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Abstract: Several new denoising algorithms have recently been presented 

that display comparable performance and it is unclear which provide the 

best results. We used the practical example of urban scenes to compare two 

of the top-performing algorithms. We found that when using the practical 

case of quantizing input and output imagery, the results were different than 

when using the conventional method for comparison.  
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Introduction 

The denoising problem is most often represented 

as an image with Additive White Gaussian Noise 

(AWGN), where the noise is to be removed. The latest 

denoising methods have demonstrated impressive 

results, however, their levels of effectiveness seem to 

differ by only small amounts, so it is not entirely clear 

which method works best for any particular 

application or which method should be selected. 

(Buades et al., 2005; Chatterjee and Milanfar, 2009; 

Chen et al., 2013; Dabov et al., 2007; Dong et al., 

2015; Gu et al., 2014; Schmidt and Roth, 2014). 

Further research into this area is extensive. For 

example, the Peak Signal-to-Noise Ratio (PSNR) is 

the measure most often used to compare performance 

of algorithms, but results between methods are 

typically within 1 dB. The PSNR is based on the 

Mean Squared Error (MSE), but normalization of 

imagery is not necessarily performed. Methods should 

also be compared with proper normalization and 

quantization to make a meaningful comparison. 

An algorithm that represented an important 

contribution to denoising is the Block-Matching 3D 

(BM3D) (Dabov et al., 2007) and newly developed 

methods are still compared to it. Basically, this approach 

groups similar patches of an image into 3D blocks that 

are denoised and then returned to their positions.  

Another significant method, named SSC-GSM, 

connects a Gaussian Scale Mixture (GSM) with 

Simultaneous Sparse Coding (SSC) that comes from 

the observation that many important image structures in 

natural images, including edges and textures, that can 

be characterized by the abundance of self-repeating 

patterns (Dong et al., 2015). 

A third impressive new method uses shrinkage fields 

that are based on existing optimization algorithms for 

common random field models and are computationally 

efficient (Schmidt and Roth, 2014). This approach 

attains its performance through loss-based training of all 

model parameters and the use of a cascade architecture 

that can be adapted to different trade-offs between 

efficiency and image quality. 

In this study we compared the performance of 

these three methods applied to urban scenes. We used 

the PSNR, as is commonly applied in most work of 

this kind and also the PSNR with images that have 

their energy normalized. We also considered practical 

cases of quantized noisy and denoised imagery in 

terms of performance. 

Methods 

We considered two of the current leading methods for 

denoising and compared them against each other while 

using the BM3D approach as a reference. 

BM3D 

This method exploits redundancy of patterns in an 

image. In general, an image is divided into small patches 

and then similar patches are grouped together in a 3D 

stack. Next, a 3D linear transform of each stack is 

performed. By exploiting the correlation between the 

image patches within a group, a spare representation can 

be found and the data effectively filtered. Typically, a 

Wiener filter is used on the data to reduce noise before 

an inverse 3D transformation is performed. The last step 

is to put the denoised patches back into their original 

locations. There are several parameters to be set and 

their effect has been previously discussed (Lebrun 2012). 
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SSC-GSM 

In general, this work with SSC-GSM is related to 

solving an inverse problem with piecewise linear 

estimators, but using a non-local strategy of similar 

image patches and a local parametric Gaussian model. 

The basic idea here is to model each sparse transform 

coefficient as a Gaussian distribution with a positive 

scaling variable and impose a sparse distribution prior on 

the scaling variables (Dong et al., 2015).  

Sets of sparse coefficients from similar patches with the 

same prior distributions and local and nonlocal 

dependencies are exploited for image restoration. Sparse 

coding represents a signal x as the linear combination of 

basis vectors D whose coefficients α satisfy some sparsity 

constraint. This approach models the sparse coefficients 

with a GSM model and a Gaussian vector β and a scalar 

multiplier θ. The formulation of the GSM problem reduces 

to the joint estimation of β and θ. For similar image patches 

the same θ and biased mean µ are used along with the 

nonlocal means approach (Buades et al., 2005) was used to 

estimate µ’s depending on patch similarity. The sparse 

coefficients β and θ are optimized jointly with γ, which is 

related to µ through image variances using an initial 

estimate of the denoised image. The variables are estimated 

recursively in a computationally efficient fashion. 

Shrinkage Fields 

In the shrinkage fields approach, a restored image is 
predicted by finding the MAP estimate of the image given 
the degraded image where the corruption process is 
modeled with a Gaussian likelihood kernel and a strength 
term (Schmidt and Roth, 2014). A block coordinate descent 
strategy is used that alternates between minimizing with 
respect to in ideal image x and auxiliary variables within z. 
The auxiliary variables are introduced so that the MAP 
estimate becomes a quadratic function and optimization 
reduces to solving many univariate optimization problems. 
Shrinkage functions have often been thought of as fixed 
soft-thresholding functions that “pull” coefficients to zero. 
In this approach, they are replaced with a linear 
combination of Gaussian RBF kernels. This allows the 
optimization procedure to be reduced to a single quadratic 
minimization in each iteration in terms of a Shrinkage 
Field (SF). Therefore, an SF is a Gaussian conditional 
random field whose parameters are determined through 
learned model parameters, the observed image and the 
Gaussian likelihood kernel. 

Results 

In our experiments, we used 256×256 images that 

were taken from the CBCL Street Scenes collection 

(MIT, 2007) and added AWGN of σ = 15 and 25. To 

compare images we initially used the common measure 

of PSNR which is: 

( )210log 255 /PSNR MSE=  (1) 

 

where: 

 

( )
2

– /MSE x y MN= ΣΣ  (2) 

 

with x representing the original image, y the denoised 

image, the summations are in the horizontal and vertical 

directions over the entire image and M and N the number of 

pixels in the horizontal and vertical directions respectively. 

We used the images in Fig. 1a-5a that represented 

random urban scenes and showed the denoising results 

using the PSNR in Table 1. The highest value for each 

case in bold text and the lower the value of MSE, the 

higher the value of the PSNR. Each number in the table 

represented the average of 100 noisy images for each case. 

For a value of σ = 15, the SSC-GSM had higher values 

than the SF method, but on average the PSNR differed by 

less than 1dB. But for σ = 25, the results were mixed and 

both methods performed comparably. Both methods 

however outperformed the BM3D method. 

When an image is acquired from a sensor, it may not 

be under controlled conditions. Therefore, the sensor 

may acquire some sort of noisy image. We represented 

this practical case by adding noise to an image then 

quantizing the image to 8-bits and calculating the PSNR 

as before. The results of this case are shown in Table 2. 

For the case with σ = 15, the SSC-GSM showed a slight 

preference in performance, but on average the results 

only differed by about 0.05 db. Both methods 

outperformed the BM3D method, but by a much smaller 

amount than when the input was not quantized, in most 

cases less than 1 dB. For the case when σ = 25, the SSC-

GSM method clearly outperformed both other methods. 

The expression for MSE in Equation 2 is used 

directly in most research reports. However, a shift or 

scale of an image or patch can change the value of the 

MSE. Therefore, we also normalized the energy of the 

denoised image to that of the original image, then 

calculated the MSE. This way, any power remaining 

after denoising that is more than the original image will 

contribute to the MSE. This calculation of PSNR was 

referred to as the PSNRn. Visually, the results will be the 

same as with the PSNR. The results using the PSNRn are 

shown in Table 3. Except for the BM3D results the 

PSNR was always lower. For both values of noise the 

results were similar with between the SSC-GSM and the 

SF methods with the results differing often by less than 1 

dB. Although both methods showed improved 

performance when compared to the BM3D method, the 

difference was not as great as when the PSNR was used. 

In addition, when comparing the SSC-GSM and SF 

methods some images showed opposite results when 

using the PSNR and PSNRn measures. 
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 (a) (b) (c) 

 

   
 (d) (e) 

 
Fig. 1. Denoising results for image 1 with σ = 25 (a) original image (b) noisy image (c) SSC-GSM result (d) SF result (e) 

BM3D result 
 

       
 (a) (b) (c) 

 

    
 (d) (e) 

 
Fig. 2. Denoising results for image 2 with σ = 25 (a) original image (b) noisy image (c) SSC-GSM result (d) SF result (e) BM3D 

result 
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 (a) (b) (c) 

 

    
 (d) (e) 

 
Fig. 3. Denoising results for image 3 with σ = 25 (a) original image (b) noisy image (c) SSC-GSM result (d) SF result (e) 

BM3D result 
 

       
 (a) (b) (c) 
 

    
 (d) (e) 

 
Fig. 4. Denoising results for image 4 with σ = 25 (a) original image (b) noisy image (c) SSC-GSM result (d) SF result (e) BM3D 

result 
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 (a) (b) (c) 

 

     
 (d) (e) 

 
Fig. 5. Denoising results for image 5 with σ = 25 (a) original image (b) noisy image (c) SSC-GSM result (d) SF result (e) BM3D 

result 

 
Table 1. PSNR results for the different methods using the images in Fig. 1a-5a 

 σ = 15   σ = 25 

 --------------------------------------------------------------------- ------------------------------------------------------ 

 BM3D SSC–GSM SF BM3D SSC–GSM SF 

Image1 25.36 31.58 30.78 20.56 28.34 28.41 

Image2 25.47 31.18 30.36 20.86 28.56 28.67 

Image3 25.37 30.53 30.12 20.73 27.66 27.23 

Image4 25.51 32.63 30.50 20.70 29.36 30.00 

Image5 25.26 29.88 29.56 20.52 27.32 26.86 

 
Table 2. PSNR results for the different methods using the images in Fig. 1a-5a with the noisy image quantized to 8-bits 

  σ = 15   σ = 25 

 --------------------------------------------------------- -------------------------------------------------------------- 

 BM3D SSC–GSM SF BM3D SSC– GSM SF 

Image1 23.36 24.87 24.72 19.21 25.83 20.62 

Image2 22.24 23.14 23.05 18.28 25.76 19.24 

Image3 17.54 17.72 17.84 13.80 20.79 14.17 

Image4 18.91 19.31 19.13 15.13 26.87 15.59 

Image5 23.38 24.66 24.58 19.04 25.02 20.48 

 
Table 3. PSNRn results for the different methods using the images in Fig. 1a-5a with denoised images normalized to the same energy 

  σ = 15    σ = 25 

 ---------------------------------------------------------- ------------------------------------------------------------- 

 BM3D SSC–GSM SF BM3D SSC–GSM SF 

Image1 25.35 28.59 28.72 20.56 25.83 26.01 

Image2 25.47 27.18 26.72 20.86 25.76 25.15 

Image3 22.28 23.39 22.87 18.42 20.79 20.49 

Image4 25.50 28.88 25.10 20.70 26.87 23.71 

Image5 25.26 27.51 28.02 20.52 25.02 25.78 
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Table 4. PSNRn results for the different methods using the images in Fig. 1a-5a with both the noisy input and denoised images 

quantized to 8-bits and denoised images normalized to the same energy 

  σ = 15    σ = 25 

 --------------------------------------------------------- ------------------------------------------------------------ 

 BM3D SSC–GSM SF BM3D SSC–GSM SF 

Image1 23.77 27.94 28.55 19.43 24.40 25.92 

Image2 22.65 27.51 27.23 18.47 26.03 26.72 

Image3 19.61 23.51 23.45 16.19 20.23 21.19 

Image4 19.75 28.99 25.92 15.45 27.35 25.04 

Image5 23.65 27.00 27.81 19.18 24.42 25.65 

 

Finally, we compared the case when both the 

acquired image and denoised image were quantized to 8-

bits. If a denoised image from sensor is to be stored as a 

file, that would represent a practical case. For this 

scenario, we used the PSNRn measure and the results are 

shown in Table 4. For both values of noise, the SSC-

GSM and SF methods performed similarly, but at the 

higher noise lever, the SF method seemed to perform 

slightly better. As before, the BM3D method did not 

perform as well as the other two. 

The noisy images used in our study are shown in 

Fig. 1b-5b for σ = 25. The denoised results using the 

SSC-GGM, SF and BM3D algorithms are shown in 

parts c-e of those images, respectively. From these 

results, it can be seen that the SSC-GGM and SF 

methods work remarkably well and it is difficult to 

visually see the difference. It can also apparent that 

the performance of these algorithms is superior to the 

BM3D algorithm. 

Conclusion 

As expected, we found that the performance of the 

SSC-GGM and SF algorithms gave higher PSNR and 

PSNRn values and superior visual performance when 

compared to the BM3D algorithm. This indicates that  

Although the SSC-GGM and SF algorithms 

achieved their performance by different approaches, it 

is difficult to claim that one performed better than the 

other since the results were so close. In addition, there 

are several parameters that could be changed within 

each approach to alter the results further complicating 

a definitive comparison.  

When the input was quantized, the PSNR values 

significantly decreased across all methods. The SSC-

GSM’s advantage decreased at a low value of sigma, 

but it outperformed the SF method by a small amount 

at the larger value of sigma. When the PSNRn metric 

was used without any quantization, the values 

decreased significantly as compared to the PSNR, 

excluding the BM3D method. Using the PSNRn 

metric with quantized input and denoised images the 

SF method showed a slight advantage at a higher 

value of sigma. Although not reported here, we found 

that the SF seemed to be faster than the SSC-GSM 

approach. 
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