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Introduction 

Basic Concepts 

One of the most frequently used numerical 

applications is the integral equation methods due to 

their ability to resolve the strong singularities that 

arise in stress fields where the boundary conditions 

change type (Lifanov et al., 2003; Iovane et al., 2003; 

Obaiys et al., 2012a). We present a new general solution 

for the first type HSIEs, whereas this approach 

depends on the analytical evaluation of the singular 

integral after the reduction for the higher order 

singularity. Integral equations arise in many physical 

problems, such as elasticity, acoustics and fracture 

mechanics which require the analytical solution of 

Fredholm integral equation (Martin and Rizzo, 1989; 

Martin, 1992; Obaiys et al., 2013): 

 

( , ) ( ) ( ),
L

t x g t dt f x x Lλ = ∈∫  (1) 

 

where, λ is a square integrable kernel of (t, x) that has a 

logarithmic singularity on the diagonal t = x: 

 
2 2( , )

L L

t x dtdx Bλ = <∞∫ ∫  (2) 

If L is a piecewise smooth contour that includes 

the interval [-1,1], (i.e.: Here we deal with an equation 

with Hilbert kernel). The regular part of the kernel λ 

can be separated as singular and nonsingular parts by 

using the decomposing Fourier transform. Thus, by 

considering the segment [-1,1]as a special case of L, 

Equation 1 becomes: 

 
1

1

1

1

1
( , ) ( )

( , ) ( ) ( ), [ 1,1]

K t x g t dt

G t x g t dt f x x

π −

−

+ = ∈ −

∫

∫
 (3) 

 

where, G(t,x) is a regular kernel of t and x while the first 

kernel K(t,x) has the form: 

 

( )
( , ) , 2

( )

h x
K t x

t x α
α= ≥

−
 (4) 

 

Which is called the hyper singular kernel and K(x,x) 

≠ 0 and h(t) is unknown function to be determined. 

Furthermore α is the order of the integral which 

classifies its singularity. If α = 2, then Equation 3 

becomes: 
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h x g t
dt

t x

G t x g t dt f x x

π −

−

−

+ = ∈ −

∫

∫
 (5) 

 

A deep linked nexus of the different ordered 

singularities can be performed by the following 

exchangeability relationship (Martin and Rizzo, 1989): 

 
1 1 1

1

1 1 1

( ) 1 ( ) 1 ( )

( ) ( ) ( )

g t g t d g t
dt dt dt

t x x t x dx t xα α απ α+
− − −

 ∂
= = 

− ∂ − − 
∫ ∫ ∫  (6) 

 

For the second order singularity where α=1, the 

above equation becomes: 

 
1 1

2

1 1

( ) ( )
, ( 1,1)

( )− −

= ∈ −
− −∫ ∫
g t d g t

dt dt x
t x dx t x

 (7) 

 

The right hand side of Equation 7 is called Cauchy 

Principle Value Integral (CPVI), which represents the 

base for ourapproximation and defined by (Iovane et al., 

2003; Obaiys, 2013; Obaiys et al., 2013). 

Definition 

If a function g(t), t∈[-1,1], be unbounded at some 

point x∈(-1,1) and Riemann integrable over [-1, x-ε) ⊂[-

1,x) and (x + ε,1) ⊂(x,1], ∀ε>0. Then CPVI of g over [-

1,1] is defined by: 

 

4=n

x
 (8) 

 

Provided that this limit exists. 

The CPVI in Equation 8 is a well-defined integral 

whenever g is an improper Riemann integrable on [-1,1], 

whilst a common CPVI is the Hilbert transform. The 

point x is called a weak singularity of g (Prem and 

Michael, 2005). It is important to know that once the 

CPVI has been approximated, the HSIEs can be obtained 

successfully by the consideration of the relationship in 

Equation 6 and it is defined as: 

Definition 

Lifanov et al. (2003) suppose that g(x) is a real 

function defined on [-1, 1]. Then: 

 
1 1

2 20

1 1

( ) ( ) 2 ( )
lim

( ) ( )

x

x

g t g t g x
dt dt

t x t x

ε

ε
ε ε

−

→
− − +

  = + −  − −  
∫ ∫ ∫  (9) 

 

With existing and bounded limits of integration. 

The choice of g(t) in Equation 1 is significant and 

directly affects the singularity order where if g(t) 

represents the slope function, then Equation 1 is a CPVI; 

whereas if it is chosen as a displacement function then a 

HSIE is performed. 

Preliminaries 

Numerous expansion of more advanced and 

efficient methods for the numerical solution of 

integral equations have been conducted (Mandal and 

Bhattacharya, 2007; Helsing, 2011). The HSIE of the 

form in Equation 5 where the regular kernel G(t,x) = 

0, h(x) = 1 and the displacement function g satisfy the 

Hӧlder-continuous first derivative, becomes: 

 
1

2

1

1 ( )
( ), 1 1

( )−

= − ≤ ≤
−∫
g t

dt f x x
t xπ

 (10) 

 

Obviously g represents the gap in the velocity 

potential of the flow across the plate. To ensure the 

continuity of the velocity at both endpoints x = ±1, the 

following boundary condition is important: 

 

( 1) 0g ± =  (11) 

 

Let the unknown function g in Equation 10 be written 

as: 

 
2( ) 1 ( )g t t tϕ= −  (12) 

 

where, φ(x) is a well-defined function of t and by 

substituting Equation 12 into Equation 10 with the use of 

the relationships in Equation 7, yield: 

 
1 1

2 2

2

1 1

1 ( ) 1 ( )
( ) 1 1

( )

t d t
f x t dt t dt

t x dx t x

ϕ ϕ
π π− −

= − = −
− −∫ ∫  

 

To regularize the above CPVI, we add and subtract 

the value of φ(x), which yields: 

 
1

2

1

1 ( ) ( ) ( )
( ) 1

d t x x
f x t dt

dx t x t x

ϕ ϕ ϕ
π −

− = − + − − ∫  

 

Since: 

 

( )
1

2

1

1 / ( )t x t dt xπ
−

− − =∫  

 

Results: 
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d t x
f x t dt x x
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t x t x
t dt x x x

t x

F x t t x dt

ϕ ϕ
π ϕ

π

ϕ ϕ ϕ
ϕ ϕ

π

ζ
π

−

−

−

 −
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− − + −
= − − −

−

= −

∫

∫

∫

 (13) 

 

Where: 

 
'

2

( ) ( ) ( )
( , )

( )

t x t x
t x

t x

ϕ ϕ ϕ
ζ

− − + −
=

−
 

 

And: 

 
'( ) ( ) ( ) ( )F x f x x x xϕ ϕ= + +  

 

The above integral in Equation 13 is a regularization 

of Equation 10 after subtracting its singularity where: 

 
''( , ) ( ) / 2 when≡ =t x x t xζ ϕ  

 

where, ζ is a real function belong to the class of 

Hӧlder on the set [-1,1]×[-1,1]. It is known that HSIE 

in Equation 10 has the following exact solution 

(Mandal and Bhattacharya, 2007): 

 

1

2 2
1

2

1
( )ln , ( ) 1,

( ) 1 (1 )(1 )

1 ( ) 1.

x t
f t dt if f x

g x xt x t

x if f x

π −

 − ≠
= − − − −


− =

∫
 (14) 

 

Approximation 

In computing integrals, there are several 

appropriate choices to select from. We developed a 

general approximating method for the bounded 

solution of any HSIE of the form in Equation 5, where 

h(x) = 1 and G(t,x) ≠ 0. Whereas the hyper singular 

kernel K(t,x), the density function g and the regular 

kernel G(t,x) are supposed to be real functions belong 

to Hӧlder class on the sets [-1,1]×[-1,1],[-1,1] and [-

1,1]×[-1,1], respectively. 

The function φ(x) in Equation 12 approximated by a 

finite sum of an appropriate polynomial of degree n: 

 

0

( ) ( )
n

i i

i

x C xϕ ζ
=

≈∑  (15) 

 

Which means: 

2

0

( ) 1 ( )
n

n i i

i

g x t C xζ
=

≈ − ∑  (16) 

 

And the condition: 

 
1

1

( ) 0ng t dt
−

=∫  (17) 

 

Is desirable for the unique solution of g while Ci, i = 

0,1,2,…, n, are the unknown coefficients to be 

determined, then Equation 5 becomes: 

 
1

2

2

1

1
0 2

1

( )
( ) 1

( )1
( )

1 ( , ) ( )

i

n

i

i

i

t
h x t dt

t x
C f x

t G t x t dt

ζ

π
π ζ

−

=

−

 
− 

−  = 
 + − 
 

∫
∑

∫
 (18) 

 

Both hyper singular and regular kernels in Equation 

18 are approximated as follows: 

 

2
0 0

1
( ) ( ), ( , ) ( ) ( )

( )

p s

r r q q

r q

x t G t x k x t
t x

ρ ζ ζ
= =− ∑ ∑≃ ≃  (19) 

 

where, ρr(x) and kq(x) are known expressions of x and by 

substitute Equation 19 into Equation 18, yields: 

 

0

1
( ) ( ), [ 1,1]

n

i i j j

i

C Q x f x x
π =

= ∈ −∑  (20) 

 

Where: 

 

1
02

1

0

( ) ( ) ( )

( ) 1

( ) ( )

p

r r i

r

i s

q q i

q

h x x t

Q x t dt

k x t

ρ ζ

π ζ

+
=

−
+

=

 
 
 = −
 

+  
 

∑
∫

∑
 (21) 

 

This approach reduces the integral equation 

problem in Equation 5 in to a finite linear algebraic 

system of n+1 linear equations with n+1 unknown 

coefficients Ci of the form: 

 

0

1
( ) ( ), 0,1,....,

n

i i j j

i

C Q x f x j n
π =

= =∑  (22) 

 

where, xj to be chosen as the root of the polynomial xj on 

[-1,1], i.e. x = xj and the coefficients { }
0

n

i i
C

=
 satisfy 

(Obaiys, 2013): 

 

, ( ) 0, 0,1,2,...n nKg Gg f gk x k+ − = =  (23) 
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where, K and G are the singular and regular kernels 

defined in Equation 3 respectively and the calculation of 

Ci endorses the evaluation of gn(t) in Equation 16. 

For the error estimate of the HSIE of the first kind 

Equation 5, it is proven in (Obaiys, 2013) that if the 

functions ([ 1,1])f C∈ −ℓ  and ( , ) ([ 1,1] [ 1,1]),K t x C∈ − × −ℓ  

then: 

 

2,
, 1−− = ≥ℓ
ℓn w

g g Cn  (24) 

 

With 21w x= − . If ℓ  can be chosen to be any large 

positive number, then the error in Equation 24 decreases 

very quickly and the convergence is very fast to the 

exact solution. 

The numerical examples perform that for any 

singular point x∈ [-1,1] the sequence {gn} converge 

uniformly in L2,w norm to {g} as n increases (Obaiys, 

2013). 

Numerical Examples 

Example 1 

If we consider h(x) =1 and G(t,x) = 0 and f(x) = 1, 

then Equation 5 takes the form: 

 
1

2

1

1 ( )
1, 1 1

( )

g t
dt x

t xπ −

= − ≤ ≤
−∫  (25) 

 

Which have the exact solution in Equation 14. The 

function ζ(x) is calculated numerically from the 

relationship in Equation 16 and g(x) is approximately 

obtained. We can easily show the proof by considering 

ζi(x) in Equation 21 as Chebyshev polynomial of the 

second kind over the interval [-1,1]. It is known that 

orthogonal polynomials have a great variety and wealth 

of properties which playa great role and importance for 

quadrature methods as well as for the solution of 

mathematical and physical problems with a very efficient 

interpolation formula. The zeros of these polynomials 

are usually constant real, distinct and belong to a 

particular interval of [-1,1] which conform with our 

research interest. These systems of zeros are used as 

nodes of the quadrature rules, which possess additional 

properties, like that of positivity orminimality of 

quadrature error. One can also obtain polynomials very 

close to the optimal one by expanding the given function 

in terms of Chebyshev polynomials and then cutting off 

the expansion at the desired degree. The second kind 

Chebyshev polynomial is defined as (Mason and 

Handscomb, 2003; Obaiys et al., 2012b): 

 

sin( 1)
( ) , cos

sin
i

i
U x x

θ
θ

θ
+

= =  (26) 

Where: 

 
2

0 1 2
( ) 1, ( ) 2 , ( ) 4 1U x U x x U x x= = = −  (27) 

 

Whereas the rest of the terms satisfy the following 

recurrence relationship: 

 

1 2( ) 2 ( ) ( )i i iU x xU x U x− −= −  (28) 

 

And by taking the following cases for ρr(x) and for 

ρq(x) in Equation 35 defined below, as follows: 

 

0 ( ) 1, ( ) 0 ( ) 0r qx x r G x qρ ρ= = ∀ > 0,  & = ∀ ≥ 0  

 

Then C0 = 1 and 0,iC i= ∀ > 0  and by substituting 

into Equation 12 for any value of n gives: 

 
2( ) 1g x x= −  

 

Which performs Equation 14. 

Table 1 shows that the approximate solutions 

coincide with the exact values. 

Example 2 

Consider the following HSIE: 

 
1 1

4

2

1 1

4 2

1 ( )
cos( ) ( )

( )

cos( )
5(16 12 1)

32

g t
dt x t g t dt

t x

x
x x

π − −

+
−

= − − + −

∫ ∫
 (29) 

 

With the condition g(±1) = 0. The exact solution of 

Equation 29 is: 

 
4 2 2( ) (16 12 1) 1g x x x x= − + −  

 

The unknown function g in Equation 29 is 

approximated by using the finite sum of Chebyshev 

polynomial of the second kind defined by (26), gives: 

 

2

0

( ) 1 ( )
n

n i i

i

g t t CU t
=

= − ∑  (31) 

 
Table 1. The exact and approximate solutions of Equation 25 

4n

x

=
 Exact Approximate 

±1 0.00 0.00 

0 1.00 1.00 

±0.2 0.98 0.98 

±0.4 0.92 0.92 

±0.6 0.80 0.80 

±0.8 0.60 0.60 
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Substitute Equation 31 into Equation 17 gives: 

 
1

2

0 1

1 ( ) 0
n

i i

i

C t U t dt
= −

− =∑ ∫  (32) 

 

It is not difficult to show that (Mason and 

Handscomb, 2003): 

 

1

2

1 0

; 0
1 ( ) sin( 1) sin 2

0; 0
i

i
t U t dt i d

i

π π
θ θ θ

−

 =
− = + = 

 ≠
∫ ∫  (33) 

 

And by using Equation 33 into Equation 32, we 

obtain the value of the first coefficient: 

 

0 0C =  (34) 

 

The hyper singular and regular kernels in Equation 

29 are approximated as follows (Obaiys et al., 2012b): 

 

2
0

0

1
2 ( 1) ( ) ( ),

( )

( , ) ( ) ( )

p

r r

r

s

q q

q

r U x U t
t x

G t x k x U t

=

=

− +
− ∑

∑

≃

≃

 (35) 

 

where, ( )rU x  and ( )qk x  are known expressions of x and 

by substituting Equation 35 into Equation 29 and using 

the orthogonal property, yields: 

 

( )
0

4 2

( 1) ( ) ( )
2

cos( )
5 16 12 1

32

n

i i i

i

C i U x k x

x
x x

π

=

 − + +  

= − − + −

∑
 (36) 

 

And: 

 
1

2

1

2
( ) 1 ( , ) ( )i ik x t G t x U t dt

π −

= −∫  (37) 

 

The linear system in Equation 37 can be evaluated 

analytically or numerically using a quadrature formula. 

By choosing the roots of 
1( )nT x+  as the collocation 

points xj along the interval [-1,1], which are: 

 

2 1
cos , 0,1,...,

2( 1)
j

j
x j n

n
π

 −
= = 

+ 
 (38) 

 

For i = 4, we get: 

 

0 1 2

3 4

( ) cos( ) / 8, ( ) 0, ( ) 3cos( ) /16

( ) 0, ( ) cos( ) /16, ( ) 0; 5i

k x x k x k x x

k x k x x k x i

= = =

= = = ≥
 (39) 

Substituting the values of Equation 37 into the 

system of Equation 36 for n = 4, gives: 

 

( )

4

0

4 2

( 1) ( ) ( )
2

cos( )
5 16 12 1

32

i i j i j

i

j

j j

C i U x k x

x
x x

π

=

 − + +  

= − − + −

∑
 (40) 

 

By solving the system Equation 40 for the 

unknown coefficients ; 0,1,...,4iC i =  and substituting 

the values of Ci into Equation 31, we obtain the 

numerical solution of Equation 29, which is identical 

to the exact solution. 

MATLAB codes are developed to obtain all the 

numerical results of Equation 29 where Table 2 presents 

the numerical experiment which perfectly agrees with 

the theoretical results. 

Example 3 

Consider the numerical solution of Fredholm 

integral equations of the first kind with a double pole 

singularity of the following form: 

 
1 1

2

1 1

3

1 ( ) 1
( )

( )

64 17 8, 1 1

g t
dt txg t dt

t x

x x x

π π− −

+ =
−

− + − − ≤ ≤

∫ ∫  (41) 

 

The exact solution of Equation 41 is: 

 

2 3 1
( ) 2 1

2
g x x x

 = − + 
 

 (42) 

 

We use the same steps explained in Example 2 where 

the roots are defined in Equation 38 and i = 4: 

 
4

0

3

( 1) ( ) ( )
2

64 17 8

i i i

i

C i U x k x

x x

π

=

 
− + + =  

− + −

∑  (43) 

 
Table 2. The error of the numerical solution of Equation 29 

4n

x

=
 Error 

16n

x

=
 Error 

-1 0.00e+000 -1 0.00e+000 

-0.8 2.88e−007 -0.8 2.88e−011 

-0.6 1.80e−007 -0.6 1.26e−012 

-0.4 0.16e−008 -0.4 2.13e−011 

-0.2 1.04e−007 -0.2 2.41e−011 

0.0 2.82e−007 0.0 2.33e−012 

0.2 3.86e−007 0.2 3.19e−012 

0.4 2.85e−007 0.4 2.59e−011 

0.6 1.80e−007 0.6 0.94e−013 

0.8 2.88e−007 0.8 2.61e−011 

1 0.00e+000 1 0.00e+000 
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Table 3. The error of the numerical solution of Equation 29 

4n

x

=
 Error 

32n

x

=
 Error 

-1 0.00e+000 -1 0.00e+000 

-0.8 4.13e−005 -0.8 3.27e−013 

-0.6 3.97e−005 -0.6 2.36e−013 

-0.4 4.65e−005 -0.4 1.54e−013 

-0.2 3.92e−005 -0.2 2.45e−013 

0.0 2.89e−005 0.0 2.21e−013 

0.2 3.86e−005 0.2 3.19e−013 

0.4 2.85e−005 0.4 3.51e−013 

0.6 3.23e−005 0.6 0.93e−013 

0.8 4.28e−005 0.8 2.65e−013 

1 0.00e+000 1 0.00e+000 

 

The errors of the numerical solutions presented in 

Table 3 are computed as the absolute value of the 

difference between the exact and numerical solutions. 

Here, the simple solution of the linear system of 

equations provided a more efficient approximation and 

faster algorithm by increasing the values of n. 

Conclusion 

A general solution for any HSIE problem of the form 

in Equation 5 is presented. We reformulated the main 

integral problem as a set of linear algebraic equations 

that can be solved by applying the usual collocation 

method. Moreover, this numerical technique provided 

an efficient approximation algorithm that converge 

very fast to the exact solution even for small values of 

n. It can also be seen from the results that the error 

values based on Equation 24 decrease very fast for any 

singular point [ 1,1]x ∈ −  by increasing the values of n 

and choosing an appropriate weight function. 

MATLAB12 codes are developed to obtain all the 

numerical results for different kernel functions and 

force functions f(x) where the numerical experiments 

agree with the theoretical results. 
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