2006; Gruener, 2006; Sherson et al., 2006; Williams, 
1995; Venkataraman, 1992; Oppenheimer and Volkoff, 
1939; Michell, 1784; Droste, 1915; Finkelstein, 1958; 
Gorder, 2015; Hewish, 1970).  

Conclusion 

Although most of the gearboxes in operation are all 
classic, manual, for about 40 years have entered serial 
production and automatic gearboxes of various types. 

The most successful were those with a continuous 
variable transmission, those with planetary mechanisms 
and more recently those with double clutch. 

Automatic boxes have had a lot of trouble at the 
hydraulic installations that were used for both shareholders 
and automation and command. Today the command was 
taken over by electronics, chips and automation are also 
modern. Often, even action is no longer hydraulic but 
electric by actuators (electric motors step by step). 

The planetary mechanisms are also modern, but even in 
that conditions the automatic boxes still have problems with 
the still high response time compared to the manual cans. 

This is why relatively recent have occurred dual-
clutch automated boxes, which promise a lot in the field, 
can be used successfully in cars and trains as well as in 
the aerospace industry. 

This paper wants not only to present such a 
gearbox but also to realize its dynamic synthesis, 
based on the engineering optimization of the 
mechanical efficiency achieved in each used speed 
gear. The presented method is original. 

Whether to be used in aerospace or road vehicles, 
the gearbox presented in the work has many 
advantages. It was built from two manual gearboxes 
operated with a double clutch. 

The big advantage is symmetry and good balance. For 
this reason, it is not right to sacrifice the gear II gear to 
introduce an extra pinion on its circuit to achieve the 
reverse gear. The correct variant is the one chosen at the 
end with a separate step for the reverse, a seventh gear. In 
this way, the balance of the system is maintained and in 
addition for all the steps before it is possible to prepare 
them in advance, that is, two speed gears can be coupled 
at the same time, one being the one in operation and the 
other the one in which we want to switch system, thus 
achieving a preselection of the necessary gear, with a 
previous training, which allows the system a very fast 
coupling with extremely low response time, making this 
box a very modern, fast and special one. 

For this reason, the coupling will be quiet, no noise 
or vibration, no risk of rupture, unmatched advantages 
to other gearbox models. 
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