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Abstract: We propose an effective tracking algorithm based on sparse 

representation and auxiliary adaptive appearance modeling. Based on a 

sparse representation, l1 minimization can follow targets in challenging 

situations. Unfortunately, tracking approaches based on l1 minimization 

are likely to be inefficient because they measure using dense coefficient 

distributions. The number of target candidates can be very large when the 

state space is densely sampled. Each minimization takes long time to find 

the solution. Traditionally, we must calculate the coefficients for each 

tracking candidates, which is computationally expensive. In this work, we 

found that l1 minimization can be limited to a few regions with the 

reasonable probability based on adaptive appearance modeling and 

background probability estimation. Therefore, the computational cost is 

greatly reduced. We have also found that appearance information is useful 

for the region selection. We form the basis of appearance modeling using 

colors and shapes. The results of the experiment show that the proposed 

tracker has good performance. 

 

Keywords: Tracking, Sparse Representation, Auxiliary Appearance 

Model, Robust Tracking 
 

Introduction 

Object tracking has many important applications such 
as surveillance, human-computer interface and robotics. 
A good tracker should possess properties such as high 
efficiency and accuracy. However, in real tracking tasks, 
many issues are hurdles for developing good trackers. 
For instance, viewpoint variations and illumination 
changes tend to make a good model invalid. 
Additionally, occlusions and unusual motions are also 
challenging problems for tracking. 

Target representation is essential for developing a 

good tracker. Target appearance usually is not constant 

in an image sequence. The appearance changes gradually 

or suddenly as results of viewpoint or illumination 

variations. Since viewpoints and illuminations are in 

continuous spaces, the target appearance can have infinite 

possibilities. Despite from the large number of appearance 

variations, it has been found that these variations lie in a 

low dimensional space Tenenbaum et al. (2000; Gu et al., 

2008; Mei et al., 2011). This space is well approximated 

by a set of templates. This observation is useful in 

tracking based on l1 minimization. 

l1 minimization pursues sparse representations in a 

large space Donoho (2006). Matching probability in l1 

tracking is partly measured by the density of the 

coefficient distribution. A target candidate that can be 

sparsely described has a higher probability to be correctly 

recognized than those with dense non-zero small 

coefficients. A tracker based on l1 minimization can deal 

with appearance variations, occlusions. Despite from the 

robustness of l1 based trackers, they are not efficient due 

to the coefficient spanning calculation in a large space. 

Based on appearance modeling approaches, object 

tracking algorithms can be classified into two categories: 

generative and discriminative trackers. Generative 

trackers model targets using representations that can 

reconstruct the targets. Such trackers do not consider the 

background information of the targets which can be 

helpful in distinguishing a target from its background. 

Discriminative trackers are effective in distinguishing 

targets and their background using the differences 

between foreground and background. However, 

discriminative trackers are short of the reconstruction 

ability of generative trackers. In this work, we aim at 
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combining the merits of discriminative and generative 

trackers in an integrated way. 

Tracking based on l1 minimization belongs to 

generative trackers. We aim at developing a l1 tracker 

supported by discriminative approaches. The mean-shift 

algorithm Comaniciu et al. (2003) is a representative of 

discriminative trackers. Collins et al. (2005) select good 

color space combinations to improve discriminative 

ability. Wang and Yagi (2008) consider multiple shape 

and color features in an integrated framework. We found 

that the adaptive appearance modeling Wang and Yagi 

(2008) is helpful for including discriminative power in 

our tracker. We characterize target and its background 

using adaptive appearance modeling. Then, foreground 

likelihood images are computed based the appearance 

modeling. The searching space of the l1 minimization 

can be greatly constrained with the support from 

adaptive appearance modeling. We develop a robust and 

efficient tracker with adaptive appearance modeling and 

l1 minimization. 

Particle filtering, a general Monte Carlo method, has 

been widely used in non-linear sequential state 

estimations Isard and Blake (1998; Toyama and Blake, 

2001; Zhou et al., 2004; Hastie et al., 2003; Ross et al., 

2007; Wang and Yagi, 2009; Das et al., 2012; Kim and 

Jeon, 2012). Particle filtering estimates the state of a 

sequential system that evolves in time series. Generally, 

the system measurement we get is polluted by noise. In 

order to correctly estimate the state of the system with 

noisy measurements, particle filtering uses many 

samples to represent state distributions. The 

computational cost of a tracker depends on the number 

of the samples. We constrain our particle filtering using 

adaptive appearance modeling Wang and Yagi (2008). 

This paper is organized as follows. Section 2 

introduces our particle filtering framework. Section 3 

describes target modeling using a set of target 

templates and trivial templates. Trivial templates are 

used in describing occlusions in template matching. 

Adaptive appearance modeling is also introduced in 

section 3. Experimental results on real image 

sequences are demonstrated in Section 4. Section 5 

summarizes this work.  

Particle Filtering 

Particle filtering estimates the state space based on 

the current and historical information of observations 

The state of our tracking system evolves according to xt 

= ft(xt-1, ut-1), where xt is a vector representing the state of 

the system at time t; xt-1 is a vector representing the state 

of the system at time t-1, ut-1 is a noise vector, ft is a non-

linear time-dependent function. We get observation yt 

from the system yt = g(xt, et), where et is a non-linear 

transform function characterizing the measurement 

(Doucet et al., 2001). 

We estimate the distribution p(xt, |y0:t) using particle 

filtering. Here, we consider all the observations from y0 

to yt, where y0t are the historical observations. Particle 

filtering consists of two steps: predicting and updating 

the states. p(xt|y0:t) is computed at time t-1: 

 

0: 1 0: 1 1( | ) ( | ) ( | )t t t t t tp x y p x y p x x− − −= ∫  (1) 

 

p(xt-1, |y0:t-1) is updated with the new observation yt based 

on Bayes' rule: 

 

0: 1 0: 1( | ) ( | ) ( | )t t t t t tp x y p x y p y x− −∝  (2) 

 

Particle filtering represents the probability 

distribution, p(xt|y0:t), as a weighted particle set 
( ) ( )

{1,2,..., }{ , }k k

t t k Js π ∈ . The weighted particle set consists of 

samples (k)

t
s and their corresponding weights ( )k

t
π . The 

samples in the weighted particle set are calculated using 

sequential importance re-sampling (Arulampalam et al., 

2002). J samples are drawn from the proposal 

distribution the samples are updated and propagated by 

the algorithm recursively: 

 
( )

0: 1 1 1

0~

( | ) ( )k k

t t t t t

k J

p x y x sπ δ− − −
=

≅ −∑  (3) 

 

Given the distribution p(xt-1|y0:t-1), particle filtering 

calculates the filtered distribution p(xt|y0:t). Embedding 

the weighted particle set into the above equation, we 

obtain the approximation of p(xt|y0:t): 

 
( )

0: 1 1 1
( | ) ( | ) ( | )k k

t t t t t t t

k

p x y p y x p x xπ − − −∝ ∑  (4) 

 

Target Modeling 

We represent the target using a generative method. 
Correct candidates can be found by l1 minimization. We 
also characterize target and its background using 
adaptive appearance modeling (Wang and Yagi (2008)), 
which is a discriminative modeling approach. The 
auxiliary adaptive appearance modeling better allows for 
the acceleration of the l1 minimization in particle 
filtering by shrinking the state space of the target. 

Generative Target Modeling 

We have a few modeling templates denoted by 

mi∈ℜ
d
, where d denotes the size of a template. They are 

used to create a matrix M = [m1, m2,..., mn], where 

M∈ℜd×n
.  

Considering all the modeling templates, We search 
for a good target candidate y

*
 from a set of candidates y. 

Ideal reconstruction is defined as y = Mα, where α = (α1, 
α2,…,αn)

T
. Here, αi indicates the contributions of 

different templates in modeling the candidates. 
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The reconstruction in y = Mα does not consider any 

noise or occlusion. Unfortunately, observation noise and 

corruptions are unavoidable in real tracking tasks, which 

make ideal reconstruction impossible. We have to 

introduce a noise vector v and trivial template set β for 

dealing this problem. In each trivial template, only one 

non-zero element is permitted. Combining many such 

trivial templates, we can describe noise and occlusion in 

the reconstruction here, the template set β represents 

corruptions. A coefficient vector α and a trivial 

coefficient vector v are put into a matrix
v

α 
 
 

. A tracking 

result is approximated by [ ],M
v

α
β
 

=  
 

y .  

To reconstruct y, we can calculate the coefficients in 

α. The values in α should be constrained as nonnegative 

values because the templates bearing similarity to the 

tracking target are positively related to the target. The 

coefficient vector α can be constrained in the 

reconstruction. However, it is not easy to enforce non-

negativity on the trivial coefficient vector v. To solve 

this problem, trivial coefficient vector v is extended by 

including the negative trivial templates. Here, target 

templates M and trivial templates set β are combined to 

form a matrix 1M, ,β β − Λ =   , where -β defines the 

negative β. v is also extended to v
+
 and v

-
, where v

+
 is a 

positive trivial coefficient vector; and v
-
 is a negative 

trivial coefficient vector. Coefficients α and trivial noise 

v
+
 and v

-
 are put into a matrix -[ , , ]Ta v vε += . The 

reconstruction is computed by: 
 

-

[M, ,- ]

a

y v

v

β β +

 
 

=  
 
 

 (5) 

 
There are few coefficients with large values for 

reasonable reconstructions. In the optimization process, 
we have to keep the number of the large coefficients to 
be few. This is more difficult than only considering the 
reconstruction error. To retain a few non-zero 
coefficients and keep others zero, the problem is 
transformed into a minimization with a penalized 
residual sum of absolute values of ε Hastie et al. (2003). 

We search for good candidate by minimizing an 

objective with l1 penalty Tibshirani (1996; Koh et al., 

2007a; 2007b): 
 

2

2 1
( , ) arg minvα ε λ ε= Λ +  (6) 

 
Subject to 0ε =≻  
 
where, [M, , ]β βΛ = − consists of target templates M, 

trivial templates set β and the negative of trivial template 

set − β ; λ is a parameter adjusting the complexity level 

of the solution. There are two kinds of norms in 

Equation 6: the first l2 norm gives penalty on the 

difference between the template and the candidates; and 

the second norm considers the coefficients of the sum of 

absolute values of ε by a l1 norm. The coefficients 

solved in Equation 6 are l1-regularized least squares 

solutions. The l1-regularized least squares solutions tend 

to be sparse because the compressibility in the transform 

domain in solving the problem. The solution become 

sparser if we set λ to a large value. However, if λ is too 

large, the solution obtained in Equation 6 is not 

meaningful. λ also influences the runtime of the 

minimization process. In this work, we set λ according to 

the suggestions given in (Koh et al., 2007b). For each 

minimization, we set λ to 0.1λmax the number λmax gives 

us an upper bound on the useful range of the 

regularization parameter λ, which can computed as 

described in Koh et al. (2007b). 

Efficient solution to l1 minimization has been 

proposed in Koh et al. (2007a; 2007b). Despite from 

these development, it is still computationally expensive 

for our tracking tasks. We will introduce adaptive 

appearance modeling to constrain the cost in section 3.4. 

Generative l1 minimization 

We can find target candidates by directly comparing 
the pixel difference between a target template and its 
candidates in images. Unfortunately, such kind of 
matching is very sensitive to noise. In this work, we 
search for sparse coefficients for appearance recovery. 
The residual errors are defined as the difference between 
the templates and target candidates. 

The minimization in Equation 6 can be performed 

using Forward Stage-wise Linear Regression (FSLR) 

method Hastie et al. (2003). However, this approach is 

time consuming. Many alternatives have been proposed 

to speed up the minimization process. We solve the l1 

minimization problem using the truncated Newton 

interior-point method Tenenbaum et al. (2000). 

Logarithmic barriers are defined for bound constraints in 

this method. In the iterative solving process, search 

directions are computed using preconditioned conjugate 

gradients Tenenbaum et al. (2000). 

Matching Probability in Generative Reconstruction 

We compute matching probability of a target 

candidate based on the reconstruction results: 
 

exp (M )
( | ) t

t t

y
p y x

Z

τ α −
=  (7) 

 

where, α is calculated in the l1 minimization, t is a 

negative coefficient restricting the exponential function; 

Z is a normalization factor. 
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Adaptive Appearance Modeling in a Discriminative 

Way 

We represent target candidates using a set of 

particles. We compute the reconstruction errors for 

every target candidates if no other information is 

taken into consideration. Since the number of the 

particle set can be large, the computational cost 

related to candidate matching using l1 minimization is 

rather high. We would like to alleviate this problem 

by constraining particle filtering based on foreground 

likelihood images produced by appearance model 

back-projection. 

Wang and Yagi (2008) proposed a tracking algorithm 

by selecting reliable features from color and shape-

texture cues. The selection is performed according to 

feature descriptive ability. The target model is updated 

based on the similarity between the first and most recent 

models. Thanks to the multi-feature selection 

mechanism, the target can be characterized effectively. 

We adopt the feature selection approach in Wang and 

Yagi (2008) to incorporate appearance guidance in our 

particle filtering framework. 

We compute weighted histogram for multiple cues. 

Then, log-likelihood ratio images are generated based 

on these histograms, which is described in Equation 8. 

We measure the descriptive ability of a certain cue 

according to its variance ratio. The discriminative 

features are selected for foreground likelihood 

computation. Foreground and background histograms 

are denoted by ξF and ξB, respectively. Foreground 

likelihood ratios can be generated by back-projecting 

the histograms onto the input image Wang and Yagi 

(2008): 

( )

( )

( )

max( , )
max( 1,min(1,log ))

max( , )

bin

Fbin

bin

B

η

η

ξ σ
η

ξ σ
= −  (8) 

 

where, ση is a very small number. 

Log likelihood images are helpful for reducing the 

searching space of particle filtering. We show a 

foreground likelihood image in Fig. 1. The 

distribution of target candidates is closely related the 

likelihood ratios in a certain region. The samples 

outside the foreground likelihood distributions are not 

helpful in particle filtering. We do not need to 

consider samples in such regions. 

We calculate the sum of the likelihood ratios for each 

candidate region 
i

i R

Sη η
∈

=∑ . We sort all the likelihood 

ratio sums in all the candidate regions. The sum 

calculation and sorting are very efficient. 

Candidate matching can be performed by measuring 

l2 norm of the difference between the templates and 

candidates. l2 norm computation is also more efficient 

than l1 minimization. The computation cost of particle 

filtering can be reduced by applying l2 norm 

computation. l1 minimization is bounded by l2 norm 

computation Mei et al. (2011): 

 
2

2 1
M Mt ta y a y− ≥ −

⌢
 (6) 

 

where, 
2

2
Ma a y= −

⌢
. 

Although l2 norm is helpful for restricting l1 

minimization cost, it is still less efficient than the 

foreground likelihood checking strategy. Computational 

cost analysis will be given in Section 4.2. 

 

 
 (a) (b) 

 

Fig. 1. (a) Target tracking result using the VRMS method (Collins et al. (2005)). (b) Foreground likelihood image calculated using 

the method in Wang and Yagi (2008) 
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Experimental Results 

We implemented the proposed tracking method and 

compare it with a few good trackers. We compare the 

proposed tracker with a sparse minimization based 

tracker, the structural local sparse appearance model-

based tracker Jia et al. (2012) (Struct). This tracker bears 

certain similarity with ours in the aspect of the sparse 

representation. We also compare with the visual tracking 

decomposition tracker Kwon and Lee (2010) (VDT). 

This  tracker  is  good    at   dealing   with  occlusions. 

Other baseline trackers used in the experiments include 

the Variance Ratio Mean-Shift tracker (VRMS) Collins 

et al. (2005), which is an extension of the mean-shift 

algorithm Comaniciu et al. (2003); the Incremental 

Visual Tracking algorithm (IVT), which compute an 

incremental Principle Component Analysis for target 

modeling; and the fragment-based tracking method 

Adam et al. (2006) (Frag), which utilizes a voting 

technique in the localization process. 

We have tested the trackers on many image sequences. 

We evaluate the trackers on challenging sequences. We 

can find typical difficulties for visual tracking in these 

sequences: Cluttered background, heavy occlusions, shape 

deformations and background motion. We also include 1 

sequence which seems to be simple. Actually, complicated 

trackers can fail on simple sequences, which is out of our 

expectation. We have tested the trackers for many 

sequences. Here we show 6 typical sequences to 

demonstrate the performance of our algorithm. 

In the first sequence, a bird is tracked in the 

images with shape and appearance variations. The 

bird in this sequence changes its pose in a large 

degree. In addition, it is occluded by other objects in 

some frames. The Struct tracker give very good 

performance in this sequence. Our results are a little 

better than the Struct tracker anyway in this sequence. 

The Frag tracker's performance is also reasonable 

although it is a relatively simple tracker. 

We track a vehicle in the second sequence (Fig. 3a) 

the vehicle has a distinctive appearance. The difficulty of 

this sequence is that the scale of the vehicle always 

changes. It is small at the beginning of the tracking and 

becomes large after a few frames and then becomes 

small again. The Struct tracker become unstable from 

frame   420   because   of    the   viewpoint  variations. It 

fails at frame 907 due to scale variations. The VRMS 

tracker does not give good estimation on the scale. The 

IVT tracker is better in this aspect. However, both of 

VRMS and IVT lost tracking after a few frames. Although 

the IVT tracker found the vehicle again by chance in 

frame 600, it lost tracking again soon. The proposed 

tracker follows the position and scale of the vehicle well. 

A face is tracked in the third sequence (Fig. 3b). The 

face is occluded by a toy during the tracking. Since the 

VRMS tracker is not good in dealing with occlusion, the 

positions of the face provided by the VRMS deviate 

from the true positions. The IVT tracker is better in 

handling occlusions. Both the IVT and our trackers give 

good estimations under heavy occlusions. The VDT 

tracker successfully deals with the heavy occlusions in 

many frames. It fails at the end of the sequence due to 

the fast motion of the face. 

We track another face in the fourth sequence. The 

face moves forward and backward during the tracking. 

The l1, Struct, VTD, IVT trackers can handle the pose 

and scale variations before frame 400. The MIL tracker 

fails due to another face's distraction. The VRMS tracker 

cannot follow the face after a few frames. Although the 

IVT tracker follows the face in some frames, its results 

are not as precise as those given by the proposed tracker. 

We track a basketball player in the fifth sequence. 

The player has large pose variations. In addition, there 

are sudden illumination changes in the sequence. The 

VDT tracker and our tracker give good performance 

in this sequence. 

We track a woman in the sixth sequence. The woman 

is occluded by several cars in the sequence. The VDT 

and Struct trackers failed during the tracking due to the 

heavy occlusions. 

Qualitative Comparison 

We measure the tracking accuracy of the trackers. 

We compute the error based on the L2 distance between 

the centers of tracking result bounding boxes and the 

centers of ground truth bounding boxes. The evaluation 

results are shown in Table 1. The proposed tracker gives 

low errors in a few sequences. However, it is not always 

the most accurate tracker. For example, the tracking 

results of GirlFace sequence are worse than those of the 

Struct tracker. In other sequences, our tracker gives the 

best tracking accuracy. The VRMS usually gives the 

worst results compared with other trackers. However, it 

is much more efficient than other trackers. 

 

 
 

Fig. 2. Computational cost comparison of different approaches. 

The vertical scale is the log10 time of the running time 

of each algorithm 
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Fig. 3. Tracking results qualitative comparison on difference sequences 

 
Table 1. The average tracking errors of the trackers 

Tracker IVT Frag VRMS Struct VDT Ours 

Aerial 36 9 9 11 8 4.2 

BasketBall 3 12 26 17 11 7 

GirlFace 16 23 16 6 11 7 

Woman 123 107 136 9 192 6 

Bird 212 18 128 15 131 12 

ManFace 32 11 25 7 10 6 

 
Table 2. Tracking time comparison (frames/second) 

Tracker IVT Frag VRMS Struct VDT Ours 

Aerial 11.8 2.4 45.6 3.5 0.3 12.8 

BasketBall 10.7 2.5 26.1 3.6 0.3 12.3 

GirlFace 9.8 2.7 42.3 5.0 1.9 11.7 

Woman 10.9 2.8 38.6 3.6 0.7 12.5 

Bird 8.9 2.6 26.1 3.7 0.7 10.6 

ManFace 8.7 2.4 24.3 4.2 0.3 10.6 
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Computational Complexity Analysis 

We test the likelihood ratios for each target 

candidates. The computational cost of our approach only 

depends on the size of the candidate regions d and the 

number of samples J in particle filtering. The cost is 

linear to both of the factors, which is O(dJ). This 

computation is extremely fast in practice. 

The minimization using l2 norm is simpler than using 

l1 minimization. However, it is more expensive than our 

foreground likelihood test. Although the complexity of 

l2 norm computation is also O(dJ), it takes more flops in 

practice. The l2 computation is more involved than our 

foreground likelihood ratio test. 

The l1 minimization problem can be solved by a 

truncated Newton Interior-point method Koh et al. 

(2007a; 2007b). In the iterative computation, the 

direction searching is performed by using a 

preconditioned conjugate gradients method. The 

computational cost of this method depends on the 

iteration number required by the truncated Newton 

interior-point method. It takes a few hundred iterations 

to reach the solution. The complexity of the 

preconditioned conjugate gradients method is O(d
2
+dJ), 

which is much more expensive than our foreground 

likelihood test. 

The number of target templates usually is less than 

the dimensionality of the templates. Therefore, the size 

of the templates has a large effect on the computational 

cost of l1 minimization. In Fig. 2, we compare the 

computational cost of foreground likelihood checking, l2 

norm computation and l1 minimization. We use 600 

samples in our particle filtering process. The 

computational costs of different template sizes are shown 

for all the three approaches. Since the difference between 

the methods is rather large, we demonstrate the results in 

log domain. Obviously, all computational costs increase 

with larger template size. Foreground likelihood 

checking is the most efficient method compared with the 

other two methods and the l2 norm computation takes 

less time than the l1 minimization. 

We also perform quantitative efficiency 

comparison of the trackers. Tracking time is indicated 

by frames per second. We run all the trackers on a 

computer with Windows 8 system, i5 CPU and 4G 

RAM. We mark the tracker with the best tracking 

efficiency with bold fonts and mark the second best 

tracker using italic fonts. It is clear that the VRMS 

tracker is far more efficient than all the other trackers. 

The efficiency of this appearance based mean-shift 

tracker indicates the importance of overall appearance 

modeling. Our tracker is the second best in all the 

sequences. The computational cost of our tracker is 

much more expensive than that of the VRMS. 

However, it provides much better performance than 

the VRMS. It is more efficient than other trackers 

(except the VRMS). 

Conclusion 

We estimate target likelihood image based on 

adaptive appearance modeling. We represent target 

motion using less particles with the support from target 

likelihood image. The particle filtering in this framework 

is computationally easier compared with matching all the 

target candidates using expensive minimization process. 

The proposed method can deal with target appearance and 

scale variations. It is also good at handling occlusions. 
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