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Abstract: In today's mechanical transmissions most widely used, the gears, 

are spread across all industries. For this reason, their importance has 

become overwhelming, which is why we want to recall in this paper some 

important aspects regarding toothed wheels. It is the geometry, cinematic, 

the forces and the yields of these mechanisms, which will be presented in 

the work in the form of newly synthesized relations on modern bases. 

Another important aspect in toothed wheels is their synthesis by modern 

methods that avoid tooth interference during operation. To avoid the 

interference between teeth, we must know the minimum number of teeth of 

the driving wheel, in function of the pressure angle (normal on the pitch 

circle, alpha0), in function of the tooth inclination angle (beta) and in 

function of the transmission ratio (i). In optimal and high-efficiency 

gearing, gears require a modern design with increased coverage. These 

achievements can only be achieved today in the context of lowering the 

value of the alpha engagement angle. Through all the aspects presented, 

which relate to the dynamics of gears, the work can be considered among 

those of the optimal dynamic synthesis of the gears. 
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Introduction 

Gears have spread today in all areas. They have the 

advantage of working with very high efficiency. In 

addition, tools can transmit large tasks. Regardless of 

their size, tools need to be synthesized carefully 

according to specific conditions.  

This paper tries to present the main conditions that 

must be met for the correct synthesis of a tool. 

The beginning of the use of pinion gears should be 

sought precisely in ancient Egypt at least a thousand 

years before Christ, where for the first time wheel drive 

units were used for irrigation and worm gear worm gears 

for cotton processing.  

Then, 230 years BC, in Alexandria, Egypt, the 

toothed wheel was used again.  

These tools have been built and used since ancient 

times to handle heavy anchors and catapults used on 

battlefields. These were then introduced into the wind 

and water mills (as a reduction or multiplication in wind 

or water pumps) (Fig. 1). 

The Antikythera Mechanism is a name given to a 

complex astronomical device, a 32×16×10 cm device 

discovered in 1900 in a sunken ship near the coast of 

Antikythera, an island between Crete and the Greek 

continent, for which several types of evidence 

undoubtedly point to around 80 BC. for the date of the 

shipwreck. The device was made of bronze gears 

mounted in a wooden box, but due to the fact that it 

was crushed in the wreck, various parts of the faces 

were lost and the remainder was then covered with a 

hard limestone deposit in time at the same time as the 

corroded metal to a thin core covered with strong 

metal salts that retains much of the previous bronze 

shape during the 2000 years of the dive (See 

Antikythera 1 in Fig. 2). 

 The modern adventure of the toothed wheel began 

with the toothed wheel created by Leonardo da Vinci 

in the fifteenth century. He is also the founder of a 

new cinema and dynamics, stating, among other 

things, the principle of overlapping independent 

movements (Fig. 3). 

Benz has created an original toothed and transmission 

chain engine (patented after 1882, Fig. 4), but the first 

patent of a toothed gear belongs to British British Starley 

& Hillman in 1870 (12 years before the Germans) being 

designed and built to be used for bicycle transmissions 

and later for motored tricycles. 

In Cleveland (USA), begin after 1912 to produce 

industrial specialized wheels and gears (cylindrical, 

worm, conical, with straight teeth, inclined or curved; 

Fig. 5). 
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Fig. 1: Transmissions wheeled "spurred" to irrigate crops and worm gears to the cotton processing 
 

 
 

Fig. 2: The Antikythera mechanism is the name given to an astronomical calculating device 
 

 
 

Fig. 3: The modern adventure began with the gear wheel spurred of Leonardo da Vinci, in the fifteenth century 
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Fig. 4: The Benz patent 

 

 

 
Fig. 5: In Cleveland, after 1912 begin to produce industrial specialized wheels 

 

The gears are present today everywhere, in the 

mechanical world (In vehicle’s industries, in electronics 

and electro-technique types of equipment, in 

energetically industries, etc.; Fig. 6). 
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Fig. 6: Gearings today 

 

The paper presents how to accurately determine the 

mechanical performance of a gearbox. Based on these 

relationships, an optimal synthesis of the performance of 

a classic, mechanical, manual gearshift can be achieved 

regardless of its operating status (Frăţilă et al., 2011; 

Pelecudi, 1967; Antonescu, 2000; Comănescu et al., 

2010; Aversa et al., 2016a; 2016b; 2016c; 2016d; 2017a; 

2017b; 2017c; 2017d; 2017e; Mirsayar et al., 2017; Cao 

et al., 2013; Dong et al., 2013; De Melo et al., 2012; 

Garcia et al., 2007; Garcia-Murillo et al., 2013; He et al., 

2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; Padula 

and Perdereau, 2013; Perumaal and Jawahar, 2013; 

Petrescu and Petrescu, 1995a; 1995b; 1997a; 1997b; 

1997c; 2000a; 2000b; 2002a; 2002b; 2003; 2005a; 

2005b; 2005c; 2005d; 2005e, 2016a; 2016b; 2016c; 

2016d; 2016e; 2013; 2012a; 2012b; 2011; Petrescu et al., 

2009; 2016a; 2016b; 2016c; 2016d; 2016e; 2017a; 

2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 

2017i; 2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 

2017p; 2017q; 2017r; 2017s; 2017t; 2017u; 2017v; 

2017w; 2017x; 2017y; 2017z; 2017aa; 2017ab; 2017ac; 

2017ad; 2017ae; Petrescu and Calautit, 2016a-b; Reddy et 

al., 2012; Tabaković et al., 2013; Tang et al., 2013; Tong 

et al., 2013; Wang et al., 2013; Wen et al., 2012; 

Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; List the first flights, From Wikipedia; 

Chen and Patton, 1999; Fernandez et al., 2005; Fonod et 

al., 2015; Lu et al., 2015; 2016; Murray et al., 2010; 

Palumbo et al., 2012; Patre and Joshi, 2011; Sevil and 

Dogan, 2015; Sun and Joshi, 2009; Crickmore, 1997; 

Donald, 2003; Goodall, 2003; Graham, 2002; Jenkins, 

2001; Landis and Dennis, 2005; Clément, Wikipedia; 

Cayley, Wikipedia; Coandă, Wikipedia; Gunston, 2010; 

Laming, 2000; Norris, 2010; Goddard, 1916; Kaufman, 

1959; Oberth, 1955; Cataldo, 2006; Gruener, 2006; 

Sherson et al., 2006; Williams, 1995; Venkataraman, 

1992; Oppenheimer and Volkoff, 1939; Michell, 1784; 

Droste, 1915; Finkelstein, 1958; Gorder, 2015; Hewish, 

1970). 

Materials and Methods; Gearings Synthesis 

In a cylindrical gearing, forces, speeds, powers and 
efficiency can be determined using relationships 2.1-2.6 
and can be seen in Fig. 7: 
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Gearing today. 
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Where: 

F
m
 = The motive force (the driving force) 

F
τ
 = The transmitted force (the useful force) 

Fψ = The slide force (the lost force) 

v1 = The velocity of element 1, or the speed of wheel 

1 (the driving wheel) 

v2 = The velocity of element 2, or the speed of wheel 

2 (the driven wheel) 

v12 = The relative speed of the wheel 1 in relation with 

the wheel 2 (this is a sliding speed) 

 

The consumed power (in this case the driving 

power):  

 

 
1c m m

P P F v≡ = ⋅  (2.2) 

 

The useful power (the transmitted power from the 

profile 1 to the profile 2) will be written: 

 
2

2 1 1
cos

u m
P P F v F v

τ τ
α≡ = ⋅ = ⋅ ⋅  (2.3) 

 

The lost power will be written: 

 
2
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The momentary efficiency of couple will be 

calculated directly with the next relation: 
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The momentary losing coefficient, will be written: 
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It can easily see that the sum of the momentary 

efficiency and the momentary losing coefficient is 1. 

Now, one can determine the geometrical elements of 

gear. These elements will be used in determining the 

couple efficiency, η.  

The main geometric elements belonging to the 

external cylindrical gear (for straight teeth, beta = 0) can 

still be determined. 

The radius of the basic circle of the wheel 1 (of the 

driving wheel), (2.7): 
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The radius of the outside circle of wheel 1 (2.8): 
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Fig. 7: The forces and the velocities of the gearing 
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It determines now the maximum pressure angle of the 

gear (2.9): 
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And now one determines the same parameters for the 

wheel 2, the radius of basic circle (2.10) and the radius 

of the outside circle (2.11) for the wheel 2: 
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Now it can determine the minimum pressure angle of 

the external gear (2.12, 2.13): 
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Now we can determine, for the external gear, the 

minimum (2.13) and the maximum (2.9) pressure angle 

for the right teeth. For the external gear with bended 

teeth (β ≠ 0) it uses the relations (2.14, 2.15 and 2.16): 
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For the internal gear with bended teeth (β ≠ 0) it 

uses the relations (2.14 with 2.17, 2.18-A, or with 

2.19, 2.20-B): 

A. When the Driving Wheel 1, Has External Teeth: 
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B. When the Driving Wheel 1, Have Internal Teeth: 
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The mechanical efficiency of the cylindrical gear shall 

be determined by integrating the instantaneous efficiency 

across all gear sections of the gear unit starting from the 

minimum pressure angle and going up to the maximum 

pressure angle as defined in expression (2.21): 
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External gears are the most common, not because 

they are the best, but because they are easier to design 

and build (Fig. 8a). Internal gears can be much more 

efficient and more reliable if and only if properly 

designed (Fig. 8b). At inner engagement the teeth in 

contact make better contact not only on a point or line as 

on the outside but on a curve or surface, contact being 
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larger, more natural, stronger, more complete and 

without wear, noises, shocks, like in external gears. 

However, due to the fact that the internal gears are 

provided with additional conditions for avoiding the 

teeth interference in contact, the correct design is much 

more difficult and from a technological point of view it 

sometimes does not work correctly, leading to slight 

random interferences during the operation of the built-

in gear, which in the course of time lead to premature 

wear, noises, or even blocking in operation, although 

their operation should have been much superior 

theoretically and for this reason the design difficulties 

most often give up the superiority internal gears 

preferring the choice of the outer ones. 

To an external gearing, contact between profiles shall 

only be made to a single point, while at the internal 

gearing the contact between profiles is by winding each 

other (Fig. 9). 

 

   
 (a) (b) 

 
Fig. 8: (a) An external gearing; (b) An internal gearing 

 

 
 

Fig. 9: Contact between profiles 
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Fig. 10: Line of action (t-t’) at an external gearing 

 

Results; Gears Synthesis by Avoid the 

Interferences 

In order to avoid interference phenomenon, point A 

must lie between C and K1 (the addendum circle of the 

wheel 2, Ca2 need to cut the line of action between points 

C and K1 and under no circumstances does not exceed 

the point K1). Similarly, Ca1 addendum circle must cut 

the action line between points C and K2, resulting in 

point E, which in no circumstances, does not exceed the 

point K2.  

The conditions to avoid the phenomenon of 

interference can be written with the relations (3.1).  

The basic conditions of interference, are the same 

(CA<K1C; CE<K2C), but the originality of this new 

presented method consist in the mode in which it was 

solved the classical relationship (see the system 3.1) 

(Fig. 10). 

The system (3.3) represents a simple, unitary and 

general relationship capable of generating functional 

solutions for gears, giving the minimum number of teeth 

of wheel 1 (motor wheel) to avoid interference. In the 

appendix Table 1-15 an alpha0 value (35°) will be 

chosen and the beta angles (from 0° to 40°) and the 

transmission ratio i (from 1 to 80) are incrementally 

incremented in order to thus getting the minimum 

number of teeth correctly. 

Then, the alpha value (from 35° to 5°) will be 

decreased successively. 

At the internal gearbox, the interference avoidance 

condition is the same as for the external gear 

(relationship 3.3): 
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Relationship which generates 
4
1
z  always gives lower 

values than the relationship which generates 
2
1
z  so it is 

sufficient the condition (3.2) for finding the minimum 

number of teeth of the wheel 1, necessary to avoid 

interference: 
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When we have inclined teeth, one takes 

zmin→zmin/cosβ and α0→α0t and the relationship (3.2) 
takes the form (3.3). The minimum number of teeth of 
the driving wheel 1, is a function on some parameters: 
The pressure angle (normal on the pitch circle, α0), the 
tooth inclination angle (β) and the transmission ratio (i = 
|i12| = |-z2/z1| = z2/z1), (see the relationship 3.3): 

 
( )2

2 2 2
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min 1 2

0

0 0

0 0

sin 2 sin
2 cos

2 1 sin

:
cos cos

t t

t

t t

i i i
z z

i

tg tg
where tg arctg

α α
β

α

α α
α α

β β

 + + + ⋅ ⋅
 ≡ = ⋅ ⋅

⋅ + ⋅


 
= ⇒ =  

 

 (3.3) 

 

In addition, the inner gear can also write the 

additional condition of the wheel with internal teeth 

(systems 3.4 and 3.5). If the mechanism is designed and 

built without checking these two additional conditions 

for the existence of an internal gear, it will not work 

properly. As it has already shown, the inner gear is much 

superior in operation to the outside, but only when 

rigorous design and construction, its manufacturing 

technology being much more difficult than that of the 

classic outer gear: 
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It should also be mentioned that additional relations 

(3.6) have also been used. 
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Discussion; Determining the Gearing 

Performance Depending on the Degree of 

Coverage  

In this section, there is briefly presented a 

completely original method of determining the 

efficiency of parallel gear gears. Based on the 

computational relationships presented, the dynamic 

synthesis of the gears can be made so as to result in 

mechanisms with high efficiency in operation. 

The originality of the method consists in 

determining the yield (which does not take into account 

the friction coefficient in the coupling, this being 

considered only an additional effect and not the main 

cause that produces the effective mechanical efficiency, 

the mechanical efficiency of a machine depends on the 

authors' mainly by the transmission angle of the main 

coupler of the mechanism). 

Calculate the yield of a gear with a fixed spindle 

gear, considering that at a certain moment there are 

several pairs of drive drums, not just one. 

It starts from the idea of having four pairs of drums 

in engagement (simultaneous). The first pair of teeth 

(which go on the right-to-left engagement line as it 

engages) are the engagement point i, defined by the 

radius of the ri1 and the angle (pressure) of the position 

ai1; the forces at this point are the force of the Fmi 

motors, perpendicular to the point and position of the 

vector and the force transmitted from the wheel 1 to the 

second wheel by the point i, Fti, parallel to the 

engagement line and pointing from the wheel 1 to the 

wheel 2, the transmission force being basically the 

projection of the drive force on the engagement axis 

(line); the defined speeds are similar to the forces (for 

the original cinematic, precision); the same parameters 

will also be defined for the other three points of 

engagement, j, k, l (following the drawing in Fig. 11). 

Write the relationships between speeds (4.1) first: 

 

1 1 1

1 1 1

1 1 1

1 1 1

cos cos

cos cos

cos cos

cos cos

i mi i i i b
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τ

τ

τ

τ

α ω α ω

α ω α ω

α ω α ω

α ω α ω
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= ⋅ = ⋅ ⋅ = ⋅

= ⋅ = ⋅ ⋅ = ⋅

= ⋅ = ⋅ ⋅ = ⋅

 (4.1) 

 

From relations (4.1) one obtains the equality of 

tangential speeds (4.2) and we express the motor 

speeds (4.3): 

 

1 1i j k l bv v v v r
τ τ τ τ

ω= = = = ⋅  (4.2) 

 

 1 1 1 1 1 1 1 1
; ; ;

cos cos cos cos

b b b b
mi mj mk ml

i j k l

r r r r

v v v v

ω ω ω ω

α α α α

⋅ ⋅ ⋅ ⋅

= = = =  (4.3) 

 

The forces simultaneously transmitted at the four 

points must be equal to each other (4.4): 

 

i j k lF F F F F
τ τ τ τ τ
= = = =  (4.4) 

 

Engine forces shall be deducted (4.5): 

 

 ; ; ;

cos cos cos cos
mi mj mk ml

i j k l

F F F F
F F F F

τ τ τ τ

α α α α

= = = =  (4.5) 

 

Instant yield is written as (4.6): 
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The help lines used shall be marked with (4.7) and (4.8): 
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Relationships (4.8) were retained where the plus sign 

is for the gears to which the driving wheel 1 has external 

gear (external or internal gearing) and the minus sign is 

used when the driving wheel 1 has internal gearing, i.e., 

when the driving wheel 1 is a ring (only at the inner 

engagement). The instantaneous yield in the expression 

(4.6) uses relations (4.8) and takes the form (4.9): 
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 (4.9) 

 

One starts in the relation (4.9) with the expression 

of the yield (4.6) for 4 pairs of engaging teeth, but 

immediately (even within the relation) we make a 

generalization by replacing the number 4 (four pairs 

of engaging teeth) with the variable E, which 

represents the full side of the coverage +1 and after 

the expressions written in the form of sums narrow 

down, the variable E is replaced with the degree of 

coverage, thus reaching the final shape. The average 

yield is more interesting than the instantaneous one 

and is calculated (precisely by integrating the 

instantaneous one from the minimum pressure to the 

maximum angle) simply by the approximation which 

determines the average yield by replacing in the 

expression of the instantaneous yield of the variable 

pressure angle (α1) with its average value given by the 

normal pressure angle (standardized, α0), (4.10), 

where ε12 represents the degree of coverage and is 

calculated with the expression (4.11) for the external 

engagement and the relation (4.12) for the inner 

engagement: 
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Fig. 11: Determining the yield of a gear with fixed axle gears (four pairs of simultaneous engagement teeth) 

 

There are wheels of the helical gears, which are used very often (relations 4.13, 4.14, 4.15). For helical gears, the 

calculations show a decrease in the efficiency of the with the tilt angle on the rise of the teeth (β). For given angle 

which does not exceed 25°, the efficiency of fishing gear is good enough. However, when the tilt angle is greater than 

25°, speeds will suffer a significant decrease in the yield: 
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Conclusion 

There are wheels of the helical gears, which are used 

very often. For helical gears, the calculations show a 

decrease in the efficiency of the with the tilt angle on the 

rise of the teeth (β). For given angle which does not 

exceed 25°, the efficiency of fishing gear is good 

enough. However, when the tilt angle is greater than 25°, 

speeds will suffer a significant decrease in the yield. 
The highest yield that can be achieved with two gears 

is that of the inner gear, with the inner driving gear (the 
wheel becomes the driver and the smaller wheel with 
external gear will be driven); Conversely, when we form 
an inner gear with the small (outer gear) driving wheel, 
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the resulting yield is the smallest possible; When gearing 
is external, the output is higher for the high steering 
wheel; The more the normal engagement angle, α0, 
decreases, the degree of coverage increases and with it 
the engagement efficiency; when the normal angle of 
engagement drops to 5 degrees, the coverage reaches 
6.5-7.3 and the output reaches theoretical values of 99-
99.5%, meaning that the gear will actually work at 
100%. Yield increases also with the number of teeth of 
the driving wheel. 

In order to avoid interference phenomenon, point 

A must lie between C and K1 (the addendum circle of 

the wheel 2, C
a2 need to cut the line of action between 

points C and K1 and under no circumstances does not 

exceed the point K1). Similarly, C
a1 addendum circle 

must cut the action line between points C and K2, 

resulting in point E, which in no circumstances, does 

not exceed the point K2.  

The conditions to avoid the phenomenon of 

interference can be written with the relations (3.1).  

The basic conditions of interference, are the same 

(CA<K1C; CE<K2C), but the originality of this new 

presented method consist in the mode in which it was 

solved the classical relationship (see the system 3.1). 

The system (3.3) represents a simple, unitary and 

general relationship capable of generating functional 

solutions for gears, giving the minimum number of teeth 

of wheel 1 (motor wheel) to avoid interference. In the 

appendix Table 1-15 of Figure 12 an alpha0 value (35°) 

will be chosen and the beta angles (from 0° to 40°) and 

the transmission ratio i (from 1 to 80) are incrementally 

incremented in order to thus getting the minimum 

number of teeth correctly. 

Then, the alpha value (from 35° to 5°) will be 

decreased successively. 
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Appendix, Figure 12 with 15 Tables 
 
 

Figure 12, Table 1: α0 = 35 [deg], β = 0 [deg] 

 
 
Figure 12, Table 2: α0 = 35 [deg], β = 10 [deg] 

 
 
Figure 12, Table 3: α0 = 35 [deg], β = 20 [deg] 

 
 
Figure 12, Table 4: α0 = 35 [deg], β = 30 [deg] 
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Figure 12, Table 5: α0 = 35 [deg], β = 40 [deg] 

 
 

Figure 12, Table 6: α0 = 20 [deg], β = 0 [deg] 

 
 

Figure 12, Table 7: α0 = 20 [deg], β = 10 [deg] 

 
 

Figure 12, Table 8: α0 = 20 [deg], β = 20 [deg] 
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Figure 12, Table 9: α0 = 20 [deg], β = 30 [deg] 

 
 

Figure 12, Table 10: α0 = 20 [deg], β = 40 [deg] 

 
 

Figure 12, Table 11: α0 = 5 [deg], β = 0 [deg] 

 
 

Figure 12, Table 12: α0 = 5 [deg], β = 10 [deg] 
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Figure 12, Table 13: α0 = 5 [deg], β = 20 [deg] 

 
 

Figure 12, Table 14: α0 = 5 [deg], β = 30 [deg] 

 
 

Figure 12, Table 15: α0 = 5 [deg], β = 40 [deg] 

 


