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Abstract: The present paper shows how to analytically determine the 
forces acting within a simple manipulator. Forces acting within any device 
or car have an important role because they are the ones that define the real 
movement of that device, the dynamic movement, movement that is very 
different from the cinematic imaginable by geometric-kinematic 
engineering calculations. To know the real movement of a device or object, 
it is, therefore, necessary first to determine all the forces that act on that 
device. In robots and manipulators, it is all the more important to know 
their real movement as they replace the man in heavy, daily, repetitive, 
tiring work. The known external forces acting on the studied manipulator, 
that is, the inertial forces, are initially calculated by means of the masses of 
the manipulator mechanism and their accelerations and then may be 
determined through specific analytical equations and the unknown internal 
forces of the system acting on the kinematic couplings of the manipulating 
mechanism considered. 
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Introduction 

Manipulating mechanisms have the important role of 
moving an object from one place to another. Robotic 
manipulators do this repeatedly thousands of times a day 
without getting tired or ruining without breaks or 
vacations. From this point of view, we can no longer 
speak of the fact that robots steal human labor, when 
they actually replace man in hard or very heavy, 
repetitive labors, sometimes sustained in gas or toxic, 
chemical or radioactive environments, or in dangerous 
environments, such as dyeing or very dangerous as 
mined land. Robots can also work in the cosmos by 
helping humans conquer space, a basic humanitarian 
mission, or they can carry out various major operations 
at deep depths beneath the earth or the ocean floor. For 
example, they can mount or weld an underwater pipe 
under conditions impossible for humans because the 
pressure at that depth cannot be borne by any being. 

Determining the forces acting within a mechanism is 
an extremely important problem because on the basis of 
these forces calculated before designing the mechanism, 

the functional constructive parameters of that device can 
be predicted. The higher the forces that will act in the 
kinematic coupler of the mechanism, the more rigid the 
structure of the mechanism will be required, each 
element being designed to withstand both static and 
dynamic loads in operation. Select the engine or, as the 
case may be, the required drive motors that can generate 
the necessary engine moments, which are superior to 
those in operation, pre-calculated using the previously 
determined mechanism forces. Forces in any device 
require all its components, the demands being generally 
higher during operation, increasing generally with the 
square of the main engine speed. The demands depend 
very much on the inertial forces in the mechanism, which 
in turn increase with the speed of the mechanism (drive 
motor speed). Each coupling requires a certain type of 
movement and has an important influence on the dynamic 
range of the area and the entire kinematic chain. For this 
reason, the forces in the mechanism depend primarily on 
the type of the mechanism, its couplings and its 
elements, but also the speed of the leading element. 
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The known external forces acting within any 
mechanism are those of inertia, commonly called the 
torso of inertial forces. At the transport manipulator 
mechanism presented in this paper, the inertial forces are 
calculated using the relations of the system 1 (In the 
schemes presented they are represented by a continuous 
line (green), while the unknown forces to be determined, 
i.e., the reactions from the kinematic couplers, are 
represented by broken line (red color)). 

Force calculations are performed inversely than 
kinematic, i.e., starting with the last module of the 
mechanism (RRT) the relational system 2, the relational 
system 3 continues with the middle module (RRR) and 
completes with the leading element (system relations 4). 

Using the known external forces, the unknown inner 
forces, that is, the reactions from the kinematic couplers 
and the motor moment required to be applied to the 
leading element 1 are analyzed analytically. 

A robot is a mechanical or virtual, artificial operator. 
The robot is a system composed of several elements: 
mechanical, sensors and actuators as well as a steering 
mechanism. The mechanics determine the appearance of 
the robot and the possible movements during operation. 
Sensors and actors are used when interacting with the 
system environment. The targeting mechanism ensures 
that the robot accomplishes its goal successfully, 
assessing for example sensor information. This 
mechanism regulates the engines and plans the 
movements to be made. Robots with human form are 
called androids. 

The Greek mathematician, Archytas (Encyclopædia 
Britannica), has, according to some accounts, built one 
of these first automata: a vapor-driven pigeon that could 
fly alone. This wooden cavern was filled with air under 
pressure. It had a valve that allowed opening and closing 
by a counterweight. There have been many models over 
the centuries. Some made work easier and others served 
to people's amusement. 

With the discovery of the 14th century mechanical 
clock, new and complex possibilities have opened up. 
Not long afterwards, the first machines appeared, which 
resembled the robots today. But it was only possible that 
the movements followed one another without the need 
for manual intervention in that system. 

The development of electrical engineering in the 
twentieth century has brought about a development of 
robotics. The first mobile robots include the Elmer and 
Elsie system built by William Gray Walter in 1948 
(Norman’s, 2018). These tricycles could point to a light 
source and recognize collisions in the surroundings. 

The year 1956 is considered as the birthday of the 
industrial robot. George Devol has filed this year's US 
application for a patent for "scheduled article transfer". 

A few years later he built together with Joseph 
Engelberger UNIMATE (Engelberger, J.F., The Father 
of Robotics). This robot of approx. two tons was first 
introduced into the installation of TV iconoscopes and 
then found its way into the automotive industry. The 
programs for this robot were saved in the form of 
directional commands for motors on a magnetic cylinder. 
Since then, industrial robots such as UNIMATE have 
been introduced in many production areas and are 
continually being developed further to cope with the 
complex demands imposed on them. 

Robots are mainly made by combining disciplines: 
mechanical, electrotechnical and computer science. 
Meanwhile, it was created from their mechatronic 
connection. To build autonomous systems (to find 
solutions), it is necessary to link as many disciplines 
as possible to robotics. Here the emphasis is placed on 
the linkage between the concepts of artificial 
intelligence or neuroinformatics (part of computer 
science) as well as their biochemical biological ideal 
(part of biology). The link between biology and 
technology has developed into bionics. 

The most important components of the robots are the 
sensors, which allow their mobility in the environment 
and a more precise routing. A robot does not necessarily 
have to be able to act autonomously, which distinguishes 
between autonomous and telegraph robots. 

The image of humanoid robots took shape in 
literature, especially in the novels of Isaac Asimov in the 
1940s. These robots were for a long time unrealistic. 
Many important issues have to be solved for their 
achievement. They must act and react autonomously in the 
environment, their mobility being restricted to the two 
legs as locomotion. Besides, they still need to be able to 
work with their arms and hands. Since 2000, basic issues 
seem to be resolved (with the emergence of ASIMO 
(Honda) for example; Honda's, humanoid robot). 
Meanwhile, new developments are emerging in this area. 
Humanoid robots can be described as stepping robots. 

The household robot works autonomously in the 
household. Known applications are vacuum cleaner 
(manufactured by Electrolux, Siemens or iRobot), 
lawnmower, a robot washing the windows (Bill Gates, 
2013). 

Exploratory robots are robots that operate in hard-to-
reach and dangerous locations teleghidated or partially 
autonomous. They can work for example in a region in 
military conflict, on the Moon or on Mars. A geared 
navigation from the ground in the last two cases is 
impossible due to distance. Communication signals 
arrive at their destination in a few hours and their 
reception lasts as long. In such situations robots must be 
programmed with several types of behavior, from which 
they choose the most appropriate and execute it. 
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This type of robot equipped with sensors has also 
been used to research pyramid wells. Several cryobots 
have already been tested by NASA in Antarctica. This 
type of robot can reach up to 3,600 m through ice. 
Cryobots can thus be used in polar head research on 
Mars and Europe in the hope of alien life discoveries. 

Robots are also called mobile units. These units can 
detect and defuse or destroy bombs or me (eg the 
TALON robot). There are also robots that help search for 
people buried after earthquakes. Meanwhile, the so-
called killer-robots, some humanoid monsters able to 
fight with any enemy (human, animal, other robots), 
have been deployed in the armies, using increasingly 
sophisticated weapons. 

George Devol recorded the first patent for an 
industrial robot in 1954. Current industrial robots are not 
usually mobile. By their form and function, their 
operational scope is restricted. They were introduced for 
the first time on the production line of General Motors in 
1961. Industrial robots were first used in Germany for 
welding works since 1970. 

Industrial robots include portable robots that are 
introduced into wafer production, rosin casting, or 
measurements. Currently, industrial robots are also 
running maneuvering issues (manipulators). 

In 1940 – occurs a mention of the use of the first 
synchronous manipulators for the handling of radioactive 
substances (Hazards from radioactive materials, BBC; 
Handling Radioactive Materials). 

Perhaps some of today's most used robots are the 
manipulating robots because in all the main industrial 
operations there are intermediate and manipulation 
operations, i.e., various maneuvers and positioning of 
objects. Manipulation of objects actually refers to their 
movement from one place to another for positioning. 

In the paper (Aversa et al., 2017b) a manipulative 
forging robot is described in terms of geometric, 
cinematic, but also of the forces acting in its main 
mechanism. 

The technique of industrial robots and also industrial 
materials used in robotics and mechatronics are generally 
described in works (Aversa et al., 2016a; 2016b; 2016c; 
2016d; 2017a; 2017b; 2017c; 2017d; 2017e; Berto et al., 
2016a; 2016b; 2016c; 2016d; Mirsayar et al., 2017). 

In papers (Petrescu and Petrescu, 2016 c; 2016 d) the 
dynamics that act in various mechanisms are presented 
and studied. 

In the papers (Petrescu et al., 2017 t-ae) are specified 
the essential parameters of industrial robots and 
manipulators. 

The main parameters of a simple manipulator 
mechanism, its basic geometry and kinematics, but 
especially the way of determining the forces acting in 
this type of mechanisms are presented. 

It starts directly with the presentation of the 
analytical calculations that can determine the forces of 
the main mechanism of a simple conveyor manipulator. 

Such manipulating conveyor mechanisms are at the 
basis of all types of robots and industrial manipulators, 
which is why it is imperative to study such a mechanism 
(Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 
2017b; 2017c; 2017d; 2017e; Berto et al., 2016a; 2016b; 
2016c; 2016d; Mirsayar et al., 2017; Cao et al., 2013; 
Dong et al., 2013; De Melo et al., 2012; Garcia et al., 
2007; Garcia-Murillo et al., 2013; He et al., 2013; Lee, 
2013; Lin et al., 2013; Liu et al., 2013; Padula and 
Perdereau, 2013; Perumaal and Jawahar, 2013; Petrescu 
and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 
2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 
2005c; 2005d; 2005e, 2016a; 2016b; 2016c; 2016d; 
2016e; 2013; 2012a; 2012b; 2011; Petrescu et al., 2009; 
2016 a-e; 2017 a-ae; Petrescu and Calautit, 2016 a-b; 
Reddy et al., 2012; Tabaković et al., 2013; Tang et al., 
2013; Tong et al., 2013; Wang et al., 2013; Wen et al., 
2012; Antonescu and Petrescu, 1985; 1989; Antonescu et 

al., 1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 
2000b; 2001). 

Materials and Methods 

The known external forces acting within any 
mechanism are those of inertia, commonly called the 
torso of inertial forces (Fig. 1). At the transport 
manipulator mechanism presented in this paper, the 
inertial forces are calculated using the relations of the 
system 1 (In the schemes presented they are represented 
by a continuous line (green), while the unknown forces 
to be determined, i.e., the reactions from the kinematic 
couplers, are represented by broken line (red color)). 

Force calculations are performed inversely than 
kinematic, i.e., starting with the last module of the 
mechanism (RRT) the relational system 2, the relational 
system 3 continues with the middle module (RRR) and 
completes with the leading element (system relations 4). 

Using the known external forces, the unknown inner 
forces, that is, the reactions from the kinematic couplers 
and the motor moment required to be applied to the 
leading element 1 are analyzed analytically. 

 For the planar operator manipulator mechanism of 
Fig. 1 we can say (we know): l1= 0,1[m]; l3 = 0,8[m]; l2 
= 1,1[m]; a = 0,5[m]; b = 0,6[m]; l4 = 0,7[m]; xO = 
0[m]; yO = 0[m]; yE = 0[m]; xA = -0,5[m]; yA = -
0,6[m]; FI1[deg]. Required: FI2 [deg]; FI3 [deg]; FI4 
[deg]; xE [m]. 

The known external forces acting within any 
mechanism are those of inertia, together called the torso 
of inertial forces (Fig. 2).  
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Fig. 1: The geometric scheme of a planar manipulator 
 

 

 
Fig. 2: The forces acting within a simple conveyor manipulator 

 
At the transport manipulator mechanism presented 

in this paper, the inertial forces are calculated using 
the relations of the system 1 (In the schemes presented 
they are represented by a continuous line (green), 
whereas the unknown forces to be determined, i.e., the 
reactions from the kinematic couplers, are represented 
by broken line (red color)). 
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Forces calculations are carried out inversely to the 
kinematic ones, i.e., starting with the last module of 
the mechanism (RRT) the relational system 2, the 

relational system 3 continues with the middle module 
(RRR) and completes with the leading element 
(system relations 4). 
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The positions of the crank 1 are written with 
relations 6 and those of the RRR mechatronic module 
formed by the elements 2 and 3 are determined by the 
relational system 7. 
 

1 1

1 1

cos

sin
C O

C O

x x l

y y l

= + ⋅


= + ⋅

ϕ

ϕ
                                                   (6)  

 

2

2 2 2
3

2 2 2
3

3

2 3

2 2

2 2

; ;

cos ; sin

arccos(cos ) (sin )

cos
2

; cos
2

arccos(cos ); arccos(cos )

;

; cos

sin

C A C A

D A

D A

e x x f y y l e f

e f

l l

sign

l a l
A

a l

l l a
C

l l

A A C C

A

C x x l

y y l

 = − = − = +


= =

⇒ = ⋅


+ − = ⋅


+ −
=

⋅


= =

 = +

= − = + ⋅



= + ⋅


ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

ϕ

       (7) 

 
It following then the calculation relations for the 

RRT mechatronic module positions (8): 
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Results 

The way in which FI2, FI3 and FI4 position angles 
vary depending on the position angle of the element 1, 
FI1, can be seen in the diagram in Fig. 3.  

In Fig. 4 we can see the variance diagram of the 
known inertial forces according to the input angle FI1. 

In the diagram of Fig. 5 are the inner forces of the 
kinematic couplers varying according to the input 
angle FI1 (The related calculation program is 
presented in the annex). 
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Fig. 3: FI2, FI3 and FI4 position angles vary depending on the position angle of the element 1, FI1 
 

  
 
 

Fig. 4: The variance diagram of the known inertial forces according to the input angle FI1 
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Fig. 5: In the diagram of Figure 5 are the inner forces of the kinematic couplers varying according to the input angle FI1 
 
Discussion 

Forces acting within any device or car have an 
important role because they are the ones that define the 
real movement of that device, the dynamic movement, 
movement that is very different from the cinematic 
imaginable by geometric-kinematic engineering 
calculations. To know the real movement of a device 
or object, it is, therefore, necessary first to determine 
all the forces that act on that device. In robots and 
manipulators, it is all the more important to know 
their real movement as they replace the man in heavy, 
daily, repetitive, tiring work. The known external 
forces acting on the studied manipulator, that is, the 
inertial forces, are initially calculated by means of the 
masses of the manipulator mechanism and their 
accelerations and then may be determined through 
specific analytical equations and the unknown internal 
forces of the system acting on the kinematic couplings 
of the manipulating mechanism considered.   

Conclusion 

The forces acting on the RRR module and on the 
leading element 1 (crank) are generally higher than those 
acting on the RRT end module, due to the constructive 
way of the mechanism, but also to the reduction of forces 

by using a translation coupler in the last kinematic 
module. Knowing the forces acting on the mechanism can 
determine both the dynamics of the mechanism and its 
loads so that the mechanism is correctly designed and 
especially proportional to be able to withstand the various 
dynamic loads during its use for a while longer. At the 
same time it is possible to determine the necessary motor 
torque during the entire energy cycle and thus choose the 
most satisfactory motor for the presented mechanism. 
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