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Abstract: Industrial robots have long been used in production systems in 
order to improve productivity, quality and safety in automated 
manufacturing processes. There are significant implications for operator 
safety in the event of a robot malfunction or failure and an unforeseen robot 
stoppage due to different reasons has the potential to cause an interruption 
in the entire production line, resulting in economic and production losses. In 
this research a fault detection system based on statistical control chart has 
been designed. An experimental investigation was accomplished using the 
PUMA 560 robot. Vibration signals are captured from the robot when it 
executes a repetitive task and then some statistical features are extracted 
from the signals, by utilising a developed data acquisition system based on 
National instruments hardware and software. The extracted vibration 
features, which are related to the robot healthy and faulty states, have 
subsequently been used for building and testing a statistical control chart. 
The chart has been validated using part of the measured data set, not used 
within the design stage, which represents the robot operating conditions. 
Validation results indicate the successful detection of faults at the early 
stages using the key extracted parameters. 
 
Keywords: Condition Monitoring, Fault Detection and Diagnosis, 
Statistical Control Chart, Industrial Robot, Backlash 

 
Introduction 

The Robot Institute of America (RIA) has defined 
an industrial robot as a reprogrammable 
multifunctional manipulator designed to move 
material, parts, tools, or specialized devices through 
variable programmed motions for the performance of 
a variety of tasks (Spong et al., 2005). The term fault is 
generally understood to mean an unpermitted variation 
of one or more characteristic features of a system away 
from the normal, reasonable and standard behaviour 
(Isermann, 2005). However, an unforeseen robot 
stoppage has the potential to cause an interruption in the 
entire production line, resulting in economic and 
production losses. Availability and maintainability, 
which can be defined as the probability of a system 
operating satisfactorily in any time period and its 
capability of being repaired, are therefore critical for 
industrial robots. Therefore, the automated supervision 
of the robot system is desirable, as this can increase 
robot availability and maintainability and reduce 

operator effort. Currently, there are few commercially 
available solutions that allow for the automated health 
monitoring of the mechanical components of a robot 
and thus the ability to continuously monitor the status 
and condition of robots has become an important 
research topic in recent years and is now receiving 
considerable attention. 

The concept of model-free based fault detection and 
diagnosis has stimulated the interest of using novelty 

detection for condition monitoring, which focuses on 
identifying any deviations between the features extracted 
from the recent measured data and the data measured 
under normal (healthy) operating conditions. The 
features obtained from a machine in its undamaged state 
will have a distribution with an associated mean and 
variance. However, a variation in the mean and/or 
variance will appear if the machine is damaged. 
Statistical Control Charts (SCCs) provide a framework 
for monitoring the distribution of the features and 
detection if they are inconsistent with the past healthy 
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state and any change in the distribution characteristics of 
the features will indicate damage, termed outlier 
analysis. SCCs are one of the earliest statistical fault 
detection techniques dating back to 1931 (Yadav and 
Kalra, 2010). Starting with the advent of Shewhart 
control charts for averaging, usually called X-bar ( X ) 
chart, which is normally used in combination with a 
range chart (R chart) or standard deviation chart (S chart) 
(Shiroishi et al., 1997). Further modification to Shewhart 
charts have resulted in Cumulative Sum (CUSUM) and 
the Exponentially Weighted Moving Average (EWMA) 
charts in the early 1950 s (Yadav and Kalra, 2010). 
Because these charts are easy to construct, implement 
and interpret, they received a large acceptance in the 
field of machines and processes monitoring. Techniques 
based on SCCs can be classified to two approaches: The 
univariate and multivariate approaches. In the former 
method each characteristic of interest is monitored 
independently whereas in the latter the concurrent 
monitoring of characteristics is accomplished, considering 
the correlation that may exist among the various 
characteristics (Yadav and Kalra, 2010; Kisić et al., 
2013). Baydar et al. (2001) presented a multivariate 
statistical methodology for helical gears monitoring. The 
gathered time-domain vibration signals were employed 
to form a reference condition model using Principle 
Component Analysis (PCA). The T-square control chart, 
type of multivariate SCCs, was adopted as health 
condition indicator. Researchers concluded that when 
tooth failures occur, the Probability Density Function 
(PDF) of the measured signal will change which gives 
good indication about the health condition. Another 
paper applied two statistical techniques for wind turbine 
gearbox CM (Zhang et al., 2012). The first technique 
was based on data-mining algorithms used to build a 
statistical model for predicting the jerk indicated by the 
vibration excitement of the gearbox. This model was 
utilized in conjunction with experimentally captured 
vibration signal to produce residual signals. Two control 
charts, X-bar and EWMA charts, were constructed to 
evaluate the residual and fault prediction. Another 
application, amongst others, of statistical control charts is 
for roller bearings condition monitoring. Niknam et al. 
(2013) at University of Tennessee investigate the use of 
CUSUM chart for detecting bearing failures, such as 
unbalance, based on acoustic emission signal analysis. 
Similarly, Zhou et al. (2008) presented an approach for in 

situ induction motor bearing fault detection by combining 
noise cancellation and X-bar chart. In this study the motor 
current signature was analysed to extract features related 
to bearings deterioration. Two control charts were 
developed based on Shewhart average chart to identify the 
initial start point of the bearing defect (Wang and Zhang, 

2008). These charts are named adaptive moving average 
chart and adaptive Shewhart average level charts. Based 
on these charts the researchers were able to produce 
warning and action limits. The findings of this study 
suggest that the adaptive Shewhart average level chart 
overcomes the drawback of adaptive moving charts by 
working out the limits using all the bearings’ data. 

More attractive applications of SCC are for 
induction motors and rotating shafts health 
monitoring. García-Escudero et al. (2011) proposed a 
methodology for incipient fault detection in induction 
motors. They used Fast Fourier Transform (FFT) and 
Wavelet Transform (WT) signal processing techniques 
to detect significant peaks in the captured current signal. 
Then, a quality control approach based on multivariate 
T-square control chart was successfully applied to detect 
the progressive deterioration of the rotor cage. Another 
paper proposed the use of CUSMA chart to monitor the 
misalignment in a rotating shaft (Sun and Chang, 2004). 
The gathered vibration signal was fitted with an 
autoregressive model and the residuals between the fitted 
and observed vibration signals used as a monitored 
parameter. Control chart limits were designed using the 
healthy baseline residual data. The results showed that 
this approach was capable of detecting both mean and 
variance shifts and also indicate the fault severity. 

The use of industrial robots has been rapidly 
increased in a wide range of industrial applications. 
Therefore, the need for reliable fault detection and 
diagnosis methods for industrial robots has been 
increased recently. However, in the reviewed work in the 
area of industrial robot health monitoring was noted that 
much of the work was focused on using many 
computationally intensive artificial intelligence 
techniques, such as neural network and support vector 
machines, for robot health monitoring, meaning that the 
health monitoring system is difficult to develop, needs a 
lot of training datasets and taking a long time. However, 
the SCC techniques have not yet been investigated for 
the robot Condition Monitoring (CM). Thus, in this 
study, an effort to fill part of the gap in the subject of 
industrial robot CM by using the SCC technique will be 
assessed using vibration signal analysis. 

Principle of Control Charts 

Control charts are a statistical tool for graphically 
displaying a quality characteristic plotted against the 
sample number (or time) with a centre line and two 
(upper and lower) control limits (Montgomery and 
Runger, 2014), as illustrated in Fig. 1. Control charts 
represent one of the most important and widely 
applied methods for detection of abnormal process 
operations based on process variables such as 
dimensions, temperature, vibration and forces etc.
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Fig. 1.  A conventional control chart (Montgomery and Runger, 2014) 
 
They provide a clear differentiation between changes 
that are a result of unpredictable disturbances in the 
system and changes that occur as a result of a system 
fault. When control charts are being used for health 
monitoring of any machine, despite how well it is 
designed and maintained, some amount of inherent or 
natural variability will always be presented (Kisić et al., 
2013). This natural variability, which is usually 
referenced to as background noise, is the cumulative 
effect of many small and unavoidable causes. However, 
from the statistical quality control point of view, a 
system that has this natural variability is often called a 
stable system and in-control (Kisić et al., 2013). On the 
other hand, if the variability in the monitored parameter 
is large enough when compared to the background noise, 
this is said due to assignable causes and represents an 
unacceptable level of system performance. In this case, 
the sources of variability are not part of the natural 
causes and commonly entitled special causes; a system 
that is operating in the presence of special causes is said 
to be an out-of-control. 

The conventional control chart is composed of 
three horizontal lines; a Centre Line (CL) that 
represents the average value of the quality 
characteristic corresponding to the in-control state; 
and two other lines named the Upper Control Limit 
(UCL) and the Lower Control Limit (LCL) (Fig. 1). 
These control limits are chosen so that if the process 
is in-control, nearly all of the sample points will fall 
between them. It is common practise to connect the 
sample points on the control chart with straight-line 
segments since it is easier to visualize how the 
sequence of points has evolved over time. However, 
even if all the points fall inside the control limits, but 
behave in a systematic or non-random manner, then 
this could be an indication that the process is out of 

control. If the process is in control, all the plotted 
points should have an essentially random pattern. 

Control Chart Limits 

The choice of control limits is one of the critical 
decisions when designing a control chart; and is 
connected with the risk of faulty prediction of in or out 
of control. Fundamentally, there is a close similarity 
between the principles of control chart and hypothesis 
testing. By applying the control chart technique, a 
continuous hypothesis testing is carried out through the 
progress of the process. For a normally distributed 
process the null hypothesis (H0) is that the treated sample 
mean is equal to the reference (healthy) process mean, 
while the alternative hypothesis (H1) assumes that the 
treated sample mean does not equal to the reference 
mean. The H0 hypothesis refers to that the monitored 
parameter is in a good condition and the process should 
continue, whereas H1 indicates that there is a problem 
and actions should be taken. However, two types of 
errors can occur during the fault prediction process 
using control charts (or hypothesis testing), these are 
called type I and type II errors (Kisić et al., 2013; 
Montgomery and Runger, 2014). Type I error is accrued 
when a point falls outside the control limits, indicating 
an out-of-control condition when there is no assignable 
cause presented (reject the null hypothesis H0 when it is 
true). Whereas the type II error results if a point falls 
within the control limits when the process is actually 
out of control (fail to reject the null hypothesis H0 when 
it is false). Therefore, the risk of type I error is 
decreased by moving the control limits further from the 
centre line. Widening the control limits, however, will 
also increase the risk of type II error. However, the 
opposite effect occurs if the control limits are shifted 
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closer to the centre line. The general mathematical 
formulation for a control chart is Equation 1 to 3: 
 

wCL µ=  (1) 

 

W WUCL kµ σ= +  (2) 

 

W WLCL kµ σ= −  (3) 

 
where, W is a sample statistic that measures some quality 
characteristic of interest and µw and σw are its mean and 
standard deviation, respectively, while k represents the 
distance of the control limits from the CL, expressed in 
standard deviation units. The common practice is to 
make the UCL and LCL equal three standard deviations 
(three-sigma) from the CL of the monitored data, i.e., k = 
3. By using three-sigma control limits it is assumed that 
the distribution of the quality characteristics is 
approximately normally distributed. Then, by doing so it 
is presumed that while the system is in statistical control, 
nearly 99.7% of the points will fall within the control 
limits (Montgomery and Runger, 2014; Khan, 2013). In 
this way, a good balance is made between type I and II 
errors. In addition to the three-sigma limits, additional 
warning limits can be utilized. These are named the inner 
limits, usually placed at two-sigma (El-Din et al., 2006). 

The Experimental Set-Up 

The experimental work has been performed using the 
PUMA 560, which is a PC-controlled serial manipulator 
with six revolute joints/Degrees Of Freedom (DOF). A 
single axis, analogue outputs, 70 g, MEMS 
accelerometer type ADXL001 from Analog Device have 
been used for signal capture. It may be assumed that, to 
detect the abnormalities in a machine, the sensors should 
be located near expected damage locations. However, 
there are cases where the damage is more recognizable at 
other locations on the machine. So, prior to acquiring the 
data for fault detection, it is crucial to locate the sensitive 
positions on the robot. A preliminary analysis was 
performed and it was found that the best position to fix 
the accelerometer on the robot is near to the wrist joint, 
as shown in Fig. 2. Yet, using just one accelerometer 
was not considered sufficient, since when the robot is 
performing a general task its joints are rotating around 
different axes, therefore, the accelerometer may be more 
sensitive to specific joints than others yielding the 
monitoring system to be unreliable. For this reason, it 
was decided to fix three ADXL001 accelerometers in an 
orthogonal configuration to measure the vibration in X, 
Y and Z directions using a purpose designed aluminium 
adapter. The signals from the accelerometers are fed to a 
14-bit NI Data Acquisition Card (DAQ) type USB-6009. 
In terms of data acquisition software, many functions 

have been provided by Lab View, which make graphical 
programming in Lab View more flexible, thus it has 
been used for developing vibration signal analysis and 
feature extraction software.  

The Robot’s Mechanical Construction and 

Fault Simulation 

Joints in industrial robots are commonly actuated by 
electrical motors. Permanent magnet servomotors are a 
popular choice to produce the driving force to move 
robot joints because of their easy operation and high 
power density and performance (Halme, 2006). In 
general, servomotors are electromechanical components 
in which faults can originate for electrical, mechanical 
and other external reasons. The sources of mechanical 
faults include bearing failures, movement in the winding 
and rotor eccentricity, among others. For the electrical 
faults, overheating, overloading, or short circuit will 
increase the resistance of components or break the wires. 
These lead to decreased rotor output power and extra 
power loss. Also, in order to transform motor power to 
the robot joints, mechanical reduction gears in the 
transmission system are used. The power is then 
transmitted from the input to the output shaft through the 
gear contacts. However, this paper concentrates on fault 
detection in the elbow joint (joint 3) of the robot, which 
is shown in Fig. 2 above. The mechanical construction of 
this joint is illustrated in Fig. 3, which consists of a two-
stage gear train system. The gear train is housed in the 
end of the upper arm and connected to a DC motor, 
which is housed in the beginning of the upper arm as 
well, by a drive shaft. There is a bevel pinion on the 
input shaft drives meshed with a bevel wheel on one end 
of an idler shaft. Also, a spur pinion at the other end of 
the idler shaft engages with a spur wheel fixed to the 
forearm and therefore rotates the forearm around the 
elbow axis. A number of deep groove ball bearings are 
used to carry the input and idler shafts. 

The main fault mechanisms that may appear in the 
joint gearbox are basically the same as those arising in 
other types of gearboxes, such as tooth faults. The most 
common types of gear tooth failure are scuffing, 
cracking, macro- and micro-pitting, wear, bending 
fatigue and fracture due to overload as well as backlash 
between mating teeth. Moreover, since gears are 
normally supported on rolling element bearings, faults in 
these bearings such as wear in the inner or outer races 
represent another typical type of fault in gear 
transmissions. For the purpose of fault robot detection in 
this study, backlash has been introduced in the bevel 
gear set of joint 3. To introduce backlash in joint 3, a 
number of screws should be rotated to adjust the pitch 
between the gear pairs. After adjusting the backlash, the 
robot was programmed to mimic a standard robot task by 
undertaking a pick and place sequence.  
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Fig. 2. The experimental set-up 
 

 
 

Fig. 3. Schematic diagram of joint 3 (elbow joint) 
 

Robot Vibration Analysis  

In this analysis the robotic system was 
programmed to perform the pick and place task 
(mentioned early) repeatedly to complete a predefined 
number of cycles. Vibration signals from the three 
axes of measurements are captured at a sampling 
frequency of 383 Hz with sample size equal to 4096. 
This frequency is four times higher than the 11th 
natural frequency of the robot, based on a preliminary 
robot vibration analysis, which fulfils the sampling 

theory that requests the sampling frequency to be at 
least two times higher than the highest system 
frequency (Mohanty, 2015). Each time the robot 
repeat cycle starts, the robot controller sends a trigger 
signal to the DAQ card through a triggering circuit, to 
synchronize the signal capture with the robot 
movement. The raw vibration signals captured from 
the robot when it is healthy and with three levels of 
backlash faults introduced are shown in Fig. 4. 
Limited interpretation of Fig. 4 is only possible, 
however, always vibration of multi-stage gearboxes, 
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as in the robotic system, is very complex and 
composed of different frequencies, including gear 
mesh, bearings and running-speed frequencies. The 
vibration severity is also connected with the excited 
resonance frequencies of the robot. The high speed of 
the robot gears causes cyclic excitation of these 
resonance, leading to some periodic fluctuations with 
amplitude proportional to the fault severity. This can 
clearly be seen in X-axis signals (the first column in 
Fig. 4), which were influenced the most by backlash, 
while signals in the other two axes were less affected. 
The high amplitude components present in the signals 
were observed when the robot changes the rotating 
direction of the joints. This is leading to developing 
number of impact between the mating pairs, due to the 
contact force between teeth. In the interference case 
the backlash was completely removed, so the impact 
effect is eliminated between mating gears but the 
gears are overloaded on the other hand. 

It was anticipated that by increasing the backlash 
the vibration level will increase in the robot, but the 
opposite has been found. This can obviously be noted 
by comparing the vibration signals produced with 
different backlash levels to the healthy robot 
condition specially X-axis signals. It can be seen, for 
instance, in the case of higher backlash the amplitudes 
of vibration signals are lower than that of the healthy 
case; this also corresponds with the results of a 
research was published by Bicker et al. (1989). The 
amplitudes of vibration are increased when the 
backlash level is reduced, until the increase becomes 
more significant in the interference case. Although the 
presence of backlash in the transmission system can 
cause a transient impact at the reversal of motion, 
which will lead to an undesirable level of vibration, 
the high backlash between gears will allow more 
lubricating grease to enter between mating teeth 
leading to damp the vibration. Whereas, the tight gear 
mesh leads to squeeze the lubricant out of the mating 
teeth and heat the system up, due to friction between 
teeth, resulting in increasing the vibration level. 

Feature Extraction 

Several features from the time-domain signals, 
such as Root Mean Square (RMS), Standard Deviation 
(STD) and kurtosis, are extracted. A comparison of 
these features, to investigate which is the most faults 
sensitive one, was accomplished. The sensitive feature 
must be normally distributed, as this is a condition 
that has to be met in order to calculate the threshold 
values using SCC (Montgomery and Runger, 2014; 
El-Din et al., 2006). The STD feature, which is 
normally used as a measure of extent of variation of 
the processed data and has the same units as the data, 

was found to be the most faults sensitive and normally 
distributed one; and hence it was selected for 
comparison among fault severities. 

To compute sets of STD values from the time-
domain data, in order to be used for developing and 
testing of a SCC, the robot was programmed to 
execute the pick and place task for 100-time and the 
STD value for each repetition was calculated. The 
STD results when the backlash fault was simulated 
and even with the other fault types have shown that 
the X-axis vibration is the best to be utilized for 
monitoring the effect of fault development in the 
robot, as a clear designation can be recognized 
amongst the different faults. However, Y- and Z-axis 
could experience higher vibration level if the robot 
executes different tasks that involve a different 
sequence of movements or if a fault is progressed in 
the other joints. Because of this and in order to 
achieve reliable fault detection, the vibration of the 
three axes has to be considered. Thus, the resultant of 
the X-Y-Z standard deviations will be computed, by 
taking the square root of the sum of the squares of the 
three STD and used as the fault indicator. Figure 5 
shows the resultant STD values for the robot when it 
is healthy and with the three backlash levels; a clear 
difference can be realized amongst the four trends 
related to robot health conditions. The high backlash 
conditions show lower resultant STDs whereas they 
are the highest in the interference condition, as 
discussed before. The normality of the healthy 
features were studied through graphical techniques 
used to assess whether or not the data are consistent 
with the normal distribution. These are the histogram, 
which is a bar graph plot of data and represents an 
approximation to a probability density function and 
the normal probability plot. The vertical axis of a 
histogram represent the data type frequency, while it 
signifies the cumulative probabilities scale in the 
normal probability plot; the horizontal axes in both 
plots are the values of the variable. At the centre of the 
normal probability plot, a line of normal probability is 
drawn passing through the mean of the variable and the 
50% cumulative probability. If most of the data points 
are placed on this line, the data is considered to be 
normally distributed. However, if the points appear in a 
curvature shape, then the indication is that the data are 
not normally distributed. To achieve this and to 
calculate the upper and lower control limits, as will be 
explained later, the Minitab 17 statistical package has 
been used and the result is shown in Fig. 6; the 
histogram (left) is indicating a bell-shape distribution 
and the data in the normal probability plot (right) 
looks reasonably straight, meaning that the resultant 
STD is normally distributed, thus it will be used for 
designing the control chart. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 4. Vibration signals from the accelerometers at different backlash level in the robot gearbox (a) Healthy robot (b) High backlash 

(c) Small backlash (d) Interference backlash 
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Fig. 5. Resultant STD for healthy and with different backlash levels robot 
 

 
 

 
 

Fig. 6. Normal distribution histogram and normal probability plot for the resultant standard deviation feature 
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Control Chart Design 

The most commonly used control charts are: 
Shewhart, Cumulative Sum (CUSUM), Exponentially 
Weighted Moving Average (EWMA), which are 
called univariate charts and T-square control chart, 
which is one of multivariate control charts. Shewhart 
control charts are the most popular charts used for 
process monitoring and can be easily implemented 
since they do not require a lot of computational effort; 
and for this reason has been used here, based on the 
following discussion. 

It is a standard practice when a variable is 
monitored using Shewhart charts that both the mean 
and the variability of the variable are considered. The 
mean of a variable is monitored with the X-bar ( X ) 
chart and the variability of the variable is monitored 
using a range chart (R-chart) or a standard deviation 
chart (S-chart). The X-bar chart informs whether the 
process is stable with respect to its healthy level, 
whereas the R- and S-chart provide information 
regarding the variability of the process and if it is 
stable over time or not. Significant shifting of the 
mean and the unusual large variability are indications 
of special causes or a fault starting to develop in the 
robot. The R-chart is relatively insensitive to small or 
moderate shifts for small sample size (Montgomery and 
Runger, 2014), thus, in a situation that demands tight 
control of process variability, moderately large sample 
sizes will be required and the S-chart should be used. 

The control limits of the mean and standard deviation 
charts are derived from the healthy features after 
dividing the data set into subgroups (samples) of ten 

observations each. The population mean ( x ) and 
standard deviation ( s ) can then be estimated based on 
these data, having m preliminary samples, each of size 
n, with ith sample mean (

i
x )and standard deviation 

(si), as shown Equation 4 and 5: 

 

1

1 m

i

i

x x
m =

= ∑  (4) 

 

1

1 m

i

i

s s
m =

= ∑  (5) 

 
The upper and lower control limits and centre line of 

X  chart are given by Equation 6 to 8: 

 

4

3x

s
UCL x

c n
= +   (6) 

 

x
CL x=   (7) 

 

4

3x

s
LCL x

c n
= −   (8) 

 

 
 

Fig. 7. Designed X-bar-S charts 
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And the upper and lower control limits and centre 
line of S-chart are Equation 9 to 11: 
 

2
4

4

3 1s

s
UCL s c

c
= + −  (9) 

 

sCL s=   (10) 

 
2
4

4

3 1s

s
LCL s c

c
= − −  (11) 

 
where, c4 is a tabulated constant depends on the sample 
size and can be found in (Montgomery and Runger, 
2014). Minitab results for the X -S charts, based on the 
resultant STD data from the healthy robot are presented 
in Fig. 7. It can be seen from the charts that all the points 
are randomly distributed and within the control limits 
which means the robot is healthy. 

Performance Testing of the Designed 

Control Chart 

Before using the established control chart with the 
robotic system it is important to evaluate its 
performance, to confirm that it is able to distinguish 
between the healthy and faulty robot conditions. To 
achieve this first a number of healthy samples have 
been captured from the accelerometers when the robot 
executes its programmed sequence. These samples are 
previously unseen when the control charts first 
designed. Because it is difficult to introduce a fault in 
the robot while it is running and also it not 
recommended allowing the robot working for a long 
time until it is degraded, different controlled backlash 
levels have been introduced at periodic intervals when 
the robot is stopped. First, the backlash is increased 
(clearance) and then reduced gradually until it is 
removed totally (interference). With each backlash 
level the robot is programmed to execute the pick and 
place task for a number of times and the resultant 
standard deviation of each cycle signal calculated 
using LabVIEW programme. The extracted features 
for all backlash levels (and healthy state) are tested 
against the control limits and plotted on the same 
graph, for clarity, using Minitab software as shown 
below in Fig. 8. 

The red colour markers indicate out-of-control 
samples. From these figures significant differences 
amongst the backlash levels compared to the healthy 
state of the robot can be noticed, particularly on the 

means of the standard deviation ( x ) in the X-bar 
chart, however these differences cannot be distinguish 
clearly in S-chart graph which monitor the variability 

of the standard deviation. Accordingly it is concluded 
that it is justifiable to rely on only the X-bar chart for 
the robot fault detection, whereas the S-chart can be 
ignored. From these charts it can clearly be seen that 
most features related to robot’s unhealthy state either 
exceed the control limits, as in the high backlash and 
interference cases, or on the same side above or below 
the centre line, as in case of small backlash; while, the 
healthy features are randomly distributed. Also, as 
indicated by X-bar charts, when the backlash level is 
increased the means of standard deviation of the 
samples are decreased. In contrast, the opposite occurs 
when the interference is introduced to the mating 
gears. This is attributed to the grease lubricant in the 
transmission system (discussed earlier). 

There are ten rule-of-thumb associated with control 
charts used to signal the presence of an abnormality in 
the process, called the Western Electric Company rules, 
or run rules (Montgomery and Runger, 2014). These 
rules also have negative effect if all of them are 
applied, since they greatly increase the number of false 
alarms (Montgomery and Runger, 2014; El-Din et al., 
2006). Thus, few of them are going to be utilized here 
for the robot fault detection. Such as the robot is 
considered in abnormal condition if three (or more) 
successive points fall outside the control limits or the 
points are in a non-random arrangement within the 
upper and lower limits. The non-random arrangement, 
for example, is characterised by a run of eight 
consecutive points on one side of the centre line or six 
points in a row steadily increasing or decreasing. 
However, these rules can be applied as warning 
alarms before serious fault is taken place. 

To simulate faults similar to the natural fault 
development standard, by which a machine 
deteriorates gradually from its healthy condition, it 
would have been better if the backlash fault could be 
developed progressively while the robot is executing 
the pick and place task, which currently cannot be 
achieved. To do this, a suggested idea is to fix a 
controlled device to the backlash adjustment grub-
screws on the robot and programme it to increase or 
decrease the backlash level concurrently during the 
robot task execution. However, this is out of the scope 
of this research, but it could be applied in future work. 
Thus, in this study to present something similar to 
gradual deterioration fault, first from the robot healthy 
condition the backlash was changed (increased or 
decreased) and ten measurement points were taken; 
then the power was disconnected from the robot arm 
and also the backlash was changed and another ten 
points were captured. Figure 9 shows the captured 
result when the robot was healthy and the backlash 
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progressively increased until the excessive backlash is 
reached, while Fig. 10 presents the result of 
decreasing the backlash starting from the robot 
healthy condition until gears interference was 
introduced. In these figures extra limits are added, 
these shall be called the upper and lower warning 
limits (UWL and LWL) respectively, equal to CL ±2σ 
(Montgomery and Runger, 2014), where � is the 
standard deviation of the samples used for 
constructing the control chart and can be used to give 
an early indication about the robot health 
deterioration. 

It can be clearly seen from these figures that the 
resultant STD values are gradually decreased, as the 
backlash is increased and increased, as the backlash is 
decreased. Obviously, the resultant STD values 
indicated by the samples 1 to 30 in Fig. 9 and to 
sample 20 in Fig. 10 are randomly distributed around 
the Centre Line (CL), signalling a healthy robot 
condition. This is, however, at the healthy backlash 
range. In both cases the fault was detected at sample 
38 in Fig. 9 (as eight consecutive points under the CL) 
and at sample 23 in Fig. 10 (as three consecutive 
points above the UWL). 

 

 
 

Fig. 8. Testing the performance of X-bar-S charts for fault detection under different backlash conditions 

 

 
 

Fig. 9. Fault detection result from the designed embedded system when the backlash was gradually increased 



Alaa Abdulhady Jaber and Robert Bicker / American Journal of Engineering and Applied Sciences 2016, 9 (2): 251.263 
DOI: 10.3844/ajeassp.2016.251.263 
 

262 

 
 

Fig. 10. Fault detection result from the designed embedded system when the backlash was gradually decreased 

 

Conclusion  

This paper has presented a methodology for design 
and implementation of a robot fault detection system 
based on statistical control charts. Joint 3 of the robot 
was selected in order to simulate different faults in the 
robot. A detailed description about the mechanical 
construction of the selected joint along with the 
different faults that may accompany the robot power 
transmission system has been discussed. A data 
acquisition system based on National Instrument (NI) 
software and hardware has been designed. For 
vibration signal capture an appropriate accelerometer 
was chosen and an aluminium adapter to carry three 
of the selected accelerometers in an orthogonal 
configuration was designed. Vibration signals 
captured from the robot while it was executing a 
handling task that mimics one of its real tasks for 
number of times and with various severity levels of 
backlash faults seeded inside. These signals were 
analysed and then some statistical features were 
extracted from them. The signals Standard Deviations 
(STDs) were used to distinguish between the healthy 
and faulty robot conditions, as it was found to be the 
best fault sensitive feature. The obtained STDs from 
the healthy signals have been utilized to establish the 
threshold limits in the control chart that can be 
applied in order to realise the abnormality 
development in the robot. Minitab software was used 
to establish the chart and then to test its ability in 
detecting variations in the robot health. The SCC 
showed very good capability in detecting changes in 

the robot health condition. Also, the designed chart 
has been tested with other types of faults (not shown 
in this study), such as bearings and gears and very 
good performance was realized. However, the main 
advantage of control charts is that their design 
requires only data from the machine healthy 
conditions, which is applicable in situations where 
faulty condition data are lacking whereas their main 
disadvantage is that they are only able to detect the 
damage, rather than its quantification and location. 
Finally, this type of test could also be used by the 
robots manufacturers for checking the backlash level 
before putting the robots in the service. 
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