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Abstract: The low rate of electrification seems challenging in many West 
African countries and many strategies are underway to improve upon. In 

this regard, the target of achieving the universal access and services calls 

for a stable and reliable electrical network. Forecasting of electrical load on 

a connected grid network is very delicate and requires tremendous task 

from the utilities (billing Company). It aims at looking at if the offered 

energy is sufficient or below satisfactory in order to add or inject more 

compensating energy units into the system. Consequently, the short term 

forecasting is used in evaluating the risk of electricity shortage and 

reducing the advent of load shedding in an emerging economy alike the 

energetic Body of Benin comprising Togo and Benin. This paper evaluates 

two methods used in Artificial Neural Networks (ANN) for the prediction 
of electricity consumption. These methods are the Multilayer Perceptron 

(MLP) and the Radial Basic Function (RBF). Many topologies of the 

hidden layers’ configuration for the learning stages were considered in 

cross comparison against real data obtained from the grid interconnected 

Network of Benin. The results have proven that the predicted data are very 

close to the real data while using these algorithms. 

 

Keywords: Electrical Load, Short Term Forecasting, Artificial Neural 
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Introduction  

The electrical load forecast is an important role in 

the management system. It helps in the load demand 

planning and the prior performance of the power 

systems (Chang, 2015). In this circumstance, an 

efficient prediction of electricity demand remains 

essential for the performance at utilization of electrical 

plant. The benefits are measured in the dispatching’s 

time of energy. The overestimation of future charge 

may lead to unnecessary waste of resources, which in 

turn may yield an extra cost in the capital of 

expenditures. However, the under-estimation of the 

future demand may also translate some dysfunctions or 

failures that may influence the system stability in long 

term. Consequently, some discontinuities in the 

electrical plant  may occur due to the challenges 

accounting for the meteorological conditions such as 

the time of day, electricity cost, the population and 

social activity, etc. that (Zjavka and Snášel, 2016). 
Traditional methods are used to maintain a stable 

load curve as indicated in (El-Baz and Tzscheutschler 
2015; Frimpong and Okyere, 2012; Barakati et al., 2015; 
Chen et al., 2001). The load forecast is based upon a 

series of collected data in timely basis that are processed 
into a linear regression filter as suggested in (Chen et al., 
2001), where the Kalman filter has proven effective in the 
forecast of chronological series. However, Engle et al. 
(Pan et al., 2004) have investigated several methods for 
the load forecasting. These models included 
deterministic influences such as holidays and other 
stochastic events in relying on their mean values to 
predict the mean load. These methods alike temporal 
series, are called autoregressive models (Huang, 1997). 
The Autoreg Ressive Moving Average (ARMA) is 
presented in (Cho et al., 1995), meanwhile the Autoreg 
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Ressive Integrated Moving Average (ARIMA) are 
discussed in (Barakat et al., 1992; Juberias et al., 1999; 
Mandal et al., 2006; He et al., 2005; Al-Hamadi and 
Soliman, 2004) presented some details about Kalman 
filter to predict the charge load in short term. It will be 
noted that these prediction models are limited to the 
environmental cent meteorological conditions. A remedy 

to this problem, Artificial Neural Networks (ANN) are 
more convenient in forecasting of electrical load in short 
term. This work focuses on the prediction of electrical 
load of Benin Electricity Community Network using two 
neural approaches, which are Multi Layer Perceptron 
(MLP) and Radial Basis Function (RBF). These methods 
were considered in cross comparison against real data 
obtained from the grid-interconnected network. 

The rest of the paper is structured as follows: The 

next section describes the methods and some statistical 

indicators for performance evaluation. In section 3, the 

methodology of data processing and its modelling into 

ANN toolbox in Matlab software are presented. In 

section 4, the results and discussion are elaborated. 

Finally, the conclusion is given in section 5, which leads 

to further research directions. 

The models of the study 

The output of a neural network takes into account 

the learning procedure. The learning stage is based on 

the retro propagation of error. He output expression is 

given as: 
 

 
q

k kj j k

j 1

O = w b x - θ


  (1) 

 

Where:  

1<k<m; m = The number of nodes  

Ok = The output of the kth node of the output 

layer  
wkj = The connection between the jth neuron of 

hidden layer and kth neuron of hidden 

layer and kth neuron of output layer 

bj(x) = The output of the jth neuron of hidden 

layer and ϴk is the bias of the kth neuron 

of output layer. 

 

For the Multilayer Perceptron (MLP) architectural 

model as depicted in Fig. 1, showing the hidden and 

output layer layout, the model’s output is given as: 
 

0
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Where: 

y  = The predicted value by the neural network 

n = The number of hidden layers 

β0 = Bias, βi are weighted coefficients 

hi = The result of nonlinear transformation of hidden 

layer i 

 

The Radial Basis Function model (RBF) differs from 

the MLP by Gaussian activation function as shown in Fig. 

2. During the learning process, each neuron of the hidden 

layer performs a nonlinear transformation. The output of 

RBF neuron with Gaussian nonlinearity is expressed as: 
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Where: 
 μj = The mean of Gauss’s function of jth layer 
σj = Standard deviation of Gauss’s function of jth  
  layer 

xi = Input variables of neurons, such as 1<j<q; where 

  q is the number of neurons in the hidden layer. 

 

The accuracy of a model is measured by the 

difference between the expected true value and the 

observed value Eabs. This is expressed as: 

 

j, p j,r
E  = Y - Y  abs   (4) 

 
The difference between the predicted value to the 

actual denotes an excess load, ELoad and its mean value is 
given as: 
 

 j, p j,r
E =

1
Y - Y  

N 
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Load

N

j

  (5) 

 
Three indicators are considered in assessing the 

performances of the different configurations: Mean 
Absolute Percentage Error (MAPE); Root Mean Square 
Error (RMSE) and correlation coefficient (R2). The 
correlation coefficient, ought to be close to 1, translating 
strong relationship between the predicted and the observed 
value: 
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In (4), (5), (6) and (7): 
 
N = The measured data number  
Yj,p = The forecast load at index j 
Yp,avg = The mean value of predicted load 
Yj,r = Real load observed at index j  
Yr,avg = Average value of real load 
 

We recall that the excess load could be regarded as 

the difference between the true load (the produced 

energy) and the actual load. The knowledge of the mean 

can help in system compensation for the energy demand 

by the insertion of other means of power supply 

generation such as a renewable or clean energy 

provision. The residual energy ∆E that compensates the 

demand is a factor of k given as: 

 

1 1/ 2k MAPE    (9) 

 

Methodology 

This section highlights the steps in investigating the 
performances of the ANN algorithms in study.  

The data processing and implementation of the 

forecast models were made with the help of the ntstool 

toolbox in Matlab version R2016a.  

Input Data 

These variables are used to evaluate the influence of 
each input parameter on the output of prediction model. 
The accuracy of the model may depend on the adequate 
input parameters. This involves eliminating some 
redundant variables or those providing less or no 
information to describe the output. Table 1 presents the 
variables used to model the electrical load of CEB. The 
various combination of the variables and the efficient 
stages in the configuration are given in Table 2.  

Measured Data 

The data used are from the hourly observation on 
the electrical joint consumption of Togo and Benin. 
The data were stored in log-files every day per hours 
from 2010 to 2014 (about 43824 data). A preliminary 
processing was conducted to avoid a false prediction. 
Therefore, these data were arranged into three groups. 

The first group intends for the learning includes data 
from 2010 to 2012. The second and last group uses 
respectively 2013’s data to validate the efficiency of 
prediction and 2014’s data for the test. 

Results and Discussion 

The hidden neurons configurations and the network 
outputs are given for both models, the MLP and the 
RBF. For these models, ten learning tags are considered 
in the simulation under the assumed hidden neurons as 
shown in the Tables 3 and 4, respectively MLP and RBF 

performances. Indeed, the synaptic weight changes with 
every execution, which introduces a slight difference in 
the results at each iteration. 

In Table 3 and 4, the (*) symbol implies the best 

performance of a given configuration.  

When using other statistical methods such as linear 

regressive multiple points, we obtain results that are 

tabulated in Table 5. 

Table 6 presents the summary of the considered models 

with respect to the set number of neurons for the hidden 

layers, which may indicate the best performances.  

The obtained results in Table 7 may show that the 

number of hidden layer has significant impact on the 

performance of layered networks. However, it is 
providing that as the number of hidden layer increases, 

the performance decreases and the errors becomes very 

significant.  

The second analysis may better describe the 

behavioral characteristics of neural networks. It may 

indicate that neural networks are best suitable in the 

modeling of electrical load profile. Noting that the 

environment error does not exceed 4%. 

The analysis may indicate that the regression 

methods are fast in forecasting with respect to time 

constraint. The best configuration is [ABDEF] for a 

MAPE of 4.29% and correlation coefficient for 90.90%. 
The worst case is 10 ([BCEG]) with a MAPE of 6.22% 

and correlation coefficient of 80.51%. 

Table 7 shows the most appropriate configuration of 
electrical load modeling. The case 6 of MLP model 
provides the smallest MAPE and most important 

correlation coefficient. It is noted that the number of 
neurons in the hidden layer is the criterion used to select 
the model’s performance. As a fact, the case 6 of the 
RBF model could be viewed as the most suitable 
because its MAPE error is around 3.05% and having the 
best correlation coefficient (93.73%). It is necessary to 
find a compromise between these factors in order to 
obtain an efficient forecast. It seems legitimate to choose 
the neural model to carry out the prediction.  

The Fig. 4 presents the simulation of MLP, RBF and 
Multiple Linear Regression (MLR) models over one week 
duration. The values obtained for the different MAPE 

show that neural models give the least error. For the MLP 
model, the MAPE error is 0.92% compared to 2.125% for 
RBF model. In Fig. 5, a training over 24 h was considered 
with emphasis on the comparative analysis of the different 
prediction models.  

The MAPE errors for the models are calculated. The 

MAPE for the MLP’s model gives a lower MAPE error 

around 0.61% than that of the RBF’s model (1.9%).  

The energy compensating system could be decided in 

regard to (4) and (5). Assuming the worst case, an extra-
energy of (1-2%)*X will be required to sustain the daily 

energy demand. Where X is the daily produced energy 

by the hydro-plant. 
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Fig. 1: MLP Neuronal architectural model 

 

 

 

 

Fig. 2: The RBF architectural model 
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Table 1: Input variables 

Data Mathematical explanation Code 

Working day or not 
if working then 1

if not then 0
 A 

Day week Sunday = 1; Monday = 2;Tuesday =3; B 

 Wednesday = 4; Thursday = 4; 
 Friday = 5; Saturday = 7 
Day hours H (1 to 24) C 
Previous Day Same Hour Load Yh-24 D 
Previous Week Same Hour Load Yh-168 E 
Previous Year Same Hour Load Yh-8760 F 

Previous 24 h Average Load 
24

1

h i

i

Mean Y 



 
 
 
  G 

 Y = load’s data 

 
Table 2: Summary of the possible configurations 

Case Configuration 

1 [D E F] 

2 [A B D E F] 

3 [A B C D E F G] 

4 [A C D E G] 

5 [A B C D G] 

6 [A B C G] 

7 [B C D E F G] 

8 [B D E F G] 

9 [A B C D] 

10 [B C E G] 

 
Table 3: MLP model performances 

   MAPE (%) RMSE (%) R2 (%) 

  Number of hidden ---------------------- --------------------- ------------------- 

Configuration Case layer’s neurons Min Max Min Max Max Min 

[DEF] 1 1 4.4283 4.4883 0.5036 0.5040 88.84 88.56 

  5 3.6523 3.8103 0.4641 0.4923 91.37 91.22 

  10 3.6759 3.8094 0.4964 0.4977 91.62 91.16 

  15 3.6146 3.7838 0.4398 0.4719 91.92 91.10 

  20* 3.5961 3.8560 0.4967 0.6067 91.86 90.98 

  30 3.6105 4.3757 0.5033 0.8066 92.09 77.36 

  40 3.6163 3.9521 0.4558 0.5027 91.84 90.90 

  60 3.6334 3.8567 0.4585 0.4984 91.85 91.03 

[ABDEF] 2 1 4.3251 4.4127 0.4994 0.5013 89.20 88.85 

  5 3.5624 3.8603 0.5024 0.9521 92.05 74.87 

  10 3.5304 3.9022 0.4865 0.4920 92.16 91.00 

  15 3.5370 3.7109 0.3518 0.4737 91.77 91.65 

  20* 3.4602 3.7383 0.4948 0.5028 92.39 91.28 

  30 3.5062 3.6840 0.4734 0.4842 92.20 91.57 

  40 3.5911 3.7061 0.4978 0.5134 92.06 91.50 

  60 3.5653 3.7376 0.4689 0.5006 92.12 91.57 

[ABCDEFG] 3 1 4.2156 5.2602 0.4616 0.5070 89.73 82.60 

  5 3.2402 3.9699 0.4938 0.5404 93.01 90.65 

  10* 3.1702 3.6138 0.5013 0.5072 93.34 91.93 

  15 3.2410 3.5869 0.4177 0.5064 92.99 91.97 

  20 3.3022 3.6708 0.4754 0.5183 92.86 91.81 

  30 3.3253 3.8117 0.4748 0.5056 92.88 91.41 

  40 3.3736 3.6791 0.4626 0.5177 92.81 91.78 

  60 3.4890 3.8295 0.4591 0.5034 92.29 91.32 
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Table 3: Continue 

 [ACDEG] 4 1 4.2003 4.3892 0.5014 0.5027 89.69 88.79 

  5 3.2716 3.9021 0.3021 0.5426 93.00 90.78 

  10* 3.0947 3.9071 0.4844 0.5308 93.50 90.87 

  15 3.2504 3.6040 0.4732 0.5201 92.84 91.87 

  20 3.2063 3.7798 0.4874 0.5126 93.24 91.34 

  30 3.2083 3.6491 0.4054 0.5056 93.24 91.87 

  40 3.2673 3.5755 0.5076 0.5223 93.08 92.15 

  60 3.3245 3.6400 0.5158 0.5167 92.99 92.05 

[ABCDG] 5 1 4.1819 5.1654 0.4827 0.5193 89.74 85.13 

  5 3.1992 4.0551 0.4821 0.5231 93.36 90.50 

  10 3.2063 3.9109 0.4867 0.5243 93.36 90.91 

  15* 3.1669 3.6838 0.5430 0.5490 93.23 91.48 

  20 3.1917 3.6052 0.5146 0.5250 93.26 92.13 

  30 3.2450 3.6594 0.4849 0.5386 93.11 91.81 

  40 3.2283 3.6646 0.2004 0.4937 93.20 91.61 

  60 3.4028 3.6920 0.4999 0.5019 92.76 91.78 

[ABCG] 6 1 3.4723 3.4780 0.5547 0.5555 91.82 91.78 

  5 3.0409 3.1254 0.5301 0.5379 93.71 93.47 

  10 3.0237 3.0531 0.5391 0.5417 93.85 93.76 

  15 3.0115 3.1039 0.5228 0.5528 93.76 93.70 

  20* 2.9861 3.0999 0.5388 0.5711 93.81 93.37 

  30 3.0812 3.1703 0.5219 0.5243 93.76 93.38 

  40 3.0923 3.1623 0.5212 0.5367 93.59 93.36 

  60 3.1529 3.1890 0.5116 0.5339 93.52 93.39 

[BCDEFG] 7 1 4.3415 4.5356 0.4976 0.5015 89.30 88.39 

  5* 3.2886 3.3218 0.5078 0.5126 92.94 92.73 

  10 3.5365 3.7545 0.5045 0.5213 92.30 91.59 

  15 3.4406 3.9684 0.4682 0.6596 92.33 90.70 

  20 3.3828 3.4795 0.4957 0.5143 92.70 92.42 

  30 3.4252 3.6020 0.4653 0.5273 92.62 92.02 

  40 3.3319 3.6941 0.4788 0.5238 92.93 92.02 

  60 3.3951 3.9595 0.5280 0.6916 92.66 89.72 

[BDEFG] 8 1 4.3493 4.4068 0.5071 0.5088 89.28 89.01 

  5 3.5532 3.6728 0.4928 0.5086 92.14 91.88 

  10 3.4896 3.8195 0.4723 0.4914 92.27 91.18 

  15 3.5062 3.8058 0.4988 0.5012 92.26 91.19 

  20* 3.4443 4.0113 0.4577 0.4932 92.41 90.43 

  30 3.4124 3.6954 0.5050 0.5243 92.57 91.92 

  40 3.4870 3.7229 0.4712 0.5006 92.33 91.54 

  60 3.4549 3.6317 0.4959 0.5268 92.31 91.77 

[ABCD] 9 1 4.2755 4.3170 0.5125 0.5127 89.27 89.11 

  5 3.2834 3.4800 0.4547 0.5193 92.97 92.40 

  10 3.1949 3.5667 0.4889 0.5006 93.45 91.67 

  15 3.2892 3.5470 0.5147 0.5243 92.99 92.21 

  20* 3.1565 3.5268 0.4813 0.5121 93.45 92.47 

  30 3.3056 3.4968 0.4817 0.5037 93.08 92.50 

  40 3.3064 3.4455 0.5049 0.5234 93.04 92.49 

  60 3.3339 3.4968 0.4896 0.5023 92.93 92.46 

[BCEG] 10 1 3.4744 3.4939 0.5536 0.5541 9187 91.84 

  5 3.0817 3.1200 0.5399 0.5622 93.45 93.27 

  10 3.0524 3.2093 0.5221 0.5793 93.71 93.02 

  15* 3.0523 3.1607 0.4960 0.5006 93.62 93.29 

  20 3.0654 3.1898 0.5113 0.5135 93.61 93.16 

  30 3.0894 3.2186 0.4824 0.5203 93.61 93.19 

  40 3.0804 3.2311 0.5306 0.5394 93.55 9307 

  60 3.1837 3.2302 0.5305 0.5314 93.35 93.13 
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Table 4: RBF model performances 

   MAPE (%) RMSE (%) R2 (%) 
  Number of hidden ----------------------         ----------------------        ------------------- 

Configuration Case layer’s neurons Min Max Min Max Max Min 

[DEF] 1 1 4.4466 4.4915 0.5041 0.5053 88.76 88.53 
  5 3.6966 3.9067 0.4537 0.5031 91.57 90.80 
  10* 3.6238 3.8705 0.4709 0.5031 91.78 91.19 
  15 3.6269 3.8218 0.4828 0.5042 91.86 91.37 
  20 3.7294 3.8580 0.4848 0.4906 91.67 91.07 

  30 3.6735 3.8284 0.4691 0.4851 91.66 91.31 
  40 3.6311 3.9624 0.4928 0.5058 91.82 90.48 
  60 3.7290 3.9346 0.4571 0.4636 91.40 90.99 
[ABDEF] 2 1 4.3315 7.1743 0.4003 0.5014 89.18 64.82 
  5 3.7570 3.8408 0.4959 0.5016 91.40 91.26 
  10 3.6052 3.7405 0.4965 0.5093 92.03 91.37 
  15 3.5578 3.7932 0.4821 0.5037 92.06 91.46 
  20 3.6511 3.7074 0.4853 0.5009 91.70 91.67 

  30 3.5586 3.6529 0.4641 0.5112 92.14 91.94 
  40* 3.5314 3.6480 0.4467 0.4709 92.23 91.82 
  60 3.6642 3.7368 0.4478 0.4937 91.75 91.41 
[ABCDEFG] 3 1 4.4042 5.2482 0.5038 0.5040 88.88 81.69 
  5* 3.2111 3.5021 0.4984 0.5017 93.18 92.52 
  10 3.3462 3.7863 0.5027 0.5041 92.87 91.49 
  15 3.2617 3.6739 0.4945 0.5033 92.83 91.57 
  20 3.3959 3.4082 0.5170 0.5306 92.74 92.67 
  30 3.4713 3.8071 0.4434 0.4758 92.28 91.23 

  40 3.3422 3.5736 0.4625 0.5156 92.84 92.14 
  60 3.3792 3.6917 0.4935 0.5287 92.68 91.33 
[ACDEG] 4 1 4.1866 4.2142 0.5099 0.5124 89.73 89.62 
  5 3.2876 3.5680 0.4984 0.5076 93.04 92.14 
  10 3.3041 3.4591 0.4966 0.5223 92.95 92.43 
  15 3.3657 3.4485 0.5216 0.5299 92.87 92.53 
  20* 3.2390 3.5109 0.4848 0.4929 93.12 92.32 
  30 3,3198 3,8010 0,5100 0,5592 92,92 91,08 

  40 3,3330 3,5437 0,4999 0,5029 92,86 92,24 
  60 3,3126 3,3464 0,5094 0,5206 92,98 92,86 
[ABCDG] 5 1 4.1290 5.2150 0.4393 0.4937 89.94 85.53 
  5 3.3801 3.9726 0.4676 0.4856 92.67 90.52 
  10 3.3321 3.6963 0.4981 0.5073 92.86 91.72 
  15 3.3646 3.5324 0.5197 0.5238 92.84 92.37 
  20* 3.3317 3.6834 0.4866 0.4979 92.91 91.71 
  30 3.3960 3.4606 0.5275 0.5361 92.63 92.53 

  40 3.3878 3.4818 0.5198 0.5355 92.68 92.37 
  60 3.4813 3.5110 0.4988 0.5026 92.94 92.26 
[ABCG] 6 1 3.4732 3.5010 0.5524 0.5538 91.80 91.72 
  5 3.1189 3.2255 0.5397 0.5483 93.51 93.04 
  10* 3.0534 3.1388 0.5244 0.5298 93.73 93.36 
  15 3.0593 3.1019 0.5176 0.5431 93.50 93.50 
  20 3.0551 3.1602 0.4958 0.5285 93.76 93.36 
  30 3.0743 3.1418 0.4982 0.5583 93.59 93.36 

  40 3.1755 3.2229 0.5036 0.5495 93.28 93.08 
  60 3.1667 3.2442 0.4833 0.4954 93.38 93.12 
[BCDEFG] 7 1 4.3515 4.4340 0.4516 0.5059 89.31 88.90 
  5 3.5969 3.9206 0.5021 0.5045 92.00 90.84 
  10* 3.3232 3.6711 0.3869 0.4919 92.84 91.87 
  15 3.3770 3.7094 0.4700 0.5170 92.75 91.74 
  20 3.4748 3.6130 0.3714 0.5077 92.50 92.08 
  30 3.4897 3.6205 0.4977 0.5064 92.29 91.99 
  40 3.4553 3.5544 0.5187 0.4693 92.55 92.26 

  60 3.4738 3.6207 0.4720 0.5050 92.48 91.70 
[BDEFG] 8 1 4.3430 5.2756 0.4939 0.5083 89.35 83.30 
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Table 4: Continue 

  5 3.8322 3.9373 0.4876 0.5308 91.02 90.57 
  10* 3.4665 3.5132 0.5082 0.5106 92.26 92.17 

  15 3.4831 3.8644 0.4061 0.4867 92.07 90.76 
  20 3.6009 3.7588 0.4842 0.5094 92.03 91.38 
  30 3.7317 3.7423 0.4624 0.4779 91.38 91.48 
  40 3.5842 3.6959 0.4811 0.5169 91.78 91.64 
  60 3.6276 3.8165 0.4548 0.5110 91.97 90.88 
[ABCD] 9 1 4.3304 4.3473 0.5103 0.5110 89.07 88.96 
  5 3.3780 3.6304 0.5267 0.5401 92.55 91.78 
  10* 3.1815 3.6116 0.5100 0.5140 93.37 91.88 

  15 3.3120 3.5268 0.4877 0.5122 92.84 92.35 
  20 3.2298 3.6261 0.4198 0.5078 93.05 92.07 
  30 3.2706 3.4945 0.4658 0.5034 92.95 92.44 
  40 3.4967 3.7503 0.4715 0.4794 92.25 91.55 
  60 3.3243 3.4335 0.5200 0.5380 92.86 92.45 
[BCEG] 10 1 3.4661 3.4966 0.5538 0.5551 91.89 91.75 
  5 3.1440 3.7883 0.5263 0.5417 93.26 89.86 
  10 3.1701 3.1858 0.5199 0.5678 93.32 93.23 

  15 3.1059 3.1960 0.5252 0.5258 93.46 93.22 
  20* 3.0608 3.1664 0.5092 0.5263 93.63 93.41 
  30 3.1526 3.1623 0.4330 0.5074 93.38 93.31 
  40 3.0948 3.1910 0.5096 0.5102 93.52 93.41 
  60 3.1985 3.2512 0.4598 0.5118 93.26 93.22 

 
Table 5: MLR model performances 

Case 1 2* 3 4 5 6 7 8 9 10 

MAPE  4.51 4.29 4.68 5.07 4.64 7.52 4.72 4.54 4.57 6.22 

RMSE 0.44 0.41 0.47 0.51 0.62 0.63 0.46 0.40 0.50 0.52 

R2 89.7 90.9 89.3 88.4 90 70.2 88.8 89.8 96.4 80.5 

 
Table 6: Summary of Performances of different models 

  MAPE RMSE R2 

 Number of hidden ------------------------------------ ------------------------------- -------------------------------- 

Model layer’s neurons Min Max Min Max Max Min 

MLP1 20 3.5961 3.8560 0.4967 0.6067 91.86  90.98 

2 20 3.4602 3.7383 0.4948 0.5028 92.399 1.28 

3 10 3.1702 3.6138 0.5013 0.5072 93.349 1.93 

4 10 3.0947 3.9071 0.4844 0.5308 93.509 0.87 

5 15 3.1669 3.6838 0.5430 0.5490 93.23 91.48 

6* 20 2.9861 3.0999 0.5388 0.5711 93.81 93.37 

7 5 3.2886 3.3218 0.5078 0.5126 92.94 92.73 

8 20 3.4443 4.0113 0.4577 0.4932 92.41 90.43 

9 20 3.1565 3.5268 0.4813 0.5121 93.45 92.47 

10 15 3.0523 3.1607 0.4960 0.5006 93.62 93.29 

RBF1 10 3.6238 3.8705 0.4709 0.5031 91.78 91.19 

2 40 3.5314 3.6480 0.4467 0.4709 92.23 91.82 

3 5 3.2111 3.5021 0.4984 0.5017 93.18 92.52 

4 20 3.2390 3.5109 0.4848 0.4929 93.12 92.32 

5 20 3.3317 3.6834 0.4866 0.4979 92.91 91.71 

6* 10 3.0534 3.1388 0.5244 0.5298 93.73 93.36 

7 10 3.3232 3.6711 0.3869 0.4919 92.84 91.87 

8 10 3.4665 3.5132 0.5082 0.5106 92.26 92.17 

9 10 3.1815 3.6116 0.5100 0.5140 93.37 91.88 

10 20 3.0608 3.1664 0.5092 0.5263 93.63 93.41 

RML - 4.2960 0.4134 90.90 
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Table 7: Best performances of different models 

   MAPE RMSE R2 

  Number of hidden -----------------------------                ----------------------------                ----------------------------- 

Model Case layer’s neurons Min Max Min Max Max Min 

MLP* 6 20 2.9861 3.0999 0.5388 0.5711 93.81 93.37 

RBF 6 10 3.0534 3.1388 0.5244 0.5298 93.73 93.36 

MLR 2 - 4.2960 0.4134 90.90 
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Fig. 3: Error curve for MLP and RBF model 
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Fig. 4: Simulation of actual and predicted load 
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Fig. 5: Simulation of actual and predicted load for different neural model during 24 h 
 

Conclusion 

The work presents the short-term prediction about 
energy demand of the Benin Electricity Community 
using two neural approaches (MLP and RBF). The 
Matlab environment, particularly, the ntstool toolbox was 
used to implement these models and for the learning stages. 
The obtained results are compared to that of the linear 
multiple regression method. The calculation of MAPE error 
may help in deciding the best combination that map the 
layers and the hidden [ABCG], which could yield the best 
configuration of the network. For the indicated 
configuration, the MAPE is 2.98% for 20 neurons in hidden 
layer compared to 3.05% for 10 neurons in hidden layer. It 
further extracts a factor from the MAPE, which is 
proportional to the required energy to meet the daily 
demand. It could be used to compute for the energy 
injection from other renewable resources. This would help 
in the implementation of the universal access and services 
facilities and full availability and stability in order to help 
these countries becoming an emerging economy.  
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