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Abstract: The discreet-time (map-based) approach to modeling nonlinear 

dynamics of spiking and spiking-bursting activity of neurons has 

demonstrated its very high efficiency in simulations of neuro-biologically 

realistic behavior both in large-scale network models for brain activity 

studies and in real-time operation of Central Pattern Generator network 

models for biomimetic robotics. This paper studies the next step in 

improving the model computational efficiency that includes quantization of 

model variables and makes the network models suitable for embedded 

solutions. We modify a map-based neuron model to enable simulations 

using only integer arithmetic and demonstrate a significant reduction of 

computation time in an embedded system using readily available, 

inexpensive ARM Cortex L4 microprocessors. 
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Introduction 

The functionality of a brain and other neuronal 

systems of living organisms rely on the synaptic 

coupling organization among populations of neurons 

forming a function specific network of neurons with 

proper pathways of electrical activity in forms of short 

electrical spikes known as action potentials. The spikes 

generated in a neuron propagate along its axon towards 

synaptic inputs of the other neurons making the network 

achieve its functional goals. 
Dynamical properties of spiking electrical activity 

of neurons, conditioned by the intrinsic properties of 

neurons or evoked in the response to external stimuli 

or other synaptic inputs, provide critical elements in 

shaping proper neuronal activity and, therefore, the 

functionality of neurobiological networks. This 

spiking activity propagating along the synaptic 

pathways is a key element of information processing 

in the brain, classification of sensory inputs, decision-

making and motor control (Shepherd, 2004). Studies 

of the mechanisms behind the formation of network 

spatio-temporal patterns of spiking activity rely on 

neuronal models that can capture essential 

characteristics of spiking activity for specific types of 

neurons (Dayan and Abbott, 2001). 

Numerous recent studies focus on the development of 

artificial (engineering) systems that use elements of 

spiking activity to create a network that could perform 

some elements of brain functionality, sensory 

processing, motor control (Dura-Bernal et al., 2014) and 

other functions. They mainly rely on the development 

and implementation of a spiking neuron model and 

synapses that replicate the dynamics of neurons as close 

to real biological neurons as possible that fits in 

computational hardware. Two main directions of these 

studies are the use of analog computing simulating the 

network with specially designed VLSI integrated circuits 

(Indiveri et al., 2006; Silver et al., 2007) and numerical 

simulation of the model with specially designed 

microchips, GPUs FPGAs or DSPs (Yavuz et al., 2016; 

Zbrzeski et al., 2016; Cheung et al., 2016; Brette et al., 

2007 and references therein). 

This paper focuses on the design, implementation 

and validation of a neuronal model that could be used 

in real-time simulations of relatively large networks 

using off-the-shelf 32-bit microprocessors. We base our 

design on the map-based approach to modeling spiking 
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neuronal activity in discrete times. Such models are 

very computationally efficient, realistically replicate 

the dynamics of spiking activity and have been 

successfully used in many studies of neuronal activity 

in large-scale cortical networks, olfactory systems and 

Central Pattern Generator (CPG) networks. The map-

based model of swimming motor control of the CPG 

network of a Lamprey was implemented using a TI 

DSP and operated in real-time on a Lamprey-based 

robot (Westphal et al., 2011). 

Map-Based Modeling of Neuronal Activity 

Consider a model of spiking and spiking-bursting 

activity designed in the form of a two-dimensional map 

and generating neuronal activity states at discrete 

moments of time. This model is very efficient in 

numerical simulation since its time step of consecutive 

iterations can be made to be on the order of spike 

duration and the dynamics of the spiking does not 

depend on the step size, which is usually fixed at 0.5 or 

1.0 ms, depending on the network model. The equation 

of such a map can be written in the form proposed in 

(Rulkov, 2002): 

 

  (1) 

 

where, variables xn and yn are fast and slow variables 

describing the state of the neuron at discrete moments 

of time indicated by n. βn and σn are input variables 

that model synaptic inputs and injected currents and 

other stimuli. The intrinsic dynamics of the map, 

Equation 1 is controlled by parameters µ, σ and α. The 

spiking in the model is due to the specific shape of the 

nonlinear function which can be written in the 

following form: 
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  (2) 

 

Note, Equation 2 slightly differs from the function 

proposed originally in (Rulkov, 2002). As shown in 

(Komarov et al., 2016) it is more efficient for large-scale 

network simulations, simplifies the equation and 

improves the spike shape consistency. 

Nonlinear Map of Spiking 

Spike generation in model Equation 1 is provided by 

the nonlinear dynamics of fast variable xn and can be 

considered independently from the rest of the model 

using the following one-dimensional map: 

 

( )1 ,n nx f x uα+ =   (3) 

 

where, u is treated as a control parameter. Figure 1 

illustrates the mechanism of spike formation and 

positions of stable and unstable fixed points xsp and xup, 

respectively, indicated by green and blue filled dots. 

By definition, fixed points, in a one-dimensional 

map, are located at the intersection of the first segment 

of the function Equation 2 with the diagonal (xn+1 = xn), 

Fig. 1. Therefore, when the parameter u increases the 

fixed points move closer together, merge and then 

disappear when u crosses bifurcation value 1 2
cr

u α= − . 

This value is found using the fixed point equation x
*
 = 

α(1-x
*
)
−1

 + u, when it has a single solution (merged 

solution) in domain x
*
 < -0.5. Such bifurcation scenario 

of the fast subsystem fixed points is a key element of 

many simple models of spiking neurons, such as 

nonlinear integrate-and-fire and the Izhikevich model. 

It is important for our study to emphasize that near the 

bifurcation state the dynamics of the system is very 

sensitive to the resolution set for variable xn because 

changes of the variable in that region of phase space 

can be arbitrarily small. Simulations with insufficient 

resolution can treat such small changes as zero and 

artificially stall the trajectory. 

The one-dimensional map, Equation 3, demonstrates 

only the solutions in the form of steady state or tonic 

spiking and are typically used within the range of 

parameters 3 < α < 6 and ucr–0.3 < u < ucr+0.2. This is 

sufficient to mimic the dynamics of active sodium (Na+) 

and potassium (K+) pumps in generating action 

potentials (spikes). To expand the dynamics of this 

model to describe behavior of various types of neurons 

the parameter u is substituted with a variable or a set of 

variables that capture dynamics of relatively slow ionic 

channels of the neuronal membrane. An example of 

such a model is Equation1, which has been used in 

many studies as a reduced model of a Regular Spiking 

Cell in a cortical network ( Bazhenov et al., 2008) and 

a Spiking-Bursting neuron in modeling CPG networks 

(Ayers and Rulkov, 2008). 

The detailed parametric analysis of nonlinear 

dynamics of Equation 1 with βn = 0 and σn = 0 can be 

found elsewhere (Shilnikov and Rulkov, 2003). An 

example of the spiking-bursting oscillations that 

occurs in the model without any external inputs is 

shown in Fig. 2. The phase portrait in Fig. 2a shows 

the trajectory (black dots connected with a line) and 

manifolds of slow motions (blue curves). The 

corresponding waveforms of fast xn and slow yn 

variables are shown in Fig. 2b and 2c. 
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Fig. 1. Shape of nonlinear function, Equation 2 and an example of typical trajectories of the map Equation 3 computed with α = 5.0 and 

u = -3.484 (Top panel). The waveforms of attracting sets in this case show spiking oscillations and fixed point xsp (Bottom Panel) 

 

 
 
Fig. 2. An example of intrinsic spiking-bursting activity modeled with Equation 1 with parameter values α = 5.0, µ  = 0.001, σ = -

0.04. Trajectory in the phase plane (a) and corresponding waveforms of xn (b) and yn (c) 
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The response dynamics of the model is controlled 

with two input variables βn and σn. The use of two input 

variables significantly expands the possibilities in 

shaping the desired response behavior of the models 

without adding new dynamical variables (Rulkov and 

Bazhenov, 2008). 

Modeling of Response Spiking Behavior 

In an experimental study, the type of the measured 

neuron is usually identified by analyzing its response 

characteristics to an electrical stimulus, such as a 

rectangular pulse of current, injected into the neuron 

through a microelectrode. In the model Equation 1 any 

such received stimulus is described by input variables βn 

and σn, which can written as a sum of all inputs: 

 

,D D syn syn

n n n

Nsyn

D D syn syn

n n n

Nsyn

I I

I I

β β β

σ σ σ

= +

= +

∑

∑
 

 

where, syn

nNsyn
I∑  is accumulated current corresponding to 

all synaptic inputs from the other neurons and Nsyn is the 

number of different types of synapses, D

n
I  is any stimuli 

directly injected in to the soma and β 
D
, β 

syn
, σ 

D
 and σ 

syn
 

are weights used to tune the model to produce a desired 

response behavior to fit a particular type of neuron. 

Examples of tuning this model to regular spiking 

cortical cells can be found in (Bazhenov et al., 2005; 

Rulkov and Bazhenov, 2008). Effects of spike 

deceleration and after-hyperpolarization rebound bursts 

controlled by parameters β 
D
 and σ 

D
 are shown in Fig. 3, 

where α = 3.9, µ = 0.001, σ = 0.0, β 
D
 = 0.2, σ 

D
 = 1.0 

and duration of the D

n
I pulse of 400 iterations that starts 

from initial state 0D

n
I = . 

The mechanism of shaping response behavior can 
be examined by following the map trajectory in the 
phase portraits, Fig. 3, where blue curves xsp (y) and xup 
(y) correspond to the stable and unstable manifolds of 
slow motions, respectively. The green fixed point 
indicates the baseline state of the neuron while the red 
fixed point corresponds to the perturbed state during 
pulse action. The red dotted arrow indicates fast motion 
at pulse onset and solid red–a slow drift during pulse 
action. Similar behavior at the termination of the pulse 
is indicated with green arrows. 

 

 
 
Fig. 3. Phase portraits (a), (b) and waveforms of spiking (c), (d) activity in response to the rectangular current pulse. The amplitude 

of D

n
I  pulses in both cases is 0.2. Responses to the case of positive (depolarizing) and negative (hyperpolarizing) pulses are 

shown in the left and right panels, respectively 
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Dynamics of Synaptic Inputs 

A spike generated by a neuron propagates towards 

the other neurons that receive and respond to it due to the 

synaptic connections located in the dendrite of the 

receiving (postsynaptic) neuron. There are electrical 

synapses, working as a conductor between neighboring 

neurons and chemical synapses where a spike 

propagating over an axon can reach dendrites of rather 

remote neurons forming a complex network structure. 

The dynamics and network organization of chemical 

synapses play a key role in the formation of 

neurobiological network functions. The basic elements 

of synapse dynamics is the modulation of membrane 

conductance at synapse contact evoked by a received 

presynaptic spike, which is characterized by elevation 

and relaxation times (Destexhe et al., 1994). There are 

known several distinct types of synapses characterized 

by different timing rates and conductance. We adopt a 

model that captures the response to all presynaptic spikes 

of the same type of synaptic connections in the post-

synaptic neuron using the following simple set of 

equations. The synaptic current syn

n
I computed using 

synapse conductance gn and variable xn of the 

postsynaptic neuron: 
 

( )syn post

n n n RPI g x x= −  

 
where, parameter xRP defines reverse potential and, 

therefore, the synapse type (excitatory or inhibitory). The 

temporal modulation of conductance is modeled as the 

combination of two exponential curves: 
 

Re lax Rise

n n n
g e e= −  

 
which can be computed using a linear high pass filter of 

all received spikes trains: 
 

( )

( )

1 _

1 _

1 ,

1

Rise syn Rise pre pre

n u n post n n

pre

Relax syn Relax pre pre

n d n post n n

pre

e e W S

e e W S

δ

δ

+

+

= − +

= − +

∑

∑
 (4) 

 

Here parameters 0 , 1syn syn

u d
δ δ< <  define the rise time 

and relaxation rate of the synapse, _

pre

post nW defines the 

weight of the synaptic strength between two neurons and 
pre

n
S  (the spike variable of the presynaptic neurons): 

 

1, if spike,

0, otherwise

pre

nS


= 


 

 

The weights _

pre

post nW  can change dynamically in time to 

model various types of synaptic plasticity. The models of 

synaptic plasticity are beyond of the scope of this paper. 

Quantization of Model for Integer Computation 

The main goal of this study is to modify the 

models of neurons and synapses, considered above, 

for computation using readily available inexpensive 

off-the-shelf hardware utilizing only integer 

operations and verify model performance. To allow 

such computation we need to rescale all variables and 

parameters to provide sufficient resolution that 

supports proper dynamical behavior of the model. The 

method of such scaling in the case of the Izhikevich 

model (Izhikevich, 2003) has been discussed in detail 

in (Jin et al., 2008). In our case the map-based model 

can be rewritten as: 

 

( )
( )

1

1

, ,n n n n Sh

n u x n n

x f x y y

y y p x

α β

µ σ σ

+

+

= + +

= − + − −
 (5) 

 

where all variables and parameters are scaled integer 

numbers: 
n x n

x p x= , n y n Shy p y y= − , Sh y Shy p y= , 

,= =x yp pσ σ µ µ , 
x

pα α= and the nonlinear function 

computed in integers as: 

 

( )

( )

, ,

, .

, ,
2

,
2

x x x
n

yx n

x
n nx x

nx x

p p p
u if x

pp x

p
f x p if x p

p if x p

α

α

µ


+ < −

−



= − ≤ <

− ≥

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  (6) 

 

The values of scaling parameters px and py are 

selected to be as large as possible assuming that all 

computation still fits within 32-bit operations of the 

microprocessor. Note that in Equation 4 we shifted slow 

variable, yn by the value 1 2
Sh cr

y u α= = − to remove its 

bias and enable a better scaling to deal with small 

parameter µ . The value ySh needs to be computed only at 

initialization time. 

The scaled input variables 
n

σ  and 
n
β  are computed 

directly from the scaled values of currents. In the case of 

synaptic currents, change to integer values is done using 

scaled weights _ _

pre pre

post n syn post nW p W=  and _ _

pre pre

post n syn post nW p W=  

in Equation 4 and representing timing parameters syn

u
δ  

and syn

d
δ  as fractions 0 1u

s

p

p
< <  and 0 1d

s

p

p
< < , 

respectively. Spike variable pre

n
S  takes only two integer 

values 0 or 1 and remains unchanged.  

The equation for synaptic timing exponents Equation 

4 can be rewritten in integer form as: 



Nikolai F. Rulkov et al. / American Journal of Engineering and Applied Sciences 2016, 9 (4): 973.984 

DOI: 10.3844/ajeassp.2016.973.984 

 

978 

1

1

/ ,

/

n

n

Rise Rise Rise pre pre

n n u n s npost
pre

Relax Relax Relax pre pre
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where, in the case, when the second and the third terms 

of the equation are zero and the values of the 

corresponding exponent is above zero (for 

example 0Rise

n
e > ), the new value of the exponent should 

be reduced by 1 (e.g., 
1

1Rise Rise

n n
e e+ = − ). This will make 

sure that both exponents do not stick at some positive 

value due to finite resolution and always relax down to 

zero when presynaptic spikes are absent. 

The scaled synaptic current syn

n
I  will be of the form 

( )syn post

n n n RPI g x x= − , where Relax Rise

n n n
g e e= − . Along with 

the other stimulus currents it forms the input variables of 

the model, Equation 5, as follows: 
 

,D D syn syn

n n n

D D syn syn

n n n

I I

I I

β β β

σ σ σ

= +

= +
 

 

where, parameters β 
D
, β 

syn
, σ 

D
 and σ 

syn
 are of the order 

of one or less and should be computed as a fraction. 

Experimental Studies of Model Performance 

To study the efficiency of models and demonstrate 

their computation in real time we built a simple 

computer using an STM32F427 microprocessor. We 

utilized an old empty Printed Circuit Board (PCB), 

which we had designed before for another project and  

rewired it to fit our study of neuron simulations. The 

populated STM computer PCB with an array of 4 12-bit 

DACs, serial DATA link and power control we built for 

this study is shown in Fig. 4. 

The STM32F427 was set to run with a 180MHz 

clock. It also supports 8 Analog Input Channels with 

internal 12-bit ADCs. The microprocessor workflow is 

designed to operate in one of two modes selected by a 

command switch in the code. In the first mode, we call it 

real-time continuous operation, the microprocessor runs 

all computations for each iteration within controlled 

500µs time intervals taking input signals from Analog 

Inputs and showing the neuronal responses on the 

Analog Outputs. In this case only 4 selected variables are 

available at the Analog Outputs. The other “two state” 

outputs, such as spikes, are made available at digital 

output pins that can be used to control external actuators, 

generate motor activity controlled by a simulated CPG 

model or other tasks. The use of serial DATA in this 

case is very limited. 

Figure 5 and 6 present such a study for three 

implementations of the same neuronal model using 

double Equation 1, int32_t Equation 5 and float Equation 

1 types for variables and parameters. 

We designated a Test Pin to measure time intervals 

used by the microprocessor to complete computation 

of the model codes, see Fig. 7. Since the computation 

can be affected by the implementation of the code for 

the model we present here the main elements of the 

test code for measuring timing for individual 

autonomous behavior of neurons. 

 

 
 

Fig. 4. Microprocessor PCB 
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Fig. 5. Experimental setup for real-time operation analysis 
 

 
 
Fig. 6. Waveforms of spiking-bursting neuronal activity computed using STM32F427 with map-model implemented with double (yellow), 

int32 (blue) and float (green) running in real-time mode and measured at the Analog Outputs, see elements of C code below. Spiking-

Bursting oscillations shown at resolution 100ms per Dev. (Left panel) and a fragment at 40ms per Dev. (Right panel) 
 

 
 
Fig. 7. Test Pin waveform indicating computation time (during High State, see Top Panel) used for one iteration of each model and a 

zoomed fragment showing the measurement of time for the case of the int32 model (Bottom panel) 
 
------------------Time Test Code #1-----------------------  
double alpha= 5.0, sigma= 0.08, mu= 0.0005; 
double xp1= -1, yp1= -3.4, x1= -1, y1= -3.4; 

int32_t scl32 = 16384, 
int32_t alpha2= alpha*scl32; 
int32_t mu2= scl32/2000; 
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int32_t sigma2= sigma*scl32; 
int32_t xp2= xp1*scl32; 
int32_t yp2= yp1*scl32; 
int32_t x2= x1*scl32; 
int32_t y2= y1*scl32; 
 
float alpha3= alpha, 
float sigma3= sigma; 
float mu3= mu; 
float xp3= xp1; 
float yp3= yp1; 
float x3= x1; 
float y3= y1; 
 
while(1) { // Run simulations in continuous loop 
 while(getTimer1Count() != 0); // wait for next interval 
 SET_D00; // drive Pin(D00) HIGH 
 dacWrite4(); //Send scaled data xp1,xp2,xp3 to DAC 
 CLR_D00; // drive Pin(D00) LOW 
 sampleADC(); // convert Analog Inputs to Data 
 SET_D00; //drive Pin(D00) HIGH 
 
// do one step computation with double 
if(xp1 <= -0.5) x1= alpha / (1.0 - xp1) + yp1; 
if(xp1 > -0.5) x1= 1.0; 
if(xp1 >= 1.0) x1= -1.0; 
y1= yp1 - mu * (xp1 + 1 - sigma); 
xp1= x1; 
yp1= y1; 
 
 CLR_D00;  // drive Pin(D00) LOW 
 delay(); 
 delay(); 
 SET_D00;  //drive Pin(D00) HIGH 
 
// do one step computation with int32 
if(xp2 <= -scl32/2) x2= alpha2*scl32 / (scl32 - xp2) + 
yp2; 
if(xp2 > -scl32/2) x2= scl32; 
if(xp2 >= scl32) x2= -scl32; 
y2= yp2 - mu2 * (xp2 + scl32 - sigma2)/scl32; 
xp2= x2; 
yp2= y2; 
 
 CLR_D00;  // drive Pin(D00) LOW 
 delay(); 
 delay(); 
 SET_D00;  //drive Pin(D00) HIGH 
// do one step computation with float 
if(xp3 <= -0.5) x3= alpha3 / (1.0 - xp3) + yp3; 
if(xp3 > -0.5) x3= 1.0; 
if(xp3 >= 1.0) x3= -1.0; 
y3= yp3 - mu3 * (xp3 + 1 - sigma3); 
xp3= x3; 
yp3= y3; 
 
 CLR_D00; // drive Pin(D00) LOW 
} //---------------------------------------------------------------- 
 

The results of this study of isolated models of 
neurons are summarized in Table 1. 

Table 1. Computation time of isolated map-model of neuron 

 Double  int32  Float  

Time [µS]  8.9  0.24  5.45  

 

The second mode of operation supports detailed 

analysis of neuronal and synaptic dynamics in the 

network operations and allows one to complete the 

simulation of each iteration of the network and save all 

states of the model in memory. This may exceed the 500 

µs allowed for each iteration in real-time simulation. 

After the completion of the specified number of 

iterations all data can be uploaded to the PC via the 

Serial Port for detailed analysis of network dynamics. 

Simulations of Map-Based Networks 

To deal with simulations of large networks with 

various topologies of synaptic coupling we developed 

code that can be compiled for simulations on a PC or 

for real-time operation in the microprocessor using 

only a minor change in the parameter definitions. In 

the PC case, the network topology and all parameters 

are defined in a text file, which is read by the 

simulation program. In the case of embedded 

implementations, an additional program uses the same 

text file to generate a header file that is included in 

the compilation of the microprocessor based code. In 

both cases the network description is translated into 

data structures in the PC or microprocessor memory. 

The network simulation code represents models for 

neurons, synapses and interconnection topology and 

delays as structures. This provides convenient 

flexibility with minor computational overhead. 

The synapse model includes code for spike 

propagation delays between pre and post-synaptic 

neurons. Each spike delay line is implemented with an 

int32_t variable and propagation is accomplished by a 

binary shift applied to the variable every iteration of 

the network. Time delay is achieved by reading the 

proper bit in the presynaptic delay variable as it is 

defined in the synapse connectivity of the 

postsynaptic neuron. A block diagram illustrating the 

structure of synapse simulation code in the case of 

two types of synapses, Excitatory (E) and Inhibitory 

(I), is presented in Fig. 8. To simplify the network 

diagram description the argument n of variable xi(n) 

represents the iteration step (time) and subscript i, the 

neuron index. The strengths of synaptic connections 

between neurons are defined using weights _

synType

post preW  

applied to received spikes in the summation block (in 

the text below we call it Presynaptic Inputs). Note that 

weights can be made to vary in time during 

simulations to model various mechanisms of synaptic 

plasticity. 
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Map-Based Network Model 

As an example, that is useful for validating the 

dynamics and testing the performance of integer 

computation in an embedded microprocessor 

environment, we consider a simple network consisting 

of two neurons demonstrating the effects of spike 

adaptation and rebound bursts coupled with chemical 

inhibitory synapses as shown in Fig. 9. 

The baseline state of each neuron is set to be in the 

silent condition. The injected rectangular current excites 

the first neuron, which starts spiking and inhibits the 

second neuron. The second neuron demonstrates the 

effect of a rebound burst after the inhibition from the 

first neuron is terminated. Then a pulse of injected 

current is applied to the second neuron and the process 

repeats in the opposite sequence. 

An example of such simulations computed using 

floating point operations is presented in Fig. 10a and b. 

The simulations are done for the following set of 

parameters for both neuron models α = 3.7, µ = 0.01, σ = 

-0.05, β 
D 

= 0.4, σ 
D
 = 1.0 and β 

syn
 = 0.4, σ 

syn
 = 1.0, the 

inhibitory synapses are modeled with constant weights 

w1,2 = 0.3, w2,1 = 0.2, delays d1,2 = 5, d2,1 = 3 and both 

synapses have 0.1syn

u
δ = , 0.2syn

d
δ =  and xRP = −2.9. The 

same network computed using scaled equations where 

all variables and parameters are 32-bit integers is 

presented in Fig. 10c and 10d. It uses scaling multipliers 

px = py = 16384 and ps = 1000. 

Panels Fig. 10a and 10c show response waveforms 

of the neuronal activity and panels b and d waveforms 

of the synaptic conductance activated by the 

presynaptic spikes. One can see that both simulations 

exhibit very similar dynamical behavior including 

very fine elements of neuronal excitability. Note that 

in both cases the first rebound burst spikes evoke 

rebound spikes in the opposite neuron. This indicates 

that the subthreshold dynamics of both neuronal 

models are the same, despite the difference in the 

computation method. At the same time in the case of 

the scaled model code for integer operations the 

computation time is about ten times more efficient 

than in the case of floating point including all the 

overhead components associated with the structure 

architecture of the code. 

Measurements of computation time in the 

microprocessor for various sizes of network and 

connection topology performed for the cases of float and 

int32_t were used to derive approximate estimations of 

time needed for computation of each element of the 

simulated network when it contains 5 or more neurons. 

The results  of  this  study  are  summarized  in Table 2. 

 
 
Fig. 8. Block diagram of synaptic model as implemented in the 

simulation code 

 

 
 
Fig. 9. Structure of reciprocally-inhibitory network excited with 

external pulse inputs I1(n) and I2(n) 
 

For example if the network has 50 neurons and each 

neuron has two types of synaptic inputs (e.g., excitatory 

and inhibitory) with 20 presynaptic inputs of each type, 

each time iteration of the network in the microprocessor 

will require 50*(1µs+2*0.7µs+2*20*0.076µs) = 272µs 

for int32_t and 50*(10µs+2*4.4µs+2*20*0.095µs) 

=1130µs for float. 

The results of computational time analysis 

demonstrate that quantization of a map-based model for 

dynamics of neurons and synaptic conductance give a 

significant improvement in simulation speed. The use of 

a linear model of synaptic conductance, Equation 4, 

enables one to sum presynaptic inputs with 

corresponding weights very efficiently in both methods 

of simulation, because the floating-point Multiply-And-

Accumulate (MAC) loop is optimized in STM32F4xx 

microprocessors.
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Fig. 10. Results of network simulations of response activity of two neurons coupled as shown in Fig. 9 and exited by injected 

currents D

n
I  of duration 100 iterations (50ms) and amplitude A1 = 0.3 initiated at n = 200 into the first neuron and A2 = 0.25 

at n = 700 into the second one 

 
Table 2. Averaged computation time if each iteration for each 

component of the network in µs 

 int32_t  float  

Neuron  1.0 10 

Synapse Type  0.7 4.4 

Presynaptic Input  0.076 0.095 

 

Conclusion 

The presented results demonstrate that a transition 

from floating point to integer implementation of the 

map-based models can significantly speed up 

computation of large networks of neurons. In the 

reported study we used neuronal and synaptic models 

scaled and coded using 32-bit integer variables and 

parameters. This increased the computational efficiency 

of the model Equation 1 and 2 about ten times and the 

overall network simulation, about five times. This 

improvement is very important and beneficial for real 

time implementation of neurobiological network models 

using low power off-the-shelf microprocessors. All 

computations presented in this study were done using an 

STM32 F427 running at a clock rate of 180MHz and 

consuming about 60mA at 4.0V. The size of the 

simulated network did not have a significant effect on 

the power consumption. This power consumption figure 



Nikolai F. Rulkov et al. / American Journal of Engineering and Applied Sciences 2016, 9 (4): 973.984 

DOI: 10.3844/ajeassp.2016.973.984 

 

983 

can be reduced by either reducing the processor clock 

rate and/or placing the processor in low power mode 

after it completes an iteration and subsequently resuming 

full power at the start of the next step interval. 

The presented results of quantization are focused on 

the use of 32-bit integers, where the map-model shows a 

very good behavioral match with the original model 

Equation 1 and 2. Further decrease of resolution may be 

possible and has been reported in similar types of models, 

see for example (Jin et al., 2008). However, in our studies 

we observed that use of quantized models with resolution 

of 16-bits and below sometimes cause the onset of 

artificial instability and unexpected oscillations in sub 

threshold dynamics. The dynamical mechanisms and 

conditions of such distortions needs to be studied in more 

detail as the use of lower resolution could be beneficial for 

FPGA and other similar implementations. 

The considered neuronal map-based models and the 

developed software and hardware implementation 

reveal a power efficient, readily available and 

inexpensive real-time engine for medium size 

neurobiological network simulations. These network 

models are good candidates for use in the design of 

wearable electronics for controllers in bioinspired 

prosthetic, sensors and robotic devices. 
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