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Abstract: The following investigation has the purpose of describing, both 

experimentally and numerically, the fracture behavior of a giant 

magnetostrictive alloy commercially known as Terfenol-D. Single-edge 

precracked specimens have been analyzed via three-point bending tests, 

measuring fracture loads in the presence and absence of a magnetic field at 

various loading rates. The Strain Energy Density (SED), averaged in a 

finite control volume, has recently proved to be an excellent method of 

predicting brittle failures of cracked, U- and V-notched specimens made out 

of different materials. The effects of the magnetic field and of the loading 

rate on Terfenol-D failures have been studied, as well as discussing the 

ability of SED criterion to seize these effects, by performing coupled-field 

finite element analyses. Finally, a relationship between the size of the 

SED’s control volume and the loading rate has been proposed and failures 

have then been estimated in terms of averaged SED. 
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Introduction 

Magnetostriction is the variation of shape in a 

material when subjected to an external magnetic field. 

This effect was first delineated by the physicist James 

Joule in the 19th century. A considerable deformation in 

the presence of external magnetic fields has been 

displayed by the so-called giant magnetostrictive 

materials and forces applied on them can cause 

remarkable changes in the magnetization. One of the 
most widespread commercial materials for 

magnetostrictive applications is a rare earth element 

alloy of iron, terbium and dysprosium, named Terfenol-

D. For its renowned magnetostrictive elongation and its 

high energy density storing capacity at room 

temperature, granting it a large potential in many 

applications, this material has been raising much interest 

in the recent years (Engdahl, 1999). High power 

ultrasonic transducers make a large use of it, as well as 

automotive industry, avionics and robotics, which 

commonly use robust and responsive actuators and 
sensors based on the phenomenon of magnetostriction 

(Calkins et al., 2007). Terfenol-D has recently been used 

to produce sensors designed for stress monitoring of 

steel cables in suspended bridges (Zhang et al., 2014) 

and it might be employed in energy harvesting devices 

(Zhao and Lord, 2006; Li et al., 2010; Mori et al., 2015). 

Terfenol-D is commonly known to be a brittle alloy, 

although its favorable applications, thus devices based 

on this material are sensitive to in-service fracture 

(Peterson et al., 1989). Hence, cracking and 

manufacturing induced defects could highly compromise 

the performances of the material. In addition, the 

literature provides little research on this topic, seemingly 

because of the high reactivity of the raw materials of 

Terfenol-D and its impurities, making it a hard to 

produce and very expensive alloy. These are the reasons 

behind the growing of interest in having a deeper 

mechanical knowledge about the sensitivity to defects of 

giant magnetostrictive materials, especially Terfenol-D. 

In the last years professor Lazzarin and Zambardi 

(2001) has promoted a criterion based on Strain Energy 

Density (SED) to estimate brittle failures, taking place 

without any plastic deformation. The criterion asserts 

that brittle fracture failure occurs at the moment that the 

strain energy density, averaged in a circular control 

volume including a crack or notch tip, gets to a critical 
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value dependent on the material. Afterwards this 

criterion has been deeply studied by many researchers, 

who proved it to be a reliable method in predicting brittle 

and high cycle fatigue failures of cracked, U- and V-

notched specimens composed of different materials, 

along with metals and ceramics (Berto et al., 2015;  

Berto and Lazzarin, 2014; 2009). Through the energy 

release rate (Narita et al., 2015) the effect of a magnetic 

field on fracture behavior of Terfenol-D has lately been 

studied, both experimentally and numerically, in order to 

attest that, in the absence of a magnetic field, the fracture 

resistance of the material is greater, under mode I 

loading condition, also showing its decrease when the 

magnetic field increases. This suggested that the increase 

of the energy release rate, induced by growing magnetic 

fields, might be the cause of the resistance decrease. In a 

recent investigation (Colussi et al., 2016) it has been 

shown that the SED criterion could be extended to the 

assessment of brittle behavior of giant magnetostrictive 

materials, under the same loading condition. 

Experimental data sets on fracture behavior of Terfenol-

D specimens under three-point bending have been 

extended in this study; in addition, fracture loads were 

measured in the presence and absence of the magnetic 

field and at different loading rates. The effects of the 

magnetic field and of the loading rate on Terfenol-D 

brittle failure have here been discussed, by performing 

coupled-field numerical analyses. The aim of this study 

has been the assessment of the capability of the SED 

criterion to seize these effects and, to this end, a 

relationship between the radius of the control volume 

and the loading rate has also been proposed. 

Analysis 

Basic Equations  

The basic equations for magnetostrictive materials 

are here outlined. Considering a Cartesian coordinate 

system, O-x1 x2 x3, the equilibrium equations are given 

by: 

 

, , ,0; 0; 0ji j ijk k j i iH B     (1) 

 

where, ij, Hi and Bi are respectively the components of 
the stress tensor, the intensity vector of the magnetic 

field and the magnetic induction vector, whereas ijk is 

the Levi-Civita symbol. A comma followed by an index 

denotes partial differentiation with respect to the spatial 

coordinate xi and the Einstein’s summation convention 

for repeated tensor indices is applied.  

The constitutive laws are given as: 

 

;H T

ij ijkl kl kij k i ikl kl ik ks d H B d H        (2) 

where, ij are the components of the strain tensor and 
H

ijkls , dikl, 
T

ik are respectively the magnetic field elastic 

compliance, the magnetoelastic constants and the 
magnetic permittivity. 

Valid symmetry conditions are: 

 

; ;H H H H T T

ijkl jikl ijlk klij kij kji ij jis s s s d d        (3) 

 

The relation between the strain tensor and the 

displacement vector ui is: 

 

 , ,

1

2
ij j i i ju u    (4) 

 

The magnetic field intensity, named  the potential, 

is written as: 

 

,i iH   (5) 

 

For Terfenol-D, the constitutive relations can be 

written as: 
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where: 
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The relationship between magnetostriction and 

magnetic field intensity is non-linear. Nonlinearity 
arises from the movement of the magnetic domain 

walls (Wan et al., 2003). To take into account this 

behavior, the constants d15, d31 and d33 are written as 

function of second order magnetoelastic constants: 
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where, 
15

md ,
31

md  e 
33

md  are the piezomagnetic constants, 

whereas m31 and m33 are the second order magnetoelastic 

constants. 

Averaged Strain Energy Density (SED) 

According to Lazzarin and Zambardi (2001), the 

brittle failure of a component occurs when the total strain 

energy, W , averaged in a specific control volume located 

at a notch or crack tip, reaches the critical value Wc. In 

agreement with Beltrami (1885), named t the ultimate 

tensile strength under elastic stress field conditions and E 

the Young's modulus of the material, the critical value of 

the total strain energy can be determined by the relation: 

 
2

2

t
cW

E


  (12) 

 

The control volume takes different shapes based on 

the considered kind of notch. If the notch is represented 

by a crack, its opening angle is equal to zero and the 

control volume is circular and centered on the crack tip. 

Being this the case, the radius Rc of the control volume 

can be evaluated by means of the following expression 

(Yosibash et al., 2004): 
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where, Klc is the material fracture toughness, v is the 

Poisson’s ratio and t is the ultimate tensile strength of 

an un-notched specimen. If the material fracture 

toughness is not known, an empirical approach can then 

be a good alternative for determining Rc, as described in 

the following sections.  

Finite Element Model 

The strain energy density averaged in the control 

volume, W , can be computed directly by means of a 

finite element analysis. Analyses were performed by 

means of ANSYS R14.5 finite element software, both in 

plane strain and plane stress conditions depending on the 

specimens' width. For this purpose, solid models were 

used to determine the most appropriate condition. The 

basic equations for magnetostrictive materials are 

mathematically equivalent to those of the piezoelectric 

materials, as shown by Tiersten (1969), so four nodes 

PLANE13 and eight nodes SOLID5 coupled-field solid 

elements from ANSYS library were used, respectively 

for plane and solid models and the magnetic field has 
been introduced by a voltage difference. Figure 1 shows 

the schematic representation of the boundary conditions 

and the adopted reference system. The coordinate axes x 

= x1 and z = x3 are chosen such that the y = x2 axis 

coincides with the thickness direction and such that the 

easy axis of magnetization is the z-direction. Because of 

symmetry, only half of the model was used. 

The mesh adopted to compute W  had the same grade 

of refinement adopted in a previous work by the present 

authors (Colussi et al., 2016), in which models with 

6400 elements were used to evaluate the energy release 

rate by means of J-integral on the same geometry.  

Experimental Tests 

The alloy known by the commercial name of 

Terfenol-D (Tb0.3Dy0.7Fe1.9), supplied by Etrema 

Products, Inc. (USA), has been chosen among giant 

magnetostrictive materials to perform all tests. The 

material properties are listed in Table 1. 

The testing apparatus is illustrated in Fig. 2: Single-

edge precracked specimens have been subjected to three-

point bending, in the presence and absence of the 
magnetic field and at different loading rates, in order to 

measure the fracture load, Pc. 

The following Fig. 3 depicts one of the tested 

specimens, which were 5 mm thick, 3 mm wide and 15 

mm long. By utilizing a tungsten cutter, a 0.5 mm deep 

crack was produced on one side of all the specimens 

before testing, thus introducing a weak point. 

The specimens, simply supported with span of 13 

mm, have been loaded at their midpoint via a 250 N 

load cell (resolution: 0.01 N), for various loading 

rates: 0.05, 0.5 and 3.0 Ns1. An electromagnet has 

applied in the longitudinal direction a uniform 

magnetic field, with magnetic induction B0. A 
magnetic induction of 0.03 T has been applied in all 
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tests and chosen as a representative value, considering 

that the common range of magnetic induction which 

Terfenol-D devices usually work in varies from 0.02 

T to 0.05 T. It is worth noting that, since some of the 

constituent elements of Terfenol-D are two very 
expensive rare earths like terbium and dysprosium, 

only two to three specimens at each condition were 

prepared for testing. 

The non-linear trend of Terfenol-D magnetostriction 

versus magnetic field has been assessed using an 

experimental procedure. Let us consider a Cartesian 

coordinate system, O-x y z, whose origin is located at the 

top center of an uncracked specimen. The longitudinal 

magnetostriction (in the z-direction) appears to be 

predominant, as the specimen’s dimension in this 

direction is over three times greater than the other two 

dimensions: That is why it is reasonable to assume m31 

equal to zero (Jia et al., 2006). By means of a strain 

gauge located at x = y = z = 0 mm, the trend of 

magnetostriction has been measured modulating the 

magnetic field intensity in the z-direction. A comparison 

between the measured strain zz and the one obtained 

numerically has been done, revealing a proper value for 

the second order magnetoelastic constant m33 of 

4.821012 m2A2, used in the analyses to compute the 

SED. The trend of strain versus applied magnetic field is 

shown below (Fig. 4): The full dots stand for the 

experimental data, while the solid line represents the 

numerical trend, having considered the second order 

magnetoelastic constant. 
 

 
 
Fig. 1. Schematic representation of the model and boundary 

conditions 

 
 
Fig. 2. Schematic representation of the experimental setup 

 

 
 
Fig. 3. Specimen's geometry and testing condition 
 

 
 
Fig. 4. Trend of strain versus magnetic field in Terfenol-D 

 
Table 1. Terfenol-D material properties 

Elastic compliance [1012 m2N1]    Density 

---------------------------------------------------------------------------------------------------------------------------------- [kg m3] 

11

Hs  22

Hs  44

Hs  12

Hs  13

Hs  ρ 

17.9 17.9 26.3 -5.88 -5.88 9250 

 

Piezo-magnetic constants  [109 mA1]  Magnetic permeability [106 Hm1] 
------------------------------------------------------------------- ------------------------------------------ 

31

md  33

md  15

md  11

T  33

T  

-5.3 11 28 6.29 6.29 
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Results 

The following table contains the fracture loads, Pc, 

experimentally measured at each loading rate, in the 

presence and absence of the magnetic field: Bold 

numbers represent the average value at each condition, 

whereas numbers in brackets represent the relative 

standard deviations. 

Figure 5 shows below the average fracture loads. 

Maximum and minimum values of Pc are designated 

with the error bars. It has been noted that, in the presence 

of the magnetic field, the average fracture loads at 0.05, 

0.50 and 3.0 Ns1 are decreased respectively about 7%, 

9% and 14%. 

Furthermore, Terfenol-D has shown a decrease in 

fracture load with a decrease in the loading rate, as other 

materials such as TiAl alloys (Cao et al., 2007) and 

piezoelectric ceramics (Shindo et al., 2009; Narita et al., 

2012) have exhibited a similar behavior.  

It is here assumed that the critical radius Rc, 

depending on the material, varies with the same speed 

which the load is applied at, given that Terfenol-D 

material properties are determined by the loading rate. 
The mean values of critical loads in Table 2, in the 

presence and absence of the magnetic field, have been 

used to plot the related averaged SED as a function of 

the control volume radius, allowing to identify various 

intersections for each loading rate. These intersections 

have been found at 0.050, 0.056 and 0.1 mm 

respectively for the loading rates 0.05, 0.5 and 3.0 

Ns1. Evidence shows that, at the critical load, the 

value of the strain energy density of the material, 

averaged in a control volume with size varying 

accordingly to the loading rate, appears to be 

independent of the ratio between the applied load and 

the magnetic field. The relation between Rc and the 
loading rate has shown to be adequately interpreted by 

a linear model and, after that, the following 

relationship (evaluated for loading rates from 0.05 to 

3.0 Ns1) has been proposed, using a simple linear 

regression model: 

 

0.0195· 0.05c

dP
R

dt
   (14) 

 

It has been found that the critical radius of 0.07 

mm, obtained from Equation 13 and recommended in 

a previous work (Colussi et al., 2016) without 

considering the loading rate, falls within the range of 

variation here proposed. In the next figure (Fig. 6) 

experimental data in terms of the square root of the 

ratio between the averaged strain energy density, W  

and the critical value of strain energy, Wc, are 

displayed. It is worth pointing out that this parameter 
has been chosen because of its proportionality to the 

fracture load. A critical strain energy equal to 0.02 

MJm-3 is assumed, obtained from Equation 12, 

assuming Young's modulus equal to 30 GPa, Poisson's 

ratio equal to 0.25 and tensile strength equal to 34 

MPa, since these are the medium characteristics 
provided by the material supplier (Etrema Products, 

Inc.). Moreover, in control volumes having radius 

given by Equation 14, the averaged strain energy 

density, W , has been calculated. The assumption 

made on the Young’s modulus to consider it as 

independent of the applied magnetic field is allowed 

in the range of variation of B0. A summary of 

experimental data from a previous work (Narita et al., 

2015) is presented in Fig. 6, displaying fracture loads 

measured under three-point bending at the loading 

rates of 0.2 Ns1 and 3.0 Ns1, in the presence and 

absence of the 0.03 T magnetic field. 

 
Table 2. Measured fracture loads as a function of the loading 

rate and the magnetic field 

  Pc [N] 

 ----------------------------------------------- 

dP/dt B0 = 0 T B0 = 0.03 T 

0.05 Ns1 58.3 59.2 

 65.8 61.9 

 74.7 64.6 

 66.3 (5.81) 61.9 (1.91) 

0.5 Ns1 66.6 60.7 

 68.5 61.6 

 67.5 (0.78) 61.1 (0.37) 

3.0 Ns1 71.0 74.2 

 79.2 59.3 

 - 60.0 

 75.1 (3.35) 64.5 (5.95) 

 

 

 
Fig. 5. Mean fracture loads as a function of the loading rate and 

the magnetic field B0 
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Fig. 6. Summary from specimens made out of Terfenol-D at various loading rates in the presence and absence of the magnetic 

field B0 

 

Specimens were 3 mm thick, 5 mm wide and 15 mm 

long. The crack depth was 0.5 mm. For their finite 

element modeling, considering the different geometry 

(ratio between width, w and thickness, h, equal to 5/3 

instead of 3/5), the plane strain condition was preferred 

as more suitable over the plane stress one. Evidence 

showed that almost all experimental data are contained 

in a confined scatter band, limited from 0.80 to 1.20 (4 

data over 35 being outside of this range). However, the 

few data exceeding the band fall in the safety region of 

the plot. In conclusion, being the scatter of the data 

quite limited, the averaged SED appears to be an 

appropriate criterion for the fracture strength 

assessment of Terfenol-D alloy cracked specimens, 

under mode I condition, in the presence or absence of 

the magnetic field and with variable loading rate. In the 

authors’ opinion this encouraging result leads to 

believe in the SED suitability to reliably assess 

Terfenol-D brittle failure. The relationship here 

proposed between the size of the control volume and 

the loading rate also allows to take into account the 

loading rate through finite element analyses. 

Conclusion 

The sensitivity of the rare earth element Terfenol-D 

alloy to defects was investigated both numerically and 

experimentally. Terfenol-D fracture resistance has 

shown to be greater in the absence of the magnetic field 

under three-point bending condition. The increase of the 

strain energy density around the crack tip, when the 

magnetic field is acting, validates this behavior. It has 

also been verified the failure of Terfenol-D at decreasing 

fracture loads as the loading rate decreases. Assuming a 

linear relationship between the size of the control 

volume and the loading rate, the averaged SED criterion 

is able to seize this behavior and seems capable of 

predicting Terfenol-D failures. 
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Nomenclature 

a Crack depth for cracked specimens  

B Magnetic induction vector 

Bi i component of the magnetic induction 

dkij Magnetoelastic constants 

E Young’s modulus 

G Strain energy release rate 

Gc Critical strain energy release rate 

h Thickness of the specimens 
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H Intensity vector of the magnetic field 

Hi i component of the intensity vector of the magnetic 

field 

J J-integral value 

l Length of the specimens 

KI Mode I stress intensity factor 

KIC Material fracture toughness 

n Exit path normal  

Rc Radius of the control volume 
H

ijkls  Elastic compliance 

T Surface tension vector 

u Displacement vector 

ui i component of the displacement vector 

w Width of the specimens 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

W Strain energy density 



W  Averaged strain energy density 

Wc Critical strain energy 

Wm Magnetic enthalpy 

Greek 

 Strain tensor 

ij ij component of the strain tensor 
T

ij  Magnetic permittivity  

v Poisson's ratio 

 Cauchy stress tensor 

ij ij component of the stress tensor 

t Tensile strength 

 Magnetic potential  

  Area of the control volume 


