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Abstract: Power transmission shafting is a vital element of all rotating 
machinery. A complete shaft design involves many iterative phases and 
fundamental to this is the determination of preliminary dimensions of the 
shaft. This paper presents a comprehensive fatigue analysis approach of 
determining the initial dimensions of a power transmission shaft under 
fatigue loading based on American Society of Mechanical Engineers 
(ASME) Standard B106.1M:1985. A countershaft running at a constant 
speed is designed using this approach. Stress analysis at potential critical 
locations are conducted to determine the shaft sizes. The sizes from these 
locations are then used to estimate the sizes at low stress locations. 
Adjacent sizes are blended using the largest size. To help visualize, a CAD 
model of the preliminary designed countershaft is provided. 
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Introduction  

One of the first fundamental facts of which human 

beings become aware is that nothing lasts forever. Life 

may come to a sudden end or last longer, but still for 

only a finite period (Vassilopoulos, 2010). As the 

industrial arena grows more sophisticated, it seems as 

though operations are confronting fewer and fewer 

broken machine shafts. When shafts do break, however, 

there are almost always as many theories regarding the 

suspected culprits as there are people involved (EP, 

2018). Whether related to motors, pumps or any other 

types of industrial machinery, shaft failure analysis is 

frequently misunderstood, often being perceived as 

difficult and expensive. For most machine shafts, 

however, analysis should be relatively straightforward. 

That’s because the failure typically provides strong clues 

to the type and magnitude of forces on the shaft and the 

direction they acted in: The failed parts will tell exactly 

what happened (EP, 2018).  
There are only four basic failure mechanisms: 

Corrosion, wear, overload and fatigue. The first two, 
corrosion and wear, almost never cause machine-shaft 
failures and, on the rare occasions they do, leave clear 
evidence. Of the other two mechanisms, fatigue is more 
common than overload failure. Overload failures are 
caused by stresses that exceed the yield strength or the 

tensile strength of a material; overload failure depends 
on whether the shaft material is ductile or brittle. No 
shaft materials are absolutely ductile or absolutely 
brittle. The shafts used on almost all motors, reducers 
and fans are low- or medium-carbon steels and relatively 
ductile. As a result, when an extreme overload is placed 
on these materials, they twist and distort (EP, 2018).  

Fatigue was identified a long time ago by the 
scientific community. In fact, the first fatigue test was 
conducted in 1829 by W. A. S. Albert (Vassilopoulos, 
2010). Fatigue failure is defined as the tendency of a 
material to fracture by means of progressive brittle 
cracking under repeated alternating or cyclic stresses 
of an intensity considerably below the normal strength 
(EE, 2018). Fatigue failure is due to crack formation 
and propagation. Many times corrosion will act in 
conjunction with fatigue loading to cause a shaft 
failure. Failure from fatigue is statistical in nature in 
as much as the fatigue life of a particular specimen 
cannot be precisely predicted but rather the likelihood 
of failure is predicted on the basis of a large 
population of specimens (Loewenthal, 1984). A 
fatigue crack will typically initiate at a discontinuity, 
such as keyways, splines, grooves, fillets, in the 
material where the cyclic stress is a maximum.  

The majority of engineering failures are caused by 
fatigue (EE, 2018). Today, it is documented that the 
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majority of structural failures occur through a fatigue 
mechanism. As mentioned in (Vassilopoulos, 2010), 
after extensive study by the US NIST (National Institute 
of Standards and Technology, approximately 60% of 230 
examined failures were associated with fatigue. This 
percentage was higher; 95% (Gujaran and Gholap, 2014) 
and between 80 and 90% by National Bureau of 
Standards (NBS) (Abdullah et al., 2012; NBS, 2015). A 
comprehensive study of the cost of fracture in the United 
States indicated a $119 billion (in 1982 dollars) cost 
occurred in 1978 (NBS, 1983). This was about 4% of the 
gross national product. The study also stated that an 
estimated $35 billion per year could be saved through 
the use of currently available technology. Costs could be 

further reduced by as much as $28 billion per year 
through fracture-related research.  

Figure 1 shows fatigue failure of a fan shaft which 
occurred shortly after the installation of a variable 
speed drive. Figure 2 shows fatigue fracture of an 
AISI 4320 drive shaft; the fatigue failure initiated at 
the end of the keyway at points B and progressed to 
the final rupture at C (Budynas and Nisbett, 2016). 
The drive shaft in Fig. 3 was on a steel-mill elevator; 
the slow-growing failure was initiated by fretting 
corrosion that substantially reduced the fatigue 
strength on the shaft. This paper focus is on designing 
a shaft to avoid fatigue failure, whiles also checking 
to prevent overload failure. 

 

 
 

Fig. 1: Fatigue failure of a fan shaft after the installation of a variable speed drive (EP, 2018) 

 

 
 

Fig. 2: Fatigue fracture of an AISI 4320 drive shaft (Budynas and Nisbett, 2016) 
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Fig. 3: Fatigue failure of a drive shaft initiated by fretting corrosion (EP, 2018) 

 
Shaft is a rotating machine element, usually of circular 

cross section, which transmits power or motion from one 
point to another point, or from a machine which produces 
power to a machine which absorbs power (Budynas and 
Nisbett, 2016; Khurmi, 2014). It is one of the most 
common and basic machine elements which are used in a 
variety of ways in mechanical equipments. A designed 
power transmission shaft is supported on bearings and 
rotates a set of machine elements such as gears, cranks, 
flywheels, sprockets and pulleys in transmitting the 
required torque. Shaft provides the axis of rotation, or 
oscillation, of these machine elements and controls the 
geometry of their motion (Budynas and Nisbett, 2016). 
These elements produce bending, axial and torsion 
loadings on the shaft. A shaft must be strong enough to 
sustain these static and dynamic loading produced 
(Bhandari, 2010). Shaft can be classified mainly into two 
parts: Transmission shaft and machine shaft. When the shaft 
is an integral part of any machine assembly it is termed 
machine shaft (Saradava et al., 2016). This paper looks into 
the design of a countershaft, a trasnmission shaft. A 
countershaft is a short shaft that connects a prime mover to 
a line shaft of a machine. A shaft which transmits power to 
several machine elements is termed as a line shaft.  

There is no magic formula that gives shaft geometry 

for any given design situation. The best approach is to 

learn from similar problems that have been solved and 

combining the best to solve other problems. A complete 

shaft design has much interdependence on the design of 

the other machine elements (Budynas and Nisbett, 

2016). The overall shaft design process involves many 

iterative phases such as (Budynas and Nisbett, 2016):  
 

• Power and torque requirements  

• Shaft elements specifications: For example, gear 
ratios and torque transmission  

• Shaft layout 

• Load analysis 

• Material selection 

• Design for stress (fatigue and static analyses): 
Determination of preliminary sizes 

• Deflection and rigidity analysis: Lateral and 
torsional analysis 

• Vibration analysis: Determination of critical speeds  

• Catalog specification for shaft elements such as 
bearings, keys and retaining rings, etc. 

• Final analysis: Final check, tolerance, Computer 
Aided Design (CAD) models, Finite Element 
Analysis (FEA), etc. 

 
Fundamental to this design process is the determination 

of preliminary dimensions of the shaft. In deciding on an 
approach to this initial shaft sizing, it is necessary to realize 
that a stress analysis at a specific point on a shaft can be 
made using only the shaft geometry in the vicinity of that 
point (Budynas and Nisbett, 2016). Thus, it is not necessary 
to evaluate the stresses in a shaft at every point; a few 
potential critical locations will suffice. In design, it is 
usually possible to locate these potential critical areas, size 
these to meet the strength requirements and then size the 
rest of the shaft to meet the requirements of the shaft-
supported elements (Budynas and Nisbett, 2016). This is 
the approach presented in this paper.  

This paper presents a concise step-by-step fatigue 
analysis approach of determining the preliminary 
dimensions of a power transmission shaft under fatigue 
loading based on American Society of Mechanical 
Engineers (ASME) Standard B106.1M:1985. A 
countershaft running at a constant speed is designed 
using this approach. Stress analysis at potential critical 
locations are conducted to determine the shaft sizes. The 
sizes from these locations are then used to estimate the 
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sizes at low stress locations. Adjacent sizes are blended 
using the largest size. To help visualize, a CAD model 
for the designed countershaft is provided.  

This paper is organized as follows. In Section II, fatigue 

strength is discussed. Section III presents fatigue loading 

and critical locations. Section IV presents shaft materials. In 

section V, the ASME code used in determining the initial 

shaft sizes is presented. Section VI discusses factor of 

safety. The design process approach applied is explained in 

section VII. Section VIII provides the problem statement. 

The design approach is demonstrated in section IX. Finally, 

section X gives the conclusions.  

Fatigue Strength 

Fatigue-life methods predict life in number of cycles, 
N, to failure for a specific level of loading. Three major 
fatigue life methods used in design and analysis are: (1) 
Stress-life method, (2) Strain-life method, (3) Linear-
elastic fracture mechanics method (Budynas and Nisbett, 
2016). The approach used in shaft size design is the 
stress-life method. American Society for Testing and 
Materials (ASTM) defines fatigue strength, Sf, as the 
value of stress at which failure occurs after N cycles and 
fatigue limit as the limiting value of stress at which 
failure occurs as N becomes very large (FL, 2018). 
ASTM does not define endurance limit, Se, the stress 
value below which the material will withstand many load 
cycles, but implies that it is similar to fatigue limit. Thus, 
for indefinite or infinite life, Sf = Se. Steel, ferrous alloys 
and titanium alloys have a distinct Se value, which occurs 
at N = 106. Other structural nonferrous metals such as 
aluminium and copper do not have a distinct Se value and 
will eventually fail even from small stress amplitudes 
(FL, 2018). N is a complex function of: (1) Static and 
cyclic stress values, (2) Alloy, (3) Heat-treatment and 
surface condition of the material, (4) Hardness profile of 
the material, (5) Impurities in the material, (6) Type of 
load applied, (7) Operating temperature, (7) Several 
other factors (CP, 2018). 

The fatigue strength of a machine member can 

routinely, though a lengthy procedure, be determined by 

fatigue testing in the laboratory. Fatigue testing is defined 

as the process of progressive localized permanent 

structural change occurring in a material subjected to 

conditions that produce fluctuating stresses and strains at 

some point or points and that may culminate in cracks or 

complete fracture after a sufficient number of fluctuations 

(WMTR, 2018). There are several common types of 

fatigue testing as well as two common forms: Load 

controlled high cycle and strain controlled low cycle 

fatigue. A high cycle test tends to be associated with 

loads in the elastic regime and low cycle fatigue tests 

generally involve plastic deformations.  

 
 
Fig. 4: High cycle S-N diagram for a typical steel and 

aluminium materials (Campbell, 2008) 

 
To determine Sf, specimens are subjected to 

repeated or varying loading of specified magnitudes 
while N are countered to destruction. Quite a number of 
tests are necessary to establish the Sf because of the 
statistical nature of fatigue (Budynas and Nisbett, 
2016). The result is a plot of the nominal stress 
amplitude, fatigue strength, Sf versus N. This is the 
basis of the stress-life method, the Wohler S-N diagram, 
shown schematically for two materials in Fig. 4, for a high 
cycle fatigue life (N > 103). S-N test data are usually 
displayed on a log-log plot, with the actual S-N line 
representing the mean of the data from several tests. 
There are great quantities of data available in the 
literature of S-N diagrams and these plots are imbedded 
in software packages for various materials. 

It is unrealistic to expect the endurance limit of a 
mechanical or structural member to match the values 
obtained in the laboratory (Budynas and Nisbett, 2016). 
A number of service factors that are known to affect 
fatigue strength have been identified (Loewenthal, 
1984). In order to obtain a design part endurance limit, 
Se, these factors can be used to modify the uncorrected 

endurance limit, Se′, of the test specimen as follows:  
 

e a b c d e f eS k k k k k k S′=  (1) 

 

where, ka, kb, kc, kd, ke and kf are the endurance limit 

modifying (correction) factors for surface, size, load, 

temperature, reliability and miscellaneous-effects, 

respectively. The fatigue strength at N = 103 is given by 

Sf  = SN = fSut, where f is a fatigue factor (fraction) and 

Sut is the ultimate tensile strength. There are data 

available in the literature for determining Se′, the 

correction factors, and f. The fatigue strength for 

ferrous metals for the range 103<N<106, using 

interpolation from the S-N diagram, is given by: 
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b
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 
= −   

 
 (4) 

 

For non-ferrous metals, this range is 103 < N < 5×108 
cycles. Note, the empirical relationships and equations 
described above are only estimates. Depending on the 
level of certainty required in the fatigue analysis, actual 
test data may be necessary.  

Fatigue Loading and Critical Locations  

When fatigue loads are involved, the part encounters 
loads less than the mean and some loads more than the 
mean. Fatigue loading produces stresses that are 
variable, or fluctuating (Budynas and Nisbett, 2016). 
Quite frequently, the maximum stresses are well below 
the tensile yield strength, Syt. Shafts may be subjected to 
the following types of loads: (1) Pure torsional moment 
(T), (2) Pure bending moment (M), (3) Combined T and 
M, (4) Combined pure axial (F), T and M.  

Most basic S-N fatigue data collected in the 
laboratory is generated using a fully-reversed stress 
cycle. However, actual loading applications usually 
involve a mean loading or stress on which the 
oscillatory portion is superimposed, nonzero zero value 
(UXUIS, 2018), as shown in Fig. 5. Consider a pure 
fluctuating fatigue loading (F or M or T) or the induced 

corresponding stress (normal, σ, or shear, τ) X. If it is 
assumed X follows sinusoidal pattern, then in general, 
X can be characterized by its mean Xm and alternating 
(amplitude) Xa. It must be pointed out that some quite 
irregular, non-sinusoidal, pattern do occur. In periodic 

patterns exhibiting a single maximum and single 
minimum of the load, the shape of the wave is not 
important, but the peaks on both the high side 
(maximum) Xmax and the low side (minimum) Xmin are 
important. That is, the load or stress can be 
characterized as X~(Xmin, Xmax). The range of X, Xr = 
Xmax−Xmin, Xa and Xm are given, respectively, as: 
 

( )max min

1

2 2

r
a

X
X X X= = −  (5) 

 

( )min max min

1

2
m aX X X X X= + = +  (6) 

 

Since the amplitude of the cyclic loading has a major 

effect on the fatigue performance, the S-N relationship is 

determined for one specific loading amplitude. The 

amplitude is express as a ratio value. Two ratios that are 

often defined for the representation of the mean stress (in 

one cycle of loading) are the stress ratio � and the 

amplitude ratio �, defined as: 
 

min

max

R
σ
σ
=  (7) 

 

1

1
a

m

R
A

R

σ
σ

−
= =

+
 (8) 

 

For fully-reversed loading, σm = 0, σa = σmax, σmin = 

−σmax, thus R = −1; typical R value for shaft design and 
testing. R = 1 is for static loading. For a case where the 
mean stress is tensile and equal to the stress amplitude, 
repeated (unidirectional) loading, R = 0. For example, a 
valve spring force for the bending of rocker arm exhibits 
repeated loading. A stress cycle of R = 0.1 is often used 
in aircraft component testing and corresponds to a 
tension-tension cycle in which the minimum stress is 
equal to 0.1 times the maximum stress (UXUIS, 2018). 

 

 
 

Fig. 5: Characterization of sinusoidal fluctuating load or stress, X 
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Fig. 6: Examples of critical locations (ME, 2018) 

 
The geometry of a shaft is generally that of stepped 

cylinder. Shafts and axles often have stepped geometry to 
accommodate gears and pulleys and to restrict axial 
loading or displacement. These sudden changes in cross 
section, as well as features like notches and holes, are 
local stress intensifiers and potential trouble spots for 
fatigue (ME, 2018). For example, shoulders are used for 
axially locating shaft elements and to carry any thrust 
loads. Also, machine elements such as keys, setscrews, 
pins, press or shrink fits, tapered fits are used for torque 
transmission. The stresses are only needed to be evaluated 
at potential critical locations, Fig 6. Potential critical 
locations are usually: (1) On the outer surface, (2) Where 
the bending moment is maximum, (3) Where the torque is 
present and (4) Where stress concentrations exist. 

Shaft Materials 

The selection of a material for a machine part or 
structural member is one of the most important decisions 
the designer is called on to make (Budynas and Nisbett, 
2016). The actual selection of a material for a particular 
design application can be an easy one, or the selection 
process can be involving and daunting. Power-transmitting 
shafts and axles are most commonly machined from plain 
(low) carbon (AISI/SAE 1020-1050) or alloy (AISI/SAE 
4140, 4145, 4150, 4340 and 8620) Cold Drawn (CD) or 
Hot Rolled (HR) steel bar stock (Loewenthal, 1984; 
Budynas and Nisbett, 2016).  

Typically, CD steels are used for small sizes, less than 
76 mm (3 in.) and HR steel are commonly used for larger 
sizes, machined all over (Budynas and Nisbett, 2016). Cold 
drawing improves not only mechanical strength but also 
machinability, surface finish and dimensionality accuracy. 
HR shafts are often quenched and tempered for greater 
strength and then finished (turned and polished or turned, 
ground and polished) for improved finish and dimensional 
accuracy (Loewenthal, 1984). When greater strength is 
required, as in high-speed machinery, an alloy steel such as 
nickel, nickel chromium or chrome vanadium steels are 
used. When resistance to corrosion is desired, some copper 

alloys are used (Budynas and Nisbett, 2016). Table 1 lists 
plain carbon steel materials commonly used for shaft design 
and their mechanical properties.  

ASME Code for Shaft Sizing  

There are fatigue failure criteria that are used for 
shaft sizing, which include Soderberg, Modified 
Goodman, Gerber and ASME-elliptic. These theories are 

only applied in the tensile region (σm ≥ 0), since the 

compressive region (σm < 0) has little effect on Sf. The 
ASME code, based on ASME Standard B106.1M:1985, 
used in this paper is derived from customization of the 
ASME-elliptic. It must be pointed out that there are other 
forms of ASME code for transmission shaft design. 
These other codes are based on static loading theories 
such as Maximum Shear Stress Theory (MSST). The 
equation accounts for the nature of the load, by 
employing a combined shock and fatigue factors, Km and 
Kt, to compute the bending and torsional moments, 
respectively. There are recommended values for Km and 
Kt in the literature for stationary and rotating shafts 
(Khurmi, 2014). These are historical, empirical approach 
for shaft sizing. An example of such equation based on 
the MSST, for a solid shaft with diameter d at a location 
of interest, is given as (Khurmi, 2014): 
 

( ) ( )
1/3

1/ 2
2 232

m t

yt

n
d K M K T

Sπ

   = +     
 (9) 

 
where, n is desired factor of safety, introduced for design 
conservatism and to account for uncertainties.  

Typically, shafts are round, solid or hollow. Table 2 
gives σa and σm formulas for a round solid and hollow 
shafts under pure varying fatigue loading (F, or M, or T). 
Kf and Kfs are the fatigue stress-concentration factors for 
σ and τ, respectively. For a hollow shaft, do and di are 
the outer and inner diameters, respectively. Note, for 
combined loading, due to the complexity in the mixture 
of normal and shear stresses, both the alternating and the 



Stephen K. Armah / American Journal of Engineering and Applied Sciences 2018, 11 (1): 227.244 

DOI: 10.3844/ajeassp.2018.227.244 

 

233 

mean portion of the stresses are multiplied by fatigue 
stress concentration factors. The combined stresses can 
be complex, in-phase and out of phase stresses, 
especially with multiple stress raisers. 

Here, let’s consider a round solid cross-section shaft 
under combinations loading modes. For calculation of Se, 
ka, kb and kc = 1.0 for bending load are applied. The 
torsional load factor (kc = 0.59) is inherently included in 

the equivalent von Mises stress, σ′ = (σ2 
+ 3τ2)1/2. If 

needed, the axial load factor (kc = 0.85) can be divided 

into the alternating axial stress (Budynas and Nisbett, 
2016). Thus, the stress components can be computed as: 
 

1/ 2
2 2

, ,

3 2 3

32 4 16
3

0.85

a f b a f x a fs

a

M K F K T K

d d d
σ

π π π

    
 ′ = + +           

 (10) 

 
1/2

2 2

, ,

3 2 3

32 4 16
3

m f b m f x m fs

m

M K F K T K

d d d
σ

π π π

    
 ′ = + +           

 (11)  

 
Table 1: Common plain carbon steel use for shaft design  

Material (AISI No.)   Ultimate tensile strength, MPa (kpsi)  Yield tensile strength, MPa (kpsi) 

1020  HR  380 (55)  210 (30)  
 CD  470 (68)  390 (57)  
1030  HR  470 (68)  260 (37.5) 
 CD  520 (76)  440 (64)  
1035  HR  500 (72)  270 (39.5) 
 CD  550 (80)  460 (67)  
1040  HR  520 (76)  290 (42)  
 CD  590 (85)  490 (71)  
1045  HR  570 (82)  310 (45)  
 CD  630 (91)  530 (77)  
1050  HR  620 (90)  340 (49.5) 
 CD  690 (100)  580 (84)  
 
Table 2: Applied stresses for fatigue loading (F or M or T)  

 Loading 
 ------------------------------------------------------------------------------------------------------------------------------------ 
 Axial  Bending  Torsion  

Solid  , 2

4
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F
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d
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32
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16
a
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π
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4
m
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σ
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( )4 4

16
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σ
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−
  

a: alternating, m: mean, x: axial, b: bending  
 

 
 

Fig. 7: Design region and load line for ASME-elliptic and Langer yield theories, for the tensile region (σm ≥ 0) 
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ASME-elliptic and Gerber criteria best agree with 
experimental data and are recommended for fatigue 
failure analysis and investigation. However, Gerber is 
too difficult to use for design and therefore it is 
normally use to investigate fatigue failure. There is a 
saying that: “If the critical design or operating point, 

( ),m aP σ σ′ ′ , for a part does not fall in the Gerber design 

region, then it has been really been designed poorly”. 
ASME-elliptic theory predicts that a part location, P, is 
safe against fatigue if it lies within the elliptic design 
region shown in Fig. 7. The ASME-elliptic theory for 
fatigue failure is given as: 
 

2 2

2

1 m a

f yt f
n S S

σ σ   ′ ′
= +      
   

 (12)  

 
where, nf is the factor of safety against fatigue. After 
obtaining the preliminary sizes, it is important to check the 
design against overload failure at the potential critical 
locations and most importantly where the bending 
moment is highest. The design has to be safe against 
overload failure; the factor of safety must be at least the 
required design factor. For ductile material shafts, 
overload failure will occur due to yielding, and for brittle 
material it is due to sudden fracture. There are occasional 
cases when a ductile shaft will fail in a somewhat brittle 
manner (EP, 2018). The equation for checking for first-
cycle yielding is by Langer yield theory, given as: 
 

max

1 yt ytm a
y

y yt yt m a

S S
n

n S S

σ σ
σ σ σ

′ ′
= + → = =

′ ′ ′+
 (13) 

  

where, max m a
σ σ σ′ ′ ′= +  and ny is the factor of safety 

against yield.  
When there is no axial loading on the shaft or are 

generally small and constant, the axial part of the stress 
can be taken as zero. However, if the shaft is subjected to 
an axial load in addition to torsional and bending 
moment as in propeller shafts, then the axial part of the 
stress should not be ignored. When the length (L) of the 
shaft is small (slenderness ratio, L/k < 115), the axial 
force will produce either tensile or compressive stresses 
only. When the shaft is quite long (L/k > 115), it may 
behave like a column and hence start buckling for 
compressive loading, where k is the radius of gyration 

(Khurmi, 2014). In such a case a column action factor, α, 
is multiplied to the axial stress. For example, the 
buckling stress for a solid shaft is given as: 
 

, 2

4
f x
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K

d
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π
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 (15) 

 
where, E is the Young's modulus of the material and e is 
a constant for the types of supports. For example, e = 1 
for both ends hinged (pinned).  

To continue the analysis, the axial part will be 
ignored from now onwards. Hence, substituting Equation 
10 and 11 into Equation 12, we have: 
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       +              =  
     
 + +              

 (16) 

 
where, Kf = Kf,b. Most power-transmitting shafts are 
subjected to a combination of completely reversed bending 
stress (a rotating shaft with constant moment loading, with 
stress elements on the surface cycles from equal tension to 
compression during each rotation) and steady or nearly 
steady torsional stress (Loewenthal, 1984). Thus Mm = 0 and 
Ta = 0. Now, ASME code B106.1M:1985 for transmission 
shaft states apply fatigue strength concentration factors to 
any variable part of the load. Therefore, for the Tm part, Kfs 
= 1. Thus, the ASME code equation is obtained as: 
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S Sπ

       = +              

 (17) 

 
and the factor of safety is determined as: 
 

1/ 2
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1 16
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f a m

f f yt

K M T

n d S Sπ

    
 = +           

 (18) 

 
In general, for round shaft (solid or hollow), the 

outside diameter equation can be written as: 
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f f a m
o

f yt

n H K M T
d

S Sπ

       = +              

 (19) 

 
where, H = 1/(1−c

4) is the hollowness factor and c = di/do 
is the inside- to outside- diameter ratio. For a round solid 
shaft, do = d, di = 0 (c = 0) and H = 1.  
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The ASME code also states to apply Se to be equal to 
60% of the yield strength in shear, Sys. Moreover, from 
the literature Sys = 0.577Syt based on the von Mises 
theory. Therefore, Se can be determined as: 
 

0.6 0.3465 0.36e ys yt ytS S S S= = ≈  (20) 

 
Thus, knowing the shaft material, specified design 

factor and the loading at a particular location of a round 
shaft, do can be determined if the appropriate Kf can be 
obtained. Yielding is check by using Equation 13, where 

maxσ ′  is determined by von Mises maximum stress as: 

 

( ) ( )
1/2

2 2

max 3m a m aσ σ σ τ τ ′ = + + +  
 (21) 

 
For a round solid shaft, with Mm = Ta = 0 and Kfs = 1, 

the above equation can be written as: 
 

1
2 2 2

max 3 3

32 16
3

f a m
K M T

d d
σ

π π

     ′ = +        
 (22) 

 

Estimating Kf  

The stress analysis process for fatigue shaft sizing is 
highly dependent on stress concentrations. The factor, Kf, 
is determined using: 
 

( )1 1f tK q K= + −  (23) 

 
where, q and Kt are the notch sensitivity and theoretical 
stress-concentration factor, respectively, due to the 
existence of discontinuities or notches, such as shoulders, 
keyways, holes, or grooves. If the material has no 
sensitivity to notches at all, q = 0, then Kf  = 1. On the other 

hand, if q = 1, then Kf  = Kt and the material has full notch 
sensitivity (Budynas and Nisbett, 2016). In the literature 
there are charts for reading off q and Kt values, provided the 
dimensions of the given notch are known. Alternatively, the 
Neuber equation provides a way of calculating Kf, given as: 
 

1
1
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K
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a r

−
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+
 (24) 

 
which yields, using Equation 23, the notch sensitivity as: 
 

1

1 /
q

a r
=
+

 (25) 

 

where, r is the notch radius and a  is defined as the 

Neuber constant and is a material constant, and for 
bending or axial loading is given as: 
 

( ) ( )
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ut

a S S

S
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 (26) 

 
For shaft sizing, q and Kt are dependent on size 

specifications that are not known the first time through 
the design process. Fortunately, since these elements are 
usually of standard proportions, it is possible to estimate 
q and Kt for initial design of the shaft. These values will 
be fine-tuned in successive iterations, once the details are 
known (Budynas and Nisbett, 2016). Catalog 
recommendations and other sources can be used for first 
approximation of Kt values for shoulders (bearing and 
gear supports), retaining ring grooves, keyways, etc. For 
example, the first Kt estimates used in this paper for 
shoulders, keyways and retaining ring grooves will be 
selected from Table 3, refer to Fig. 8 for notations. The q 
value, reported in charts, depends on r and Sut.  

 
Table 3: Frist approximation Kt values for bending loading (Budynas and Nisbett, 2016)  

 r/d  D/d   

Notch ----------------------------- -------------------------- d/dr Kt 

Shoulder fillet: Sharp  0.02*  0.06  1.2  1.5*  -  2.7  
Shoulder fillet: Well rounded  0.02  0.1*  1.2  1.5*  -  1.7  
End-mill keyseat  0.02 typical   -   -  2.14  
Sled runner keyseat  -   -   -  1.7  
Retaining ring groove: Round-bottom  -   -   1.06  5.0  

*Worst case proportion values  
 

 
 

Fig. 8: Notches in Table 3 notations used for first appriximation Kt values  
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Factor of Safety  

Factor of safety (FoS or FS or n) is also known as 
(and used interchangeably with) Safety Factor (SF), is a 
term describing the load carrying capacity of a system 
beyond the expected or actual loads (FOS, 2018). It is 
also termed the design factor. Essentially, the factor of 
safety is how much stronger the system is usually that 
needs to be for an intended load. Many systems are 
purposefully built much stronger than needed for normal 
usage to allow for emergency situations, unexpected 
loads, misuse, or degradation (reliability) (FOS, 2018).  

The selection of n to be used for a particular design 
application is one of the most important engineering 
tasks; it is based judgment. The problem in doing so is 
with the evaluation of the many uncertainties associated 
with the design equation to be applied (Budynas and 
Nisbett, 2016). The judgement must be made regarding 
trade-offs between safety, cost, weight, and so on 
(Juvinall and Marshek, 2012). Some factors to consider 
when selecting a value for n are how well the actual 
loads, operating environment and material strength 
properties are known, as well as possible inaccuracies of 
the calculation method (Loewenthal, 1984), Table 4 for 
typical n values. The reality is, the designer must attempt 
to account for the variance of all the factors that will 

affect the results (Budynas and Nisbett, 2016). If n is too 
small, the possibility of failure becomes unacceptably 
large. On the other hand, if n is unnecessary large, the 
result is an uneconomical or nonfunctional design.  

Values typically range from 1.3 to 6.0 depending on 

the confidence in the prediction technique and the 

criticality of the application. Unless experience or special 

circumstances dictate it, the use of n values of less than 

1.5 is not normally recommended (Loewenthal, 1984). For 

example, high n values may have an unacceptable effect 

on the weight of an aircraft. The factor of safety used in 

aircraft design is only of the order of 1.5 which is much 

lesser than that are used in other industries (FOS, 2018). 

The n values for some components in nuclear power plant 

may be as high as 3.0. The designer must rely on 

experience, company policies, engineering handbooks and 

many design codes that may pertain to the application to 

arrive at an appropriate design factor. 

Design Process Approach  

Given all power and torque requirements and other 

specifications, the approach applied in this paper for the 

preliminary sizing of a shaft is shown in Fig. 9. 

 

 
 

Fig. 9: Systematic process for the preliminary design of a shaft 
 
Table 4: Typical recommended n values  

Stress type  Material condition  Environmental condition  Recommended n values  

Very certain  Ductile and reliable data  Well controlled  1.25 to 1.5  
Readily determined  Ductile and well known  Reasonably constant  1.5 to 2.0  
Fairly certain  Ductile and common  Ordinary  2.0 to 2.5  
Could vary  Less tried ductile or brittle  Average  2.5 to 3.0  
Could vary  Less reliable data  Average  3.0 to 4.0  
Uncertain  Common  Uncertain  3.5 to 5.0  
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Shaft Layout  

Start the process by providing a general free-hand 
labelled layout for the shaft to accommodate the shaft 
components. There is no absolute rules for specifying 
shaft layout, but the following issues are to be 
considered: (1) Axial layout of components, (2) 
Supporting axial loads. Use shoulders for axially 
locating shaft elements and to carry any thrust loads. 
Retaining rings can also be used to hold components 
onto the shaft (3) Providing for torque transmission. 
Common torque transfer elements include keys, splines, 
setscrews, pins, press/shrink fits, tapered fits, etc.), (4) 
Assembly and disassembly of the shaft components. See 
(Budynas and Nisbett, 2016) for more on shaft layout.  

Load Analysis  

Determine any unknown loads and then draw the 

necessary Free-body Diagrams (FBDs) and obtain the 

support reactions using static equilibrium equations. 

After, depending whether the loads are in one plane (2D 

problem) or two planes (3D problem), draw the 

necessary Shear-Force Diagrams (SFDs) and derive the 

Bending Moment Diagrams (BMDs). Combine bending 

moments from different planes where possible. Draw the 

Torque Diagram (TD). Identify the potential critical 

locations and state the applied loads, Xa and Xm, for each 

of the loads present. 

Stress Analysis  

Establish the fatigue stress concentration factor (Kf) 

for all potential critical locations stress raisers. Use 

tables or charts or components catalogs for first 

approximations for the geometric stress concentration 

factor (Kt) values. These Kt values can be fine-tuned later 

on, once the details are known. Start with typical value 

for the notch sensitivity q for each stress raiser, and this 

can be done at the solution phase. 

Material Properties  

If the shaft material is unknown, start with a low 
strength (inexpensive) material, so you can go for a 
higher strength one if you have to make a change. For 
example, if at the end of the initial design ny < nf at a 
location, you can increase the size or go for higher 
strength material. The latter is preferred after initial 
design, since deflection analysis has not been 
conducted. Next, determine the fatigue strength in 
terms of any unknown endurance limit modifying 
factors. Typically, since the size is unknown, the 
fatigue strength is expressed in terms of the size factor, 
kb. A typical kb value should be picked for the first 
iteration, and this can be done at the solution phase. 
Note, kb is not needed for the ASME code applied in 
this paper, see section V.  

Design Equation  

Apply appropriate fatigue design equation to express 
each diameter size in terms of the unknowns, Kf and kb. 
Applied loads (stresses) are known. If a location have 
more than one stress raiser, setup design equation for 
each of them. 

Solution  

Specify the minimum desired fatigue design factors, nf, 
for the shaft if it has not been provided. For the first 
iteration, start with typical values for kb (outer-loop 
iteration) and typical values for q (inner-loop iteration). 
Any appropriate kb and q values can be selected for the 
first iteration; for a rule of thumb, use kb = 0.85 and q = 1 
(r > 4 mm or 0.16 in.). If a location have more than one 
stress raiser, determine diameter size for each and choice 
the one with the highest diameter value to represent the 
location for subsequent iterations. Possible iterations 
because of the initial design assumptions made. For each 
location iteration, after calculating the sizes for the 
predominant stress raiser, check for the convergence of kb 
before checking for q. After a location solution has 
converged, i.e., both kb and q converged, update the Kt 
value and then fine-tune the sizes obtained. This is 
necessary since the sizes determined from the converged 
solution have probably been conservative due to the 
conservative Kt value used for the iterations.  

Next, determine ny for each converged location. The 
design at a location is good (safe) if ny > nf. That is, the 
shaft will fail by fatigue by design at some N cycles. If 
at the end of the initial design ny < nf, then failure will 
be by yield. In such a case, you can increase the sizes 
or go for higher strength material. The latter is 
preferred after initial design, since deflection analysis 
has not been conducted. If the initial design is good at 
all potential critical locations, obtain other related 
dimensions through appropriate proportions or 
estimation. Use the determined sizes coming from the 
potential critical locations to estimate the other shaft 
components locations. Note, if a shaft has only one 
diameter (desired single diameter) for all sections, then 
calculate the diameter at each location stress raiser, 
then select the highest one for the next possible 
iteration. If necessary, to help visualize, make a 3D 
model (free-hand or CAD) of the preliminary designed 
shaft. Blend all adjoining sections by selecting the 
highest size. You can also use filleted shoulders (steps) 
in between two sections, especially if the length of the 
shaft at this location is ‘long’. 

Problem Statement  

A gear reduction unit uses the countershaft running at 
a constant speed shown in the Fig. 10. The solid steel 
shaft is simply supported by bearings at points O and C. 
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Fig. 10: Countershaft for a gear reduction unit (Budynas and Nisbett, 2016) 
 
Gear A receives power from another gear with the 

transmitted force FA applied at the 20° pressure angle 
as shown. The power is transmitted through the shaft 
and delivered through gear B through a transmitted 
force FB at the pressure angle shown. Conduct a 
preliminary design of the shaft using ASME Code 
B106.1M, in which a suitable material is selected, 
based on providing sufficient fatigue and static stress 
capacity for infinite life of the shaft, with minimum 
safety factors of 1.5. 

Design of the Countershaft  

This section demonstrates step-by-step approach of 
determining the initial sizes of the countershaft.  

Shaft Layout  

A free-hand sketch labelled layout selected for the 
countershaft is shown Fig. 11a and 11b. The two gears 
at A and B has a profile keyseat at the middle of each 
for torque transmission. The gears are to be located 
axially via a well-rounded steps, on the right for gear 
A and on the left for gear B. There are grooves for 
retaining rings to hold the gears axially, on the left for 
gear A and on the right for gear B. There are chamfers 
at the end of the shaft for assembly and disassembly 
of the shaft components. The bearings will be press-fit 
onto the shaft against the shoulders. Note, this layout 
is just one out of many configuration that can be 
implemented. For example, one can decide to have 
retaining rings on both sides of the gears. There can 
also be retaining rings to retain the bearings. One of 
the gears can be machined onto the shaft.  

Load Analysis  

Table 5 gives as summary of the data for determining 
the loading of the gears on the countershaft. The 

tangential and radial forces 
tA

F  and 
rA

F , respectively, 

from gear A are determined as: 
 

cos 11cos20 10.3366
t

AA
F F kNα= = ° =  (27) 

 

sin 11sin 20 3.7622
r

AA
F F kNα= = ° =  (28) 

 
For the countershaft to transmit a steady power the 

torque must be constant, since it is running at a constant 
speed. The steady torque T is determined as: 
 

( )10.3366 300 3100.98 .
t

AA
T F R kN mm= = =  (29) 

 

Thus, the tangential and radial forces 
tB

F and 
rB

F , 

respectively, from gear B can be obtained as: 

 

( )150 20.6732
t tB B

F T F kN= → =  (30) 

 

( )tan 20.6732 tan 25 9.6401
r tB B

F F kNα= = ° =  (31) 

 
The bending loading are in two planes, xy plane and 

xz plane. This is a 3D problem and vectors might seem 
appropriate. However, the approach used here is to 
determine the components of the moment vector by 
performing a two-plane analysis and then combine them 
using Pythagoras, given as: 

z 

FA = 11 kN 

O 

x 

400 mm 

350 mm 

300 mm 

FB 

25° 

20° 

B C 

A 

Gear A, 600-mm dia.  

Gear B, 300-mm dia.  

y 
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( ) ( )2 2

y zM M M= +  (32) 

 

For a 3D problem, it is appropriate to first provide 3D 
FBD of the shaft before splitting into two 2D problems, 
Fig. 12. Figure 13a shows the FBD in the xy-plane, as 
viewed down the z-axis. The bearing reaction forces 

were determined as: 
yo

R = 5.0833 kN and 
yc

R = 8.3189 

kN. The corresponding SFD and BMD are shown in 
Fig. 13b and 13c, respectively. Note, the bending 
moments are actually vectors in the z-direction. 
Similarly, the FBD, SFD and BMD in the xz-plane are 
shown in Fig.13d-13f. The reaction forces were 

determined as: 
zo

R = −0.4923 kN and 
zc

R = 10.8287 

kN. Figure 13g shows the TD. 

From the BMDs, it is clear that the critical 

location, without the effect of stress concentrations, is 

at B where both planes have the maximum bending 

moment. Combining the bending moments from the 

two planes: 

 

( ) ( )2 2
2033.2 197.6 2042.8 .AM kN mm= + =  (33) 

 

( ) ( )2 2
2495.6 3247.5 4095.6 .BM kN mm= + =  (34)  

 
Table 5: Data for gears loading on the countershaft  

 Transmitted force (kN) Pressure angle, α (°) Pitch radius (mm) 

Gear at A FA = 11 20 RA = 600 

Gear at B FB = ? 25 RB = 300 

 

 
 (a) 

 

 
(b) 

 

Fig. 11: Free-hand sketch of labelled layout for the countershaft  
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Fig. 12: 3D FBD of the countershaft 
 

 
 

Fig. 13: Load analysis diagrams for the countershaft 
 

The combined BMD is shown in Fig. 13h. The stress 
analysis will be conducted on the stress elements on the 
outer surface at the two main potential locations, A and 
B. Even though not necessary here, these critical stress 
elements are located precisely at points E and F, shown 
in Fig 14, with the orientations obtained as: 

1 197.6
tan 5.55

2033.2
A
θ −  = = ° 

 
 (35) 

 

1 3247.5
tan 52.46

2495.6
B
θ −  = = ° 

 
 (36) 
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Fig. 14: Position and orientation of the critical stress element: (a) at E for location A (b) at F for location B 
 
Table 6: Stress concentration values for first approximation and associated proportions at location A  

Groove (Left)  Keyway (Middle)  Shoulder (Right)  

Typical: End-mill keyseat: Well rounded: 
Kt = 5 Kt = 2.14 Kt = 1.7 
Kf = 1+4q Kf = 1+1.14q Kf = 1+0.7q 
d5 = 1.06d4 r3/d5 = 0.02 r4/d5 = 0.1 

2r2 = d5-d4   d6/d5 = 1.5  

 
Table 7: Stress concentration values for first approximation and associated proportions at location B  

Shoulder (Right)  Keyway (Middle)  Groove (Left)  

Well rounded: End-mill keyseat: Typical: 
Kt = 1.7 Kt = 2.14 Kt = 5 
Kf = 1+0.7q Kf = 1+1.14q Kf = 1+4q 
r5/d8 = 0.1 r6/d8 = 0.02 d8 = 1.06d9 
d7/d8 = 1.5   2r7 = d8−d9  

 
Now, the applied loads are determined as: The bending 

moment is completely reversed, so MA ~ (−2042.8,2042.8) 
kN.mm, with the alternating and mean portions as (MA)a = 
2042.8 kN.mm and (MA)m = 0, respectively. Similarly, MB 
~ (−4095.6,4095.6) kN.mm, with (MB)a = 4095.6 kN.mm 
and (MB)m = 0. The torsional loading at both A and B is 
steady, so Ta = 0 and Tm = 3100.98 kN.mm. Note, the self-
weights of the gears and the countershaft were neglected. 

Stress Analysis  

Using values from Table 3, the first approximation for 
stress concentration values and associated proportions at 
locations A and B are summarized in Table 6 and 7.  

Material Properties  

Using Table 1, an inexpensive steel material, AISI 
1020 CD, is initially selected, with Sut = 470 MPa and Syt 

= 390 MPa. Thus, according to Equation 20, Sf = Se = 
140.4 MPa for an infinite shaft life.  

Design Equation  

The loading at each stress concentration area at 
locations A and B are summarized in Table 8 and 9. 
Using Equation 17 and from Table 6, for nf = 1.5, the 
design equation for the keyway and shoulder at location 
A is obtained as: 

( )

( )( )

( )( )

1/3
1/ 2

2
3

5 2
3

2042.8 10
4

140.416 1.5

3101.0 10
3

390

f
K

d
π

         
   =        +       

 (37) 

 
and for the groove at location A is obtained as: 
 

( )( )( )( )
( )

1/3
3

4

16 1.5 2 2042.8 10

140.4

fK
d

π

  
=  
  

 (38) 

 

Similarly, the design equation for the keyway and 
shoulder at location B is given as: 

 

( )

( )( )

( )( )

1/3
1/ 2

2
3

8 2
3

4095.6 10
4

140.416 1.5

3101.0 10
3

390

f
K

d
π

         
   =        +       

 (39) 

 

and for the groove at location B is given as: 
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( )( )( )( )
( )

1/3
3

9

16 1.5 2 4095.6 10

140.4

fK
d

π

  
=  
  

 (40) 

 
Solution  

From the design equations, Equation 37-40, the only 
independent parameter are the Kf values, which are also 
functions of the q values, Table 6 and 7. The Kf values 
also depend on the Kt values, which estimates values has 
already been selected. Thus, the iteration for the 
solutions will involve one parameter, q. The Kt values 
will be fine-tuned once the q values has converged. 

Trial #1  

Using q = 1 (for r > 4 mm) as a starting value for all 
the stress concentration areas, the size data at location A 

is summarized in Table 10, after first iteration. Similarly, 
Table 11 gives the size data at location B. From the 
tables, the largest d5 and d8 values for locations A and B, 
respectively, are from the grooves. Thus, both grooves 
are the predominant stress raisers at the two locations 
(the grooves governs the design at locations A and B), 
hence they will be used to determine the sizes at these 
locations. To check for the convergence of q at the 
grooves: Using Table 6 and 7 and the data in Table 10 
and 11, r2 = 3.11 mm and r7 = 3.92 mm. Then, from 
chart, the corresponding q values are 0.79 and 0.81, at 
locations A and B, respectively. These values have 
changed, so the q values at both locations has not 
converged. These q values are then use for the next 
iterations in that order, Table 12-15.  

Trials #2 and #3  

The q values at locations A and B converged, to two 

decimal places, after the third iterations, Tables 14 and 

15. The sizes obtained have probably been conservative 

due to the conservative Kt values used for the iterations. 

The updated Kt (or Kf) values, based on the sizes from 

Table 14 and 15, are shown in Table 16. Note, the Kt 

values for the grooves could have also been determined 

using retaining ring catalog. Table 17 gives the fine-

tuned sizes at locations A and B for the grooves.  

 
Table 8: Loading condition at location A  

Loading  Groove  Keyway  Shoulder  

(MA)a  √ √ √  
Tm  x  √ √  
√: load is applicable x: load is not applicable  

 
Table 9: Loading condition at location B  

Loading  Shoulder  Keyway  Groove  

(MB)a  √ √ √ 
Tm  √ √  x  

√: load is applicable x: load is not applicable  

Table 10: Size data at location A –  after Trial #1 

 Groove  Keyway  Shoulder  

q  1.00 1.00  1.00 

Kf  5.00  2.14  1.70 

d4 (mm)  103.59  -  -  

d5 (mm)  109.80  78.69  73.20  

 
Table 11: Size data at location B – after Trial #1  

 Shoulder  Keyway  Groove  

q  1  1  1.00  

Kf  1.7  2.14  5.00 

d9 (mm)  -  -  130.62  

d8 (mm)  91.46  98.63  138.46  

 

Table 12: Size data at location A – after Trial #2  

Size data  Groove (Left)  

q  0.79  

Kf  4.16  

d4 (mm)  97.43  

d5 (mm)  103.27  

r2 (mm)  2.92  

New q  0.77*  

* q value changed → q has not converged  

 
Table 13: Shaft size data at location B – after Trial #2  

Size data  Groove (Right)  

q  0.81  

Kf  4.24  

d9 (mm)  123.63  

d8 (mm)  131.05  

r7 (mm)  3.71  

New q  0.80*  

* q value changed → q has not converged  

 
Table 14: Size data at location A – after Trial #3  

Size data  Groove (Left)  

q  0.77  

Kf  4.08  

d4 (mm)  96.80  

d5 (mm)  102.61  

r2 (mm)  2.90  

New q  0.77*  

* q value has not changed → q has converged  

 

Table 15: Size data at location B – after Trial #3  

Size data  Groove (Right)  

q  0.80  

Kf  4.20  

d9 (mm)  123.24  

d8 (mm)  130.64  

r7 (mm)  3.70  

New q  0.80*  

* q value has not changed → q has converged  
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Table 16: Tuned Kt (or Kf) values at locations A and B  

 r/d  D/d  Kt  Kf  

Location A  2

4

r

d
 ≈ 0.03  5

4

d

d
≈ 1.06  ≈ 2.5  ≈ 2.155*  

Location B  7

9

r

d
≈ 0.03  8

9

d

d
≈ 1.06  ≈ 2.5  ≈ 2.200*  

*Using converged q values of 0.77 and 0.80 at locations A and B, respectively  

 
Table 17: Updated size data at locations A and B  

Location A (mm)  d4 = 78.25  d5 = 82.94 r2 = 2.35  
Location B (mm)  d9 = 99.35  d8 = 105.31 r7 = 2.98  

 
Table 18: Preliminary design sizes at locations A and B  

Gear location A sizes (mm)  Gear location B sizes (mm) 

d4 = 78.25  d9 = 99.35  
d5 = 82.94  d8 = 105.31  
d3 = d5 = 82.94  d10 = d8 = 105.31  
d6 = 124.41  d7 = 157.96  
r2 = 2.35  r7 = 2.98  
r3 = 1.66  r6 = 2.11  
r4 = 8.29  r5 = 10.53  

 
Table 19: Preliminary design sizes at locations O and C  

Bearing location O sizes (mm)  Bearing location C sizes (mm)  

d2 = d3 = 82.94  d11 = d10 = 105.31  
d1 = 55.29  d12 = 70.21 
r1 = 1.11  r8 = 1.40 

 
Table 20: Safety factors at locations A and B  

Factor of safety  Gear location A  Gear location B  

ny  4.17  4.17  
nf  1.50  1.50  

 

 

 
 
Fig. 15: CAD model of the preliminary designed countershaft 

 
Using worst case proportions from Table 6 and 7, the 

sizes at locations A and B were estimated, Table 18. The 
sizes at the bearing locations O and C, shown in Table 19, 
were estimated from the size estimates, d3 and d10, coming 
from locations A and B, respectively. A sharp shoulder 

fillets were selected for the two bearings, with worst case 
proportion estimates applied.  

The ny values, shown in Table 20, at locations A 

and B were determined using Equation 13 and 22. 
Also shown is the minimum desired factor of safety 
against fatigue for comparison. At locations A and B 

ny > nf. This means the countershaft will failure at 
these locations, based on the design, by fatigue. This 
shows that the design is good. In order to predict the 
life, a shaft will have to fail by fatigue by design at 
some number of cycles (life), N. For this design 
problem the shaft should have an infinite life, N ≥ 106. 
If at the end of the initial design ny < nf, diameter sizes 
at that particular location can be increased and the 
safety factors (ny and nf) rechecked. Another approach 
is to go for higher strength material (use the next 
material in the chart) and repeat the design 
calculation. The latter is preferred after initial design, 
since deflection analysis has not been conducted.  

Note, the sizes determined are still probably 
conservative and can further be fine-tuned. Moreover, the 
bending moments at (or close to) the bearing locations are 
zero (or small), so the sizes at these locations could be 
smaller. However, unless weight is an issue, there is little 
advantage to requiring more material removal. Also, the 
extra rigidity may be needed to keep deflections small. 
Even though not necessary at this stage in the complete 
design of a shaft, to help visualize the preliminary 
designed countershaft, a CAD model is provided in Fig. 15. 
Some decisions necessary to specify all axial dimensions 
were made. At the blending section, middle of the shaft, the 
highest value of d7 was selected.  

When the shaft preliminary sizes are determined, all 

other calculations are of a checkout nature (a strength 

approach) (Golenko, 2010). As depicted in Fig. 9, the 

next step is to control deformations at points of location 

of power transferring elements (toothed gears) and 

angular deformation (slope) at the position of bearings. 

A detailed analysis is very time-consuming as the shaft 

is not of the same cross-section along its length. In this 

computer era, there are dedicated software for this type 

of analysis. You can, however, make a simplified 

analysis assuming the uniform cross-section shaft 

(which diameter?) and control it for deformation. If the 

diameter of this simplified shaft is safe, the actual shaft 

will also be safe. 
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Conclusion  

This paper has presented a concise step-by-step 

approach of determining the preliminary sizes of a power 

transmission shaft under fatigue loading using ASME 

code. A countershaft running at a constant speed 

problem was considered. Stress analysis at potential 

critical locations, the two gears locations, were 

conducted. This enabled the determination of the sizes at 

these locations. The diameter size coming out from the 

two gear locations were then used to estimate the sizes at 

the other low stress locations, where the bearings were 

located. Adjacent location between the two gears 

locations were blended with the largest size. Though not 

necessary at this stage, a CAD model for the preliminary 

designed countershaft was provided.  
After the determination of a shaft preliminary sizes, 

all other calculations are of a checkout nature (a strength 
approach). In future, the author would like to present the 
complete shaft design process. Also, the author would 
also like to compare the approach presented in this paper 
to other approaches use for transmission shaft design.  
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