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Abstract: Water deficit problem originates from two factors: population 
increase and water pollution. However, studying and forecasting the quality 
of water are necessary to avoid serious problems in future through managerial 
works. In present study, using time series modeling, the quality of Madian 
Rood River is studied at Baraftab station using time series analysis. Nine 
parameters of water quality are studied such as: TDS, EC, HCO3

-, Cl-, SO4
2+, 

Ca2+, Mg2+, Na+ and SAR. Investigation of observed time series shows that 
there is a common increasing trend for all parameters unless Na+ and SAR. 
The order of models for each parameter was determined using Auto 
Correlation Function (ACF) and Partial Auto Correlation Function (PACF) of 
time series. The ARIMA model was used to generate and forecast the quality 
of stream flows. Akaike Information Criterion (AIC), Determination 
Coefficient (R2), Root Mean Square Error (RMSE) and (Volume Error in 
Percent (VE %) criteria were referred to evaluate the generation and 
validation results. The Results show that time series modeling is quite capable 
of water quality forecasting. For the majority of forecasts, the value of R2 was 
greater than 0.6 between predicted and observed values. 
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Introduction  

Water quality is a main subject of life due to its direct 
impact on human health. Water quality could be affected 
by geologic structure, salinity, overdraw of groundwater, 
urban and domestic wastewater entrance into surface 
streams as well as agricultural drainage and a wide range 
of chemical compounds (Tsakiris and Alexakis, 2012). 

Different methods and approaches are used to 
investigate and forecast the quality of water. Also the 
majority of water software such as SWAT, QUAL2K 
and MIKE-11 benefit from especial tools to assess the 
quality of streams. Time series analysis is one of the 
useful methods which are applied in water quality 
modeling and forecasting. 

Time series analyses is useful in understanding and 
analyzing the process of different phenomena. It is also 
helpful in generating past observations forecasting the 
future values based on the past memory. 

Time series is composed of a string of data over time 
with an equal interval between all data. The interval can be 
defined as daily, weekly, monthly as well as yearly time 
steps. Time series analyzing is used in decision making in 
many hydrological processes and operation systems. Time 
series analysis in hydrology has two main goals: 
 
1. Understand and model the stochastic mechanism of 

a hydrologic process and  
2. Forecast the future values for the process 
 
Applied Time-Series Analysis 

Main statistical characteristics of a hydrologic time 
series could be reproduced using ARIMA (autoregressive, 
integrated, moving average) models. ARIMA models 
have been used to examine runoff and river discharge 
(Kurunç et al., 2005;), water levels of lakes (Sheng and 
Chen 2011, Ghashghaie and Nozari, 2018), sediment yield 
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(Hanh et al., 2010) and water quality (Ahmad et al., 
2001,     Lehmann and Rode, 2001; Faruk, 2010; Hanh et 

al., 2010; Durdu, 2010; Khalil Arya and Zhang, 2015).  
Auto correlated models were used in some studies on 

stream analyzing (Thomas and Fiering, 1962). 
McKerchar and Delleur (1974) established the main step 
to apply time series in hydrology using Autoregressive 
Integrated Moving Average. They used seasonal 
modeling as well to analyze seasonal characteristics of 
stream parameters. Time series modeling is efficient in 
identifying and forecasting monthly stream pattern and 
integrated water resources management (Jalal Kamali, 
2002). It has been widely used to forecast hydrologic 
variables such as rainfall and discharge as well as flood 
(Komornık et al., 2006; Damle and Yalcin, 2007). 

Many studies have focused on water quality parameters, 
a Brief reviews of which are mentioned as follow. 

Applied Time Series Analysis on Surface Water 

Quality 

Hirsch et al. (1982) used new methods to analyze 
monthly water quality data for monotonic trends. Also 
temporal changes in water quality parameters such as 
pH, Alkalinity, total Phosphorous and Nitrate 
concentrations have been studied using data series of 
Niagara (El-Shaarawi et al., 1983). Yu et al. (1993) 
analyzed surface water quality data of the Arkansas, 
Verdigris and Neosho as well as Walnut river basin to 
study trends in 17 major constituents using 4 different 
nonparametric methods.  

The trend of upland stream and water quality data 
from Plynlimon, mid wales were examined (Robson and 
Neal, 1996) applying the seasonal Kendall test. studied 
the time series of water quality parameters and the 
discharge of Strymon River in Greece from 1980 to 
1997. Gangyan et al. (2002) investigated the temporal 
sediment load characteristics of the Yangtze River using 
the turning point test, Kendall’s rank correlation test. 
Jassby et al. (2003) developed a time series model for 
Secchi depth in Lake Tahoe, USA. Panda et al. (2011) 
studied the trends in sediment load of a tropical river 
basin in India.  

Applied Time Series Analysis on Groundwater 

Quality 

Time series analysis has been applied on the 
groundwater quality modeling in different regions. 
Chang (1988) developed a modeling technique 
including the homogeneity test of data and the best 
model selection to fit the water loss series using a 
stochastic process.  

Wilson et al. (1992) determined groundwater quality 
changes as a result of anthropogenic activities using a 
time series analysis of well water quality data from 1964 
to 1965. Loftis (1996) reviewed national assessments of 
agricultural and urban, point source and hazardous waste 

studies on regional and localized groundwater quality 
all over the world including a few snapshots. Lee and 
Lee (2003) evaluated and quantified the potential of 
natural reduction of groundwater in an industrial area 
of Seoul, Korea. Different studies have focused on 
water temperature time series () Kim et al. (2005) 
applied time series analysis in a study through which 
the effect of tide on groundwater quality in a coastal 
area of Korea was investigated. Also temporal 
variability of turbidity, dissolved oxygen, conductivity, 
temperature and fluorescence in the lower Mekong 
River as investigated using time series analysis    
(Irvine et al., 2011).Water quality modeling plays an 
important role in water quality management and 
conservation (Singh et al., 2004; Chenini and Khemiri 
2009; Fang et al., 2010; Su et al., 2011;; Prasad et al., 
2014;  Seth et al., 2013;Parmar and Bhardwaj, 2014).  

Application of time series analyzing in water 
resources demonstrates the efficiency and capability of 
this approach since it considers stochastic nature of 
hydrological processes. This study aims to use this 
methodology in water quality analyzing. 

In present study, water quality parameters of Madian 
Rood are investigated at Baraftab station. The 
methodology and the study area are presented at the 
following section. 

Materials and Methods 

The Study Area 

The study area is located in the west of Iran in 
Kuhdasht region. Figure 1 shows the study area in Iran. 
This station of the river is located at 47°48'E and 
33°18'N. The area of basin is about 1108 Km2 which is 
located at Kashkan basin of Karkheh watershed.  

Time series of 9 water quality parameters such as 
TDS, EC, HCO3

-, Cl-, SO4
2-, Ca2+, Mg2+, Na+ and SAR 

of Baraftab station at Madian Rood River were studied 
in this research. 

Methodology 

The theory and application of the ARIMA modeling 
have been conducted in different studies (Pankratz, 
1983; Vandaele, 1983; Box and Jenkins, 1976). The 
background of this methodology is presented briefly. 
Autoregressive (AR) models estimate the values for the 
dependent variable, Zt, as regression function of previous 
values, Zt-1, Zt-2 ... Zt- n. An AR model of order 1 (i.e. an 
AR (1) model) is defined as Equation 1:  
 

( )1 1 1t t tZ Z α−= Φ +  (1) 

 
where, Zt and Zt-1 show deviations from the mean, Φ1 is 
the first-order AR coefficient and describes the effect of 
a unit change in Zt-1 on Zt and αt is the white noise.  
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Fig. 1: The location of the study area 
 

The αt values are assumed normally distributed and 
independent with the mean value of 0 and a constant 
value of variance. The value of variance for a stationarity 
model of Zt is positive and finite (Vandaele, 1983) and 
|Φ1| must be less than 1 to meet these conditions. The 
Higher order of AR models are possible, similar to a 
multiple regression; for this case, the absolute value of 
each AR coefficient should be less than 1. 

Moving Average (MA) models incorporate the past 
random fluctuations to show the time series. An MA 
model of order 1 (i.e., an MA (1) model) can be 
expressed as Equation 2: 
 

1 1t t tZ α θ α −= −  (2) 

 
where, θ1 is the MA coefficient and the random shocks 
(white noise) (αt) are assumed normally distributed and 
independent with the mean value of 0 and a constant 
value of variance. The value of |θ1| must be less than 
1. The Values greater than 1 show that the 
observations further in the past have a greater effecton 
Zt than more recent observations which is not 
plausible in a hydrologic time series. Higher order of 
the MA models is possible. Similar to the AR model 
coefficients, the absolute value of each MA coefficient 
should be less than 1. Since the parsimony is 
important in a time series modeling it sometimes 
could be met using a mixed (ARMA) model instead of 
a pure AR or MA model. Also representing a time 
series with an ARMA (1,1) model is more 
parsimonious in comparison with an AR (3) model 
because the model requires fewer parameter 
estimation. Mixing models is possible because they 
could be theoretically denoted as pure AR or MA 
models of infinite order (Vandaele, 1983). A mixed 

model can supply more flexibility to describe the results 
of interaction between the processes (Salas et al., 1980). 

The main goal of a time series analysis is to 
understand seasonal patterns and/or trends over time. 
Most of the time hydrologic time series show a regular 
seasonal pattern which can be removed by standardizing 
the data for the seasonal mean and standard.  

Also understanding and modeling the correlational 
structure in the time series is another goal of time series 
analysis. The basic stages in the ARIMA modeling are 
composed of: (1) Identifying the model, (2) estimating 
the orders of the model and (3) verifying the model using 
the standard tests. The results are presented in the 
following section. 

Results and Discussion 

In this study, nine water quality parameters were 
studied. Using one lag the data were transformed to 
make a yearly stationary time series. At the second stage 
MINITAB 14 was used in this study to analyze these 9 
time series. The ACF and PACF of time series were 
plotted at the second stage. 

After identifying the ACF and PACF of each time 
series the order of model was determined at first. Then 4 
criteria were used to compare the results of series 
generation through the suggested models and 35 data-
time series were generated. Based on 4 criteria, the best 
model was selected for each time series of 35 data and 
these models were used to forecast 5 values of time 
series. These 4 criteria were R2, AIC, RMSE and VE % 
(Karamouz and Araghinejad, 2005). The value of AIC is 
estimated through Equation 3:  
 

( ) ( )( )2  2  AIC n Ln p qσ= × + × +  (3) 
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where, σ is the standard error of residuals; n is the sample 
size; p and p show the order of AR and MA respectively. 
Also the value of VE % is calculated using (Equation 4): 
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  (4) 

 
where, yt and ŷt show the observed and estimated values 
respectively and n is the sample size. 

At the next stage forecasting the water quality 
parameters was accomplished. Results are shown in the 
following figs. Previously mentioned criteria (AIC, RMSE 
and VE %) were used at this stage for demonstrating the 
capability of each model to forecast the value of data. 

Figure 2 shows the standardized time series of water 
quality data for TDS parameter and the forecasted values 
of 5 successive years. 

Standard series of TDS show that this parameter has 
a positive trend, which was removed and modeled as it is 
demonstrated in Table 1. 

The Results show that the model is capable of 
modeling the time series well. However, there is an 
increasing trend for the observed values of 5 successive 
years which is not the same for forecasted one. 

For the second parameters, as it is clear from Fig. 3, 
EC time series follows an increasing trend which was 
removed at the second stage. Then using the best model, 
it was forecasted for 5 years. 

Also Table 2 shows the results for modeling and 
choosing the best fit. 

Figure 4 shows HCO3
- time series and forecasted 

series for 5 years. The forecasted values for 5 successive 
years are shown in this Figure as well. 

Similar to the previous parameters HCO3
- follows an 

increasing slope and, the modeling was accomplished 
after trend elimination. Table 3 shows the results of 
modeling for this parameter. 

Standardized time series of Cl- is presented in Fig. 5. 
Also the forecasted values of this parameter are shown in 
this Figure.  

The results show that the selected model, shown in 
Table 4, is capable of modeling the series well. 

Figure 6 demonstrates the standard series of SO4
2-. 

Modeling the SO4
2- series was done on the original series 

without trend elimination. The forecasted values for 5 
years are shown in this Figure too.  

The results of generation and the best fit are shown in 
Table 5.  

Also the standard series of Ca2+ is presented in Fig. 7 
and the forecasted values of this parameter are shown in 
this Figure.  

The results presented in Table 6 show that the 
selected model, shown in Table 6, is capable of 
modeling the series well. 

Fig. 8 demonstrates the standard series of Mg2+. The 
Fig.8 shows that the series follow an increasing trend. 
Modeling the Mg2+ series was done after trend 
elimination which is presented in this Figure as well.  

Table 7 shows that the selected model is capable of 
modeling the series well. 
 
Table 1: The results of TDS generation, order (1,3) 

MODEL R R2 AIC RMSE VE % 

(1,1,2) 0.81 0.66 -93.05 0.04 1.13 
(1,1,3) 0.86 0.74 -98.83 0.03 1.02 
(2,1,3) 0.86 0.74 -96.95 0.03 1.00 

 
Table 2: The results of EC generation, order (1,1) 

MODEL R R2 AIC RMSE VE % 

(1,1,1) 0.73 0.54 -76.97 0.05 1.36 
(1,1,2) 0.81 0.66 -89.01 0.04 1.29 
(2,1,1) 0.83 0.68 -90.36 0.04 1.25 
(2,1,2) 0.83 0.69 -89.82 0.04 1.27 
(1,1,3) 0.85 0.73 -94.32 0.04 1.21 
(2,1,3) 0.86 0.73 -92.51 0.04 1.18 

 
Table 3: The results of HCO3

- generation, order (1,2) 
MODEL R R2 AIC RMSE VE % 

(1,1,2) 0.79 0.62 -43.72 0.11 2.66 
(2,1,2) 0.77 0.59 -39.39 0.12 3.74 
(1,1,3) 0.80 0.64 -48.27 0.11 2.39 
(2,1,3) 0.76 0.58 -39.17 0.12 4.68 

 
Table 4: The results of Cl- generation,order (1,2) 
MODEL R R2 AIC RMSE VE % 

(1,1,1) 0.84 0.70 -81.94 0.04 0.80 
(1,1,2) 0.84 0.70 -77.96 0.04 0.80 
(2,1,2) 0.84 0.70 -76.12 0.04 0.79 
(1,1,3) 0.84 0.70 -75.97 0.04 0.80 
(2,1,1) 0.82 0.67 -74.52 0.05 0.90 

 
Table 5: The results of SO4

2- generation,order (1,1) 

MODEL R R2 AIC RMSE VE % 

(1,0,1) 0.51 0.26 -27.71 0.11 1.18 
(1,1,1) 0.46 0.21 -23.09 0.11 1.42 
(1,1,2) 0.49 0.24 -21.10 0.11 1.42 
(2,1,1) 0.56 0.31 -20.58 0.11 1.70 
(2,1,2) 0.60 0.36 -21.25 0.11 1.67 
(1,1,3) 0.55 0.30 -22.47 0.11 1.64 

 
Table 6: The results of Ca2+ generation,order (1,1) 

MODEL R R2 AIC RMSE VE % 

(1,0,1) 0.77 0.59 -61.39 0.06 1.32 
(1,0,2) 0.82 0.67 -66.36 0.06 1.33 
(2,0,1) …         
(2,0,2) …         
(1,1,1) 0.78 0.60 -61.90 0.06 1.15 
(1,1,2) 0.84 0.70 -69.94 0.05 1.16 
(2,1,1) 0.87 0.76 -76.41 0.05 1.23 
(2,1,2) 0.87 0.76 -74.52 0.05 1.22 
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Fig. 2: Standardized time series of TDS and the forecasted values for 5 years 

 

 
 

 
 

Fig. 3: Standardized time series of EC and the forecasted values for 5 years 
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Fig. 4: Standardized time series of HCO3
- and the forecasted values for 5 years 

 

 
 

 
 

Fig. 5: Standardized time series of Cl- and the forecasted values for 5 years 
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Fig. 6: Standardized time series of SO4
2- and the forecasted values for 5 years 

 

 
 

 
 

Fig. 7: Standardized time series of Ca2+ and the forecasted values for 5 years 
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Fig. 8: Standardized time series of Mg2+ and the forecasted values for 5 years 

 

 
 

 
 

Fig. 9: Standardized time series of Na+ and the forecasted values for 5 years 
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Fig. 10: Standardized time series of SAR and the forecasted values for 5 years 

 

 
 

Fig. 11: Time series of forecasted values for the last 5 years of water quality parameters 
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Table 7: The results of Mg2+ generation, order (1,1) 
MODEL R R2 AIC RMSE VE % 

(1,0,1) 0.72 0.51 -19.21 0.11 1.02 
(1,1,1) 0.69 0.48 -19.63 0.11 1.03 
(1,0,2) 0.73 0.53 -22.28 0.10 1.05 
(2,0,1) 0.67 0.45 -16.90 0.12 1.12 
(2,0,2) 0.80 0.64 -29.81 0.09 0.84 
(1,1,2) 0.79 0.62 -27.97 0.10 0.84 
(2,1,1) 0.80 0.65 -29.72 0.09 0.94 
(2,1,2) 0.80 0.65 -27.76 0.10 0.95 

 
Table 8: The results of Na+ generation, order (1, 2) 
MODEL R R2 AIC RMSE VE % 

(1,0,1) 0.87 0.75 -47.43 0.08 1.06 
(1,1,1) 0.87 0.75 -46.73 0.08 0.93 
(1,0,2) 0.87 0.75 -45.56 0.08 1.07 
(2,0,1) …         
(2,0,2) 0.89 0.80 -50.54 0.07 0.95 
(1,1,2) 0.89 0.78 -49.33 0.07 0.91 
(2,1,1) 0.87 0.76 -45.04 0.08 0.94 
(2,1,2) 0.89 0.78 -47.42 0.07 0.91 

 
Table 9: The results of SAR generation, order (1,2) 

MODEL R R2 AIC RMSE VE % 

(1,0,1) …         
(1,1,1) 0.91 0.83 -56.16 0.07 0.83 
(1,0,2) 0.90 0.82 -52.50 0.07 1.03 
(2,0,1) …         
(2,0,2) …         
(1,1,2) 0.91 0.83 -54.13 0.07 0.81 

 
Table 10: Results of forecasting the 5 years of parameters 
Parameter RMSE VE % R2 

TDS 40.91 0.07 0.79 
EC 60.33 0.08 0.65 
HCO3

- 0.09 0.04 0.86 
Cl- 0.12 0.07 0.95 
SO4

2- 0.62 0.44 0.73 
Ca2+ 0.68 0.20 0.70 
Mg2+ 0.56 0.26 0.88 
Na+ 0.19 0.18 1.00 
SAR 0.09 0.16 0.91 

 

Conclusion 

In this study, nine water quality parameters of 
Madian Rood River were studied at Baraftab station. The 
ARIMA modeling process was found suitable in 
generating and forecasting the parameters. SO4

2-, Na+ 

and SAR show a decreasing trend in spite of other 
elements of water quality, which show an increasing 
trend. However, using one lag to eliminate the trend 
stationary time series were prepared to work on. 

Also investigation of observed time series shows that 
there is a common increasing trend for all parameters 
except forSO4

2-, Na+ and SAR. EC, Cl-, Ca2+, Mg2+ and 
HCO3

- show an increasing trend which is a sign for 
deterioration of water quality in the region.  

Based on the field studies (JCE, 2005), the high 
growth and relative density of population, increasing the 
consumption of artificial stocks, leaving urban 
wastewaters and majority of rural sewage in traditional 
method through rivers, inconvenient methods of burying 
litters, dispersion of rubbishes and litters in surface 
waters and streams which finally inflow through rivers 
are considered as the major reasons of water quality 
deterioration. Agricultural wastewaters and livestock are 
other reasons which make surface waters polluted. Also 
the danger of water quality aggravation is increasing as a 
result of high population growth in the region and 
efficient actions are necessary in the region to prevent 
more environmental destruction. 
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