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Introduction

In Cameroon, the Cameroon National Electricity
Company (ENEO) is the only electricity company with
nearly one million subscribers. To this figure, it is now
necessary to add people and groups who clandestinely
connect to the low voltage network or who defraud by
illegally handling the meters. The number of these
clients of a different kind remains uncertain and difficult
to define in an urban and peri-urban. They are
characterized by anarchy and spontaneous habitat, a
place of preference for wild and clandestine electrical
connections. The losses are amount to several billions of
CFA francs each year and represent a real technical and
economic headache for ENEO distribution department.
According to information gathered from the Inter-
employer grouping of Cameroon, (GICAM): "The
demand of electric power of the companies grows of 8%
each year while the supply progresses barely of 2%.
Since 2003, the difficulties of supplying electricity have
caused losses estimated at more than 60 billion FCFA
for ENEO, more than one point of the annual growth rate
of the country". For this proposal, Cameroon's economic
program for 2020 is to increase energy production from
1337 MW currently to 3000 MW. The objective is not
only to fill the national deficit but also to export
electricity. In order to absorb energy deficit, Cameroon
is engaged in several projects such as:

e The Dibamba Power Developer Company,
responsible for the production of electricity from a
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thermal power plant with a capacity of 86
Megawatts

e  Construction of the reservoir dam of Lom Pangar in
the Department of Lom and Djerem with a
production capacity of 30 Megawatts

e Construction of  Memve'ele Hydroelectric
Generating Station on the Ntem in the Southern
Region with a capacity of 201 Megawatts

e  Construction of the Mekin Hydroelectric Dam with
a production capacity of 15 Megawatts

e  Construction of a gas-fired power plant in Kribi in
the Ocean department, with a capacity of 216
Megawatts extensible to 300 Megawatts

e The commissioning of the emergency thermal
program through the installation of thermal power
stations in the cities of Bamenda, Ebolowa,
Mbalmayo and Yaoundé. These plants operate with
light fuel oil and have a total capacity of 100 MW,
i.e., 20 MW in Bamenda, 10 MW in Mbalmayo, 10
MW in Ebolowa and 60 MW in Yaoundé (Ahala)

The research question of this study is, how can we
improve the supply, availability and quality of
electricity in Cameroon by reducing non-technical
losses in the existing distribution network? And the
Objective of the research to provide to the national
electricity companies a reliable tool based on the use
of Support Vector Machines (SVM) for the search
non-technical losses in the distribution network, in
order to eradicate fraud Distribution. Customer
consumption patterns are extracted using data mining
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techniques. Based on the assumption that load profiles
contain abnormalities when a fraud activity occurs, SVM
classifies load profiles of customers for detection of fraud
suspects. This research concentrates only on scenarios
where abnormal changes appear in load profiles,
indicating fraudulent activities due to the unavailability of
a clear database at ENEO CAMREOON for the others
factors contributing to NTL activities.

Methodology
Support Vector Machine

Support Vector Machines are often translated as
Large Marge separator (SVM) which is a class of
learning algorithms defined for discrimination, that is
to say provide variable initially binary (Nagi et al.,
2008a). They are based on the search for the optimal
hyper plane margin, when possible, class or correctly
separates the data while being far away as possible
from all observations. The principle is to find a
classifier, or a discrimination function, the
generalization ability (quality forecast) is the largest
possible (Nagi et al., 2008b). That is to say, to bring the
issue of discrimination in the linear, the search for an
optimal hyper plane and two ideas or tricks achieve this
objective (Nagi et al., 2010a; 2010b):

e Define the hyper plane as a solution of a problem of
constrained optimization, whose objective function
is not expressed only by using scalar products
between vectors

e A research nonlinear dividing surface is obtained by
the introduction of a kernel function in the scalar
product

As in any learning situation, a variable Y is
considered to predict but to simplify this basic
introduction, we supposed it dichotomous with values

{-1,1}:

Let X=X, .., X"

(1)

Explanatory or predictor variables and ¢(x) a model
for Y function where:

1
x:{x,...,x”}e R?

2

Generally we can simply consider the variable {X}
with values in a set.
We notice:

z:{(xl_yl), s (xn’yn) } 3)

33

A statistical sample size of n and law with unknown.
The objective is to build an estimation ¢ of ¢

function of X in {-1,1} so that the probability P(KX) #
Y) is supposed to be minimum.

The problem is like the search for a boundary
decision in space F with value in X.

Conventionally, a compromise must be found
between the complexities of the border, which can also
be expressed as its ability to spray a cloud of points. So
the model fit capacity and widespread anticipation of the
qualities of the model (Fourie and Calmeyer, 2004).

This is equivalent to solve a problem of classification
or separation as follows in Fig. 1.

This case is defined by using the scalar product of H
a hyper plane by its equation:
f(x)=<w,x>+b @)
where, w is orthogonal vector to the plane, x point to
predict. This is well positioned if and only if:

¥(x)=0 (5)
A plan (w;b) is a separator if:
vif(x)21 Vie{l, .,n} (6)

and the distance from a point x to the plane (w; b) is
define by:

(w.x)+8] | £()

R Y

(7

Search the maximum margin separator plane
involved in solving the quadratic problem constrained
below:

®)

minw%Hsz avec Vi, y, (w,x) +5) 21

The dual problem is achieved by introducing
Lagrange multipliers o and the solution is provided by a
point (w';b";&") of the Lagrangian:

L(w,b,a) =%HWH§ -ia[ [y[(<w,x>+b)—1] 9)

The cancellation condition of partial derivatives of
the Lagrangian allows writing:

w*:zn:a:yixi et Zn:a:yi:O (10)
i=1 i=1
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Fig. 2. Flowchart of the proposed framework for detection of NTL activities
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These equality constraints allow us to express the
following dual formula:

n 1 n
W(a)zzai_Ezaiajyiyj<xi7yj> (11)
i=1

ij=1

0<a, (12)

Implementation
Organization of the Method

The research methodology framework proposed in
order to develop our intelligent fraud detection system
for detection, identification and prediction of NTLs
activities is shown in Fig. 2.

Data Acquisition

Electricity customer consumption data was
obtained from Cameroon National -electricity
Company (ENEO) Billing system. The data base
consisted of 62 000 customers for a period of 12
months (From January to December 2014) as is shown
in Fig. 3 for the central region commercial unit.

But others factors contributing to NTL activities
which we did not use in this work due to the
unavailability of a clear database at ENEO
CAMREOON such as:

e  Unauthorized line tapping; tampering with meters so
that meters record lower rates of consumption

e  Unauthorized line diversions; stealing by bypassing
meters or otherwise making illegal connections

e Inadequacies and inaccuracies of meter reading

Table 1. Among factors of NTLs

e Inaccurate customer electricity billing

e  Poor revenue collection techniques

e Arranging billing irregularities with the help of
internal employees, such as making out lower bills
and adjusting decimal point position on bills

e Non-payment of electricity bills

e Losses due to faulty meters and equipment

e Loss or damage of equipment/hardware that is,
protective equipment, cables, conductors,
switchgear etc

e Inaccurate estimation of non-metered supplies that is

public lightning, agricultural consumption, rail
traction etc
e In efficiency of business and technology

management systems

Although some electrical power loss is inevitable,
steps can be taken to ensure that it is minimized. Several
measures have been applied to this end, including those
based on technology and those that rely on human effort
and ingenuity. Among the factors contributing to NTL
activities, NTLs based on the components identified are
listed in Table 1.

In the majority of factors contributing to NTL
activities as indicated in Table 1, electricity customers
intentionally avoid paying their bills or are involved in
pilferage, theft and unauthorized use. Therefore, the
intention of the present study is to focus on detecting and
identifying NTL activities in the distribution network
where deviations in customer behavior exist. That why,
in this research, the approach is a method of data mining
using support vector’s machine in orders to extract
patterns of customer behavior from historical
consumption data base in a load profile.

Components Power utilities Electricity customers
Meter Inadequacies and inaccuracies in meter reading. Unauthorized line tapping and diversion.
Losses due to faulty meters and equipment. Stealing by bypassing meters or otherwise making
illegal connections.
Inadequate or faulty metering. Tampering with meters to ensure meters record
lower rates of consumption.
Loss and damage of equipment/hardware, Faulty meters not reported
that is, protective equipment, cables,
conductors, switchgear etc.
Bills Inaccurate customer electricity billing. Non-payment of electricity bills.

Inefficiency of business and
Technology management system.

Arranging billing irregularities with the help

of internal employees.
Poor revenue collection techniques.

Making out lower bills, adjusting the
decimal point position on bills.

Arranging billing irregularities with the help of
internal employees.
Arranging false readings by bribing meter readers.

Inaccurate estimation of non-metered supplies, that
is, public lighting, agricultural consumption, rail
traction etc.

Ignoring to pay bills
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Customer Filtering, Selection and Extraction

The raw data obtained from Cameroon National
electricity Company (ENEO) billing system was filtered
for extraction of customer load profiles and features.
Hence, data mining techniques using data base querying
were applied for:

0.4315704

0.486836

Fig. 4. Data normalization

Removing repeating customers in monthly data
Removing customers having no consumption (0

kWh) throughout the entire 12 month period

Removing customers who are not present within the
entire 12 month period that is, removing new
customers registered after the first month

36

Data Normalization

Nindex =

X, — mln(xm )

suspect

The load data needs to be represented using a
normalized scale for the SVM classifier. Therefore, the
monthly average kWh consumption feature data is
normalized as follows:

max (xm ) —min (xm )

where, x,, represents the current kWh consumption of the
customer, min(x,,) and max(x,) represent the minimum
and maximum values in the 12 months consumption
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feature set as is shown in Fig. 4. Then typical load
profiles of customers were then established, with each
load profile being represented by the 12 normalized
monthly average kWh consumption features.

Feature Adjustment

All 62 000 customers were given a label, where the
labels are represented by integer values; (« 1 » for
suspects Customer’s and «2» For normal
customer’s). Normalized feature values with labels are
represented as a LIBSVM feature file, denoted by the
matrix W, in the form:

1 - l:Nindex(ll) 2:Nindex(12) M:Nindex(lM)

l:Nindex(nl) l:Nindex(nl) l:Nindex(nM)

2 - l:Nindex(ml) 1:Nindex(m1) l:Nindex(nM)

where, « m » Is total number of customer and « M » Is
the total number of months.

Results and Discussion

Results

Graphics Interface

The graphic interface of the fraud detection system
here in Fig. 5, (that is, support tool to decision making
in the fight against non-technical losses in the

n DETECTION DE FRAUDES CLIENTS

distribution network: Case of ENEO Cameroon) was
developed and designed simple for the detection and
identification of suspicious customers (customers list
to check); the different buttons and their functionality
are presented Table 2.

Data Base Selection

To launch the software, a given excel format based
file must be selected. To select a data file, users simply
click on the button "Import Customer Data", it opens a
file browser in the File Browser dialog box, excel file is
then selected as indicated in Fig. 6. Loading of customer
data base is indicated in Fig. 7.

Implementation of Detection

Once the customer data file is selected, by clicking
start, the software will run in trade detection indicated in
Fig. 8. It applies all the procedures mentioned in the
previous listed.

Table 2. Presentation of buttons and their functionality

Botton Function

Browser To choose Data Base

Start To start classification

Unclassified To obtain unclassified customer’s list
Suspects list To obtain suspects customer’s list
Normal list To obtain normal customer’s list

Help Provide help for the use of the software
Quit To exit

— Control pans!

S File location of customer's datas

Electricity fraud detection using support

vector machine

— Metifications

Browser

Total customers o
clazsified

rport Client

Prediction

Unclassified

Suspects list

Hormals list

Help

Maormal Customers : o

Suspect
customers

Unclazsified o

Purcertages

5 o

M a

| Execution Time : o

Fig. 5. Principal screen of the software
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Fig. 6. Customer’s data file selection

Bl DETECTION DE FRAUDES CLIENTS - | = =

Electricity fraud detection using support

vector machine

| IO sershJunionDeskionp\B test xls:

i =k -

T — Motifications
| Browser

Total customers o
classified

chargement du moteur de classification Prediction

Mormal Customers : o

Suspect
customers :

Unclassified : o

Purcertage

= o

] o

| Execution Time : o

= z — |

Fig. 7. Loading of customer data base

)] DETECTION DE FRAUDES CLIENTS o7 i

Electricity fraud detection using support vector

machine
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[ [ - —_— - customers :
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| Quit 5
i
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Fig. 8. Launching of the SVM classification
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Electricity fraud detection using support vector
I machine
& Control panel————4- V] 0.
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- 1| |nal - Normalised - GROS_CONSO_DCUY xisx Browser A
! 5 ) Total customers B1782
Cies
Eapoil | Client [ Prediction
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S Client7 Suspect I 8.5%
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o | leemg MNormal "
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0 c 4
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Fig. 9. Display of customers list with the prediction of their behaviors

MNormal customers

Client's names

Moms des clients

10 Client14

L Client15

12 = =

12 Client17

1.4 Pl PP S, B o)
-

Consumption index

Jan. Feb_ Mar. Apr. MayJune Juby Aug Sept Oct. Mow.

Fig. 10. Curve of suspected customers

Detection is complete once the display of trial
appears in the customers list, with their status indicated
in Fig. 9.

Display of Customer Load Profile

Once the software has posted the list of clients with
their status, it is possible for us to visualize their load
profile. Simply right click on the customer whose profile
you want to see indicated in Fig. 10 to 12 respectively
suspect, normal and unclassified customers.
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Discussion

The training accuracy of the SVC model is estimated
by tuning the SVC kernel parameter and the error
penalty parameter, C. In this study, the RBF kernel is
used, hence, the parameter gamma which controls the
width of the Gaussian is to be fine-tuned.

Experimentally, by iterating different parameter
combinations for our model we firstly obtained the
accuracy of 75, 9% as is shown in Fig. 13.
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Table 3. Result of the literature

Authors Title Accuracy
J. Nagi and Al NTL Detection of Electricity Theft and Abnormalities for Large 55%
Power Consumers in TNB Malaysia Conference and Exposition,
Seattle, Washington, United States, Mar.15-18, 2009, pp. 1-10
V. Figueiredo and Al An Electric Energy Consumer Characterization Framework Based 81% working days

on Data Mining Techniques, IEEE TRANSACTIONS ON POWER

74% for weekend

SYSTEMS, VOL. 20, NO. 2, MAY 2005

Breno C and Al

Fraud detection in electric power distribution networks using an ANN-

87.17%,

based knowledge-discovery process, International Journal of Artificial
Intelligence and Applications (IJAIA), Vol. 4, No. 6, November 2013

J. Nagi and Al
Vector Machines

Detection of Abnormalities and Electricity Theft using Genetic Support

81.63%

Table 4. Data used for the construction of the model

DATA Learning Test
Learning 198 54
Test 59 20

To increase this percentage of success, we use the
"search grid" to optimize the kernel parameters. The best
results were obtained for the optimal parameters C = 8
ET y = 0.0078, wl = 416, 66; w2 = 131, 57 and we
obtained the accuracy of 83% as is shown in Fig. 14

This result is in agreement with those obtained in
literature as indicated in Table 3.

In order to apply a supervised learning technique, we
chose a data base of 331 customers. This data base was
used to establish the SVM classification model through
training and testing as shown in Table 4.

We selected 61 782 customers data to test our model
and we obtained 56 501 normal customers, 5 281 suspect
customers and 8 unclassified customers.

Conclusion

NTLs on the Cameroonian transmission and
distribution network are about 30-40% of electricity
production, causing enormous losses estimated at several
billion FCFA per year to the State. Hence the importance
of finding effective solutions to these losses. The
purpose of this work was to develop a tool for the fraud
detection for Cameroon National Electricity Company
(ENEO). Firstly we present the context and the problems
of our study in the introduction. Secondly, we present
the methodology of support vector machines which
consisted in data preprocessing, development of a model
for classification, parameter optimization and testing and
validation of SVM model.

For the implementation of this work we use:

e A database of nearly 62,000 customers for ENEO
central region business unit

e In order to apply a supervised learning technique,
we chose a data base of 331 customers and this data
base was used to establish the SVM classification
model through training and testing
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e We selected 61 782 customers in the data base to
test our model

e Despite the good performance achieved, validating
the proposed system required the comparison of
results of the SVC protocol with practical cases
detected by ENEO

The development prospects are many, including:

e  Use of Genetic Algorithms for a "fine tuning" of SVM
parameters such as: The penalty coefficient C and y

e The fraud detection system requires the use of
multiple data from different regions for learning and
testing. That is to say customer data already
classified: Normal or suspect

e The operation and contribution of experience ENEO
agents for the development of the final decision
algorithm

e To finish, we believe that fraud detection system
available offline can be operated at commercial
agencies ENEO to create an optimal system of
customer management

e In addition, the use of the proposed system will
allow ENEO improve its management of NTL and
revenue protection
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