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Abstract: The Andrey N. Kolmogorov’s system of axioms can be 

extended to encompass the imaginary set of numbers and this by adding to 

his original five axioms an additional three axioms. Hence, any experiment 

can thus be executed in what is now the complex set C which is the sum of 

the real set R with its corresponding real probability and the imaginary set 

M with its corresponding imaginary probability. The objective here is to 

evaluate the complex probabilities by considering supplementary new 

imaginary dimensions to the event occurring in the “real” laboratory. 

Whatever the probability distribution of the input random variable in R is, 

the corresponding probability in the whole set C is always one, so the 

outcome of the random experiment in C can be predicted totally. The 

result indicates that chance and luck in R is replaced now by total 

determinism in C. This is the consequence of the fact that the probability 

in C is got by subtracting the chaotic factor from the degree of our 

knowledge of the system. This novel complex probability paradigm will be 

applied to the concepts of degradation and the remaining useful lifetime of 

a vehicle suspension system, thus to the field of prognostic. 
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Introduction 

“An intellect which at any given moment 
knew all the forces that animate Nature and 
the mutual positions of the beings that 
comprise it, if this intellect were vast enough 
to submit its data to analysis, could condense 
into a single formula the movement of the 
greatest bodies of the universe and that of the 
lightest atom: For such intellect nothing could 
be uncertain; and the future just like the past 
would be present before its eyes.” 
Marquis Pierre-Simon de Laplace 

 
“The Divine Spirit found a sublime outlet in 
that wonder of analysis, that portent of the 
ideal world, that amphibian between being 
and not-being, which we call the imaginary 
root of negative unity.” 
Gottfried Wilhelm Von Leibniz 

 
Recent developments in system design technology like 

in aerospace, defense, petro-chemistry and automobiles, 

are represented earlier in literature by simulated models 
during the conception step and this to ensure the high 
availability of the industrial systems. Knowing that, the 
integration of diagnostic-prognostic models in these 
industrial systems is facilitated by these developments. 
In fact, the monitoring of the degradation indicators is 
used indirectly in failure prognostic and is just a 
measurement of an unwanted situation. Therefore, the 
diagnostic is not only a failure detection procedure but it 
also indicates the actual state and the historic of the 
system. Hence, a predictive maintenance is done by the 
subsequent prognostic model. Consequently, from a 
predefined threshold of degradation, the Remaining 
Useful Lifetime (RUL) is estimated. Based on a physical 
dynamic vehicle suspension system, this research paper 
elaborates a procedure to create a failure prognostic 
model (Abou Jaoude et al., 2010a). 

Moreover, predicting the remaining useful lifetime of 

industrial systems becomes currently an important aim 

for industrialists knowing that the failure which can 

occur suddenly is generally very expensive at the level of 

reparation, of production interruption and is bad for 
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reputation. The classical strategies of maintenance 

(Vachtsevanos et al., 2006) are no more efficient and 

practical because they do not take into consideration the 

instantaneous evolving product state, so it is important to 

understand the product in real time in order to prevent a 

failure during operation. In fact, we introduce a prognostic 

approach that seeks to provide an intelligent maintenance. 
A proposed analytic prognostic methodology based 

on some laws of damage in fracture mechanics is 
developed here. The damages are generally: Crack 
propagation, corrosions, chloride attack, creep, excessive 
deformation and deflection and damage accumulation. 
Whenever their analytic laws are available, the 
advantage of a prognostic approach based on a known 
damage law for a mechanical system is that it is 
adaptable to new situations and useful in determining the 
RUL of the system (Abou Jaoude and El-Tawil, 2013a; 
El-Tawil and Abou Jaoude, 2013). 

The procedure proposed in this study belongs to the 

model based prognosis approach related to the physical 

model. It is focused on developing and implementing 

effective diagnostic and prognostic technologies with 

the ability to detect faults in the early stages of 

degradation. Early detection and analysis may lead to 

better prediction and end of life estimations by 

tracking and modeling the degradation process. The 

idea is to use these estimations to make accurate and 

precise prediction of the time to failure of components. 

Early detection also helps avoid catastrophic failures 

(Abou Jaoude and El-Tawil, 2013b). 
Any prognostic methodology must lie on a type of 

damage. In this research paper, the case of fatigue 
degradation has been chosen due to the fact that it can be 
mathematically formulated by available analytic laws of 
degradation such as Paris-Erdogan’s law and Palmgren-
Miner’s law for cumulative damage (Abou Jaoude, 2012; 
Abou Jaoude, 2013a). 

In automobile industry, like for example the 

suspension component, this approach shows its 
importance for the same earlier reasons as it was 
explained in the paper (Abou Jaoude, 2015). In vehicle 
suspension system study the results of model simulations 
are done for three cases of road profile excitations. 

Furthermore, all our work in classical probability 
theory is to compute probabilities. The original idea in 
this study is to add new dimensions to our random 
experiment and this will make the work deterministic. In 
fact, the probability theory is a nondeterministic theory 
by nature; that means that the outcome of the events is 
due to chance and luck. By adding new dimensions to 
the event, we make the work deterministic and hence a 
random experiment will have a certain outcome in the 
complex set of probabilities C. It is of great importance 
that the stochastic system becomes totally predictable 
since we will be totally knowledgeable to predict the 
outcome of chaotic and random events that occur in 
nature like for example in statistical mechanics or in all 

stochastic processes. Therefore the work that should 
be done is to add to the real set of probabilities R, the 
contributions of M which is the imaginary set of 
probabilities, that makes the event in C = R + M 
deterministic. If this is found to be fruitful, then a new 
theory in statistical sciences and prognostic is 
elaborated and this to understand deterministically 
those phenomena that used to be random phenomena 
in R. This is what I called “the complex probability 
paradigm” that was initiated and elaborated in four 
previous papers (Abou Jaoude et al., 2010b;         
Abou Jaoude, 2013b; 2013c; 2014). 

Moreover, although the analytic laws are 

deterministic and very well-known (Abou Jaoude, 2015) 

but there are random factors (temperature, humidity, 

applied load location, water action, etc...) that affect the 

system and make its degradation function deviate from 

its calculated trajectory predefined by these laws. An 

updated follow-up of the degradation behavior with time 

or cycle number is done by the system failure 

probability. An accentuated effect of chaos on the system 

leads to a bigger jump in the degradation trajectory and 

hence to a greater probability of failure. 
Consequently, my purpose in this current work is to 

link the complex probability paradigm to the vehicle 
suspension system analytic and linear prognostic. By 
calculating the parameters of the new model, we will be 
able to determine the magnitude of the chaotic factor, the 
degree of our knowledge, the complex probability and 
the failure probability of the suspension system, which 
are all functions of the system degradation subject to 
chaos and random effects. 

Finally, this study is organized as follows: Firstly the 
analytic prognostic model of fatigue for vehicle 
suspension systems is recapitulated in the linear 
cumulative damage case, secondly the extended 
Kolmogorov’s axioms with their original parameters and 
interpretation are presented, thirdly the complex 
probability paradigm applied to prognostic is elaborated, 
fourthly the simulations of the new model for the three 
roads modes are illustrated and finally a comprehensive 
conclusion and perspectives end this research. 

The Analytic and Linear Prognostic Model for 

Vehicle Suspension Systems 

The purpose of my previous paper (Abou Jaoude, 

2015) was to create a model of prognostic capable of 
predicting the degradation trajectories of a vehicle 
suspension system under a given environment and 
starting from an initial known damage. 

The fatigue failure is one of the famous damage 
phenomena in mechanical systems like in vehicles where 
the suspension systems are subject to the fluctuation of 
roads stresses and loads σj (Lemaitre and Chaboche, 1990). 
This type of loadings leads to crack propagation that can 
accelerate rapidly. Usually, micro-cracks exist originally 
in the materials due to fabrication process where stresses 
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remain after manufacture. These micro-cracks are detected 
and measured and denoted by a0. The advantage of the 
choice of fatigue damage for the developed prognostic 
methodology was that it is a failure mechanism very well 
studied in literature and described under many known 
analytic laws. This mechanism has relatively the simplest 
formulation in comparison to the other damage phenomena. 
The fatigue characterizes the main failure cause of 
industrial equipment (Abou Jaoude et al., 2011). 

An analytic linear prognostic model was introduced 
in the previous research paper (Abou Jaoude, 2015) that 
permits to predict the Remaining Useful Lifetime (RUL) 
of a dynamic suspension system. This model considered 
the fatigue as a damage parameter and hence it was 
based on well-known laws of damage like Paris-Erdogan 
and Palmgren-Miner laws. An index of degradation was 
derived that varies from zero to one. My proposed model 
was based on the link between this index D and the crack 
length a. Failure is produced when a reaches a critical 
length aC after NC critical load cycles. Hence, my model 
was given by a simple function relating the instantaneous 
degradation to actual crack length aN as a measurement 
of actual damage after N load cycles. It was assumed that 
aC = e/8, where e is the width of the mechanical 
component of the suspension. 

The aim was to evaluate the evolution of the system 
lifetime at each instant. For this purpose the degradation 
trajectories had been used in terms of cycle numbers or 
the time of operation. From these degradation 
trajectories, the RULs variations were deduced. The 
prognostic of a complex system can be deduced from the 
prognostic of its sub-systems when their damage laws 
are available. To demonstrate the effectiveness of the 
model, an industrial example had been considered in the 
simulation in this previous paper (Abou Jaoude, 2015). 
This example was the vehicle suspension system where 
three modes of road profiles (severe, fair and good 
conditions) were simulated and examined. In such 
industrial system, this model proved that it is very 
convenient and it provides a useful tool for a prognostic 
analysis. Moreover, it is less expensive than other models 
that need a large number of data and measurements. 
Hence, the prognostic analytic linear model is presented 
by the general function given by Equation 1: 
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And therefore, the degradation trajectories D(N) as 

well as RUL(N) along the total number of loading cycles 

N can be drawn. 

Flowchart of the Analytic Linear Prognostic Model 

The following flowchart summarizes all the procedures 

of the proposed model Fig. 1 (Abou Jaoude, 2015):  

Results of the Model Simulations 

Note that in the current paper some of the initial 

parameters used: a0 (initial micro-crack), e (width of 

the suspension mechanical component), C 

(environment effect parameter), are different from 

those adopted in the previous paper (Abou Jaoude, 

2015), keeping always the three load profiles for the 

three roads modes (severe, fair and good) the same. 

Also, m (the suspension material parameter) is always 

equal to 2 in both research works. Therefore, the 

simulations yield somewhat different curves shapes 

for degradation and RUL. 

In mode 1 case (severe), it is noted that (Fig. 2) for N 

= 6,836,000 cycles, the degradation DN reaches the 

critical value DC = 1. The deduced lifetime of the 

suspension is 6,836,000 cycles of road excitation in 

mode 1. Moreover, the first sign of damage appears at 

about 2,000,000 cycles. Starting from 6,000,000 cycles, 

the slope of the degradation curve becomes very acute; 

hence damage is increasing very fast. 

In mode 2 case (fair), it is noted that (Fig. 3) for N = 

10,850,000 cycles, the degradation DN reaches the 

critical value DC = 1. The deduced lifetime of the 

suspension is 10,850,000 cycles of road excitation in 

mode 2. Moreover, the first sign of damage appears at 

about 2,500,000 cycles. Starting from 10,000,000 cycles, 

the slope of the degradation curve becomes very steep; 

hence damage is increasing very rapidly. 

In mode 3 case (good), it is noted that (Fig. 4) for N = 

17,222,000 cycles, the degradation DN reaches the 

critical value DC = 1. The deduced lifetime of the 

suspension is 17,222,000 cycles of road excitation in 

mode 3. Moreover, the first sign of damage appears at 

about 4,000,000 cycles. Starting from 15,000,000 cycles, 

the slope of the degradation curve becomes very acute; 

hence damage is increasing very quickly. 

In addition, Fig. 5 recapitulates the three previous 

figures. 

From the above, the three expected lifetimes are as 

follows: NC1 = 6,836,000 cycles; NC2 = 10,850,000 

cycles; NC3 = 17,222,000 cycles. Then, our prognostic 

procedure yields the Remaining Useful Lifetimes (RUL) 

for the three modes (Fig. 6) that can now be easily 

deduced from these three curves at any instant or any 

active cycle N as follows: 
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The Original Andrey N. Kolmogorov’s Set of Axioms 

The simplicity of Kolmogorov’s system of axioms 

may be surprising. Let E be a collection of elements 
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{E1, E2, …} called elementary events and let F be a 

set of subsets of E called random events. The five 

axioms for a finite set E are (Benton, 1966a; 1966b; 

Feller, 1968; Montgomery and Runger, 2003;  

Walpole et al., 2002): 

 

• F is a field of sets 

• F contains the set E 

• A non-negative real number Prob(A), called the 

probability of A, is assigned to each set A in F. We 

have always 0≤Prob(A)≤1 

• Prob(E) equal 1 

• If A and B have no elements in common, the number 

assigned to their union is: 
 

( ) ( )( )
robrob rob

P A B P A P B∪ = +  

 

  

  
 

Fig. 1. Flowchart of the analytic linear prognostic model  
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Fig. 2. Degradation trajectory for mode 1 (severe) of roads 

 

 
 

Fig. 3. Degradation trajectory for mode 2 (fair) of roads 
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Fig. 4. Degradation trajectory for mode 3 (good) of roads 

 

 
 

Fig. 5. Degradation trajectories for the three modes of roads 
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Fig. 6. RUL trajectories for the three modes of roads 

 

Hence, we say that A and B are disjoint; otherwise, 

we have: 
 

( ) ( )( ) – ( )
rob rob rob rob
P A B P A P B P A B∪ = + ∩  

 

And we say also that Prob(A∩B) = Prob(A) × Prob(B|A) 

= Prob(B) × Prob(A|B) which is the conditional 

probability. If both A and B are independent, then 

Prob(A∩B) = Prob(A) × Prob(B). 

Adding the Imaginary Part M 

Now, we can add to this system of axioms an 

imaginary part such that: 

 

• Let Pm = i(1-Pr) be the probability of an associated 

event in M (the imaginary part) to the event A in R 

(the real part). It follows that Pr +Pm/i = 1 where i
2
 = 

-1 (the imaginary number) 

• We construct the complex number or vector Z = Pr + 

Pm = Pr + i(1-Pr) having a norm |Z| such that: 
 

2 2 2
( / )

r m
Z P P i= +  

 

• Let Pc denote the probability of an event in the 

universe C where C = R + M. We say that Pc is the 

probability of an event A in R with its associated 

event in M such that: 
 

22 2( / ) 2 and is always equal to 1
r m r m

Pc P P i Z iP P= + = −  

We can see that the system of axioms defined by 

Kolmogorov could be hence expanded to take into 

consideration the set of imaginary probabilities by 

adding three new axioms (Abou Jaoude et al., 2010b; 

Abou Jaoude, 2013b; 2013c; 2014). 

The Purpose of Extending the Axioms 

It is apparent from the set of axioms that the 

addition of an imaginary part to the real event makes 

the probability of the event in C always equal to 1. In 

fact, if we begin to see the set of probabilities as 

divided into two parts, one real and the other 

imaginary, understanding will follow directly. The 

random event that occurs in R (like tossing a coin and 

getting a head), has a correspondent probability Pr. 

Now, let M be the set of imaginary probabilities and 

let |Z|
2 
be the degree of our knowledge of this 

phenomenon. Pr is always and according to 

Kolmogorov’s axioms, the probability of an event. 

A total ignorance of the set M makes: 

 

 0.5
r
P =  

 

And |Z|
2
 in this case is equal to: 1-2Pr(1-Pr) = 1-

(2×0.5)×(1-0.5) = 0.5. 

Conversely, a total knowledge of the set in R 

makes: Prob (event) = 1 and Pm = Prob (imaginary part) 

= 0. Here we have |Z|
2
 = 1-(2×1)×(1-1) = 1 because 

the phenomenon  is totally known, that is, its laws and 
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variables are completely determined, hence; our 

degree of our knowledge of the system is 1 or 100%. 

Now, if we can tell for sure that an event will never 

occur i.e., like ‘getting nothing’ (the empty set), Pr is 

accordingly = 0, that is the event will never occur in R. 

Pm will be equal to i(1-Pr) = i(1-0) = i and |Z|
2
 =1-

(2×0)×(1-0) = 1, because we can tell that the event of 

getting nothing surely will never occur; thus, the Degree 

of Our Knowledge (DOK for short) of the system is 1 or 

100% (Abou Jaoude et al., 2010b). 

We can infer that we have always: 

 
2 2 2 2

0.5 1 since ( / )

0 , / 1

r m

r m

Z Z DOK P P i and

P P i

≤ ≤ = = +

≤ ≤

 (2) 

 
And what is important is that in all cases we have: 

 

[ ]

22 2

r

2 2

( / ) 2

(1 ) 1 1

m r m

r r

Pc P P i Z iP P

P P

= + = −

= + − = =

 (3) 

 

In fact, according to an experimenter in R, the game 

is a game of luck: the experimenter doesn’t know the 

output of the event. He will assign to each outcome a 

probability Pr and he will say that the output is 

nondeterministic. But in the universe C = R + M, an 

observer will be able to predict the outcome of the game 

of chance since he takes into consideration the 

contribution of M, so we write: 
 

2 2

r m
c ( / )P P P i= +

 
 

Hence Pc is always equal to 1. In fact, the addition 

of the imaginary set to our random experiment 

resulted to the abolition of ignorance and 

indeterminism. Consequently, the study of this class 

of phenomena in C is of great usefulness since we will 

be able to predict with certainty the outcome of 

experiments conducted. In fact, the study in R leads to 

unpredictability and uncertainty. So instead of placing 

ourselves in R, we place ourselves in C then study the 

phenomena, because in C the contributions of M are 

taken into consideration and therefore a deterministic 

study of the phenomena becomes possible. 

Conversely, by taking into consideration the 

contribution of the set M we place ourselves in C and 

by ignoring M we restrict our study to 

nondeterministic phenomena in R (Srinivasan and 

Mehata, 1988; Stewart, 2002; Van Kampen, 2006; 

Bell, 1992; Boursin, 1986; Dacunha-Castelle, 1996; 

Dalmedico-Dahan et al., 1992). 

Moreover, it follows from the above definitions and 

axioms that (Abou Jaoude et al., 2010b): 

2

2 2 (1 )

            2 (1 ) 2 (1 )

            

r m r r

r r r r

iP P i P i P

i P P P P

Chf

= × × × −

= × × − = − −

=

 (4) 

 
2iPrPm will be called the Chaotic factor in our 

experiment and will be denoted accordingly by ‘Chf ‘. 
We will see why we have called this term the chaotic 
factor; in fact: 
 

• In case Pr = 1, that is the case of a certain event, 

then the chaotic factor of the event is equal to 0. 

• In case Pr = 0, that is the case of an impossible event, 

then Chf  = 0. Hence, in both two last cases, there is no 

chaos since the outcome is certain and is known in 

advance. 

• In case Pr = 0.5, Chf = -0.5 (Fig. 7). 
 

We notice that: 
 

0.5 0Chf− ≤ ≤
 

 
What is interesting here is thus we have quantified 

both the degree of our knowledge and the chaotic factor 
of any random event and hence we write now: 

 
22

2
r m

Pc Z iP P DOK Chf= − = −  (5)  

 
Then we can conclude that: 

 

• Pc
2 
=
 
Degree of our knowledge of the system-

chaotic factor = 1, therefore Pc = 1 
 

 
 
Fig. 7. DOK and Chf 
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This directly means that if we succeed to subtract and 

eliminate the chaotic factor in any random experiment, 

then the output will always be with the probability = 1 

(Ekeland, 1991; Gleick, 1997; Dalmedico-Dahan and 

Peiffer, 1986; Gullberg, 1997; SCIENCE et VIE, 1999). 

The graph below (Fig. 8) shows the linear relation 

between both DOK and Chf. 

To summarize and conclude, as the Degree of Our 

certain Knowledge or DOK in the real universe R is 

unfortunately incomplete, the extension to the complex 

set C includes the contributions of both the real set of 

probabilities R and the imaginary set of probabilities M. 

Consequently, this will result in a complete and perfect 

degree of knowledge in C = R + M (Pc = 1). In fact, in order 

to have a certain prediction of any random event, it is 

necessary to work in the complex set C in which the chaotic 

factor is quantified and subtracted from the computed 

degree of knowledge to lead to a probability in C equal to 

one (Pc
2 
= DOK−Chf = 1). This hypothesis is verified in 

four previous research papers by the mean of many 

examples encompassing both discrete and continuous 

distributions (Abou Jaoude et al., 2010b; Abou Jaoude, 

2013b; 2013c; 2014). The Extended Kolmogorov 

Axioms (EKA for short) or the complex probability 

paradigm can be illustrated by the following Fig. 9. 

The Complex Probability Paradigm Applied to 

Prognostic (Abou Jaoude et al., 2010b; Abou Jaoude, 

2013b; 2013c; 2014) 

In engineering systems, the remaining useful lifetime 

prediction is deeply related to many factors that 

generally have a chaotic and random behavior which 

decreases the degree of our knowledge of the system. 

From the EKA, we can deduce that if we add to an 

event probability in the real set R the imaginary part M 

(like the lifetime variables) then we can predict the exact 

probability of the Remaining Useful Lifetime (RUL) 

with certainty in C (Pc = 1). 

 

 
 
Fig. 8. Graph of DOK-Chf=1 

 

 
 

Fig. 9. The EKA or Complex Probability Paradigm 
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Fig. 10. EKA and the prognostic of degradation 

 

We can apply this idea to prognostic analysis through 

the degradation evolution of a system. As a matter of 

fact, prognostic analysis consists in the prediction of the 

remaining useful lifetime of a system at any instant t or 

cycle N and during the system functioning. 

Let us consider a degradation trajectory D(N) of a 

system where a specific instant (cycle) Nk is studied. The 

number Nk means here the age that is measured by the 

number of cycles (Fig. 10). 

Referring to the (Fig. 11), the previous statement 

means that at the system age Nk, the prognostic study 

must give the prediction of the failure instant NC. 

Therefore, the RUL predicted here at the cycle number 

Nk is the following value: 

 

( )k C k
RUL N N N= −  (6)  

 

In fact, at the beginning (Nk = 0) (point J), the failure 

probability Pr = 0, the chaotic factor in our prediction is 

zero (Chf = 0) and our knowledge of the intact system is 

certain (DOK = 1); therefore, RUL(0)= NC-Nk = NC-0 = NC. 

If Nk = NC (point L) then RUL(NC) = NC-NC = 0 and 

the failure probability is one (Pr = 1). At this point, failure 

occurs, hence our knowledge of the completely damaged 

system is certain (DOK = 1) and chaos has finished its 

harmful task so it is no more applicable (Chf = 0). 

If not (i.e., 0 <Nk<NC) (point K), the probability of 

the occurrence of this instant and the prediction 

probability of RUL are both less than one (not certain) 

due to non-zero chaotic factors. The degree of our 

knowledge is consequently less than 1. Thus, by applying 

here the EKA paradigm, we can determine the system RUL 

with certainty in C = R + M where Pc = 1 always. 

Furthermore, we need in our current study the absolute 

value of the chaotic factor that will give us the magnitude 

of the chaotic and random effects on the studied system 

materialized by the random cycle number N and which 

lead to a premature system failure. This new term will be 

denoted accordingly MChf or Magnitude of the Chaotic 

factor (Fig. 10). Hence, we can deduce the following: 

 

2

C

( ) ( ) 0

c ( ) ( ) ( )

( ) ( ) , 0.5 ( ) 0 

 ( ) ( ) 1,  0

k k

k k k

k k k

k k k

MChf N Chf N and

P N DOK N Chf N

DOK N Chf N since Chf N

DOK N MChf N N N

= ≥

= −

= + − ≤ ≤

= + = ∀ ≤ ≤

 

 
0 ( ) 0.5

where 0.5 ( ) 1

k

k

MChf N

DOK N

⇔ ≤ ≤

≤ ≤
 (7) 

 
Moreover, we can define two complementary events 

E and E  with the respective probabilities: 
 

( ) ( ) 1
rob rob
P E p and P E q p= = = −  

 
Then Prob(E) in terms of the cycle number Nk is 

given by: 
 

( )rob
( ) ( )

rob k k
P E P N N F N= ≤ =  

 
where, F is the Cumulative probability Distribution 

Function (CDF) of the random variable N. 

Since ( ) ( ) 1
rob rob
P E P E+ = , therefore, For a cycle N = 

Nk we have: 
 

( )( ) 1 ( ) 1

( ) 1 ( )

rob rob rob k

rob k k

P E P E P N N

P N N F N

= − = − ≤

= > = −

 

 
Let us define the two particular instants: 

 

• N0 = 0 assumed as the initial time of functioning 

(raw state) corresponding to D = D0 ≅ 0 

• NC = The failure instant (wear out state) 

corresponding to the degradation D = 1 
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The boundary conditions are: 
 

• For N0 = 0 then D = D0 (initial damage that may be 

nearly zero) and 
0

( ) ( 0) 0
rob

F N P N= ≤ =  

• For N = NC then D = 1 and 

( ) ( ) ( ) 1
C rob C

F N F N P N N= = ≤ =  

 
We note also that F(Nk) is a non-decreasing function 

that varies between 0 and 1. In fact, F(Nk) is a 

cumulative probability function. In addition, since 

RUL(Nk) = NC-Nk and 0≤Nk≤NC then RUL(Nk) is a non-

increasing remaining useful lifetime function (Fig. 11). 

The New Prognostic Model 

Let us present now the basic assumptions of the 

new model. 
We consider first the cumulative probability 

distribution function F(N) of the random variable N as 
equal to the degradation function itself, that means: 
 

( ) ( )
0

 ( ) ( )

N Nk

k rob k rob k

N

F N P N N P N D N

=

=

= ≤ = =∑  (8) 

 
We note that we are dealing here with discrete 

random functions depending on the discrete random 
number of load cycles. 

This basic assumption is plausible since: 
 

• Both F and D are non-decreasing functions 

• Both are cumulative functions starting from 0 and 

ending with 1 

• Both functions are without measure units: F is an 

index quantifying chance and randomness, as well 

as D which is an index quantifying degradation and 

system damage 
 

Then, we assume that the real probability Pr(N) is 

equal to (Fig. 11 and 12): 
 

( ) ( ) ( )

( ) ( )

( ) ( )

k

k k

0 0

k 1 k

1

1

-1

1

=

( ) ( )

( ) ( )

times the jump in  or  from

to

j

N N

j rob

N N

j

j

r j rob rob k

k k

N Nk

k k

rob

P N P N N P N N

F N F N

P N P N

D N D N

F N D N

N N N N

ψ

ψ

ψ

ψ

ψ

=

= =

−

−

−

=

−

×  ≤ − ≤  

= ×  −  

 
= × − 

  

 = × − 

=

= =

∑ ∑
 (9) 

 

where, 
-1 k 1

0,1,2, , , ,
k k C

N N N N N
+

= … … = the number of 

load cycles and N0 = 0 = the initial number of cycles at 

the simulation beginning. It corresponds to a 

degradation D = D(N0) =D0 which is generally 

considered to be nearly equal to 0; hence it follows 

that, F(N0) is logically equal to 0 just like any 

cumulative probability distribution function: 
 

• N1 = the first load cycle  

• ... ... ... 

• Nk = the kth load cycle 

• ... ... ...  

• NC  = The number of cycles till system failure = the 

critical number of load cycles. It corresponds to D = 

DC = 1. It follows directly that F(NC) = DC = 1 

• ψj = The simulation factor that depends on the 

road profile 
 

It is ψ1 = 107.41 for the first road profile (severe, j = 1), 
it is ψ2 = 155.04 for the second road profile (fair, j = 2), it is 
ψ3 = 301.20 for the third road profile (good, j = 3). 

We can observe that Pr(N) is a discrete step function, 

just like any discrete CDF, where the amount of the jump is 

a function of the degradation and damage evolution (Fig. 12 

and 13). Hence, it measures the probability of the system 

failure. Consequently, we have linked here probability 

theory to degradation measure. 

Initially we have: 
 

( ) ( ) ( )0 0 0
0

0 0

r k j j

j

P N N F N D Nψ ψ

ψ

= = = × = ×

= × =

 

 
Moreover: 

 
( )  ( )

j jr k k
P N ψ f N= ×  (10) 

 
where, fj(Nk) is the Probability Density Function (PDF). 

Knowing that, from classical probability theory, we have 

always: 
 

c

j

0

 ( ) 1 ,  for   1,2,3

N Nk

k

Nk

f N j

=

=

= =∑  

 
That means for any road profile. 

 

 
 
Fig. 11. RUL prognostic model 



Abdo Abou Jaoude / American Journal of Engineering and Applied Sciences 2015, 8 (1): 147.175 

DOI: 10.3844/ajeassp.2015.147.175 

 

158 

 

 
Fig. 12. Pr, degradation and the CDF step functions 

 

 
 

Fig. 13. P
r
 function of degradation 
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Therefore, we can deduce that: 
 

[ ]

[ ]

c c

k c

0 0

0

0

0

( ) ( )

 (0 ) 

( ) ( )

( ) ( )

( ) ( ) 1

  ( )  ,     1,2,3

k

k

k

N N N N

r k j rob

N N

j rob C

j C

j C

j C j C j

N N

j j k j

N

P N ψ P N

ψ P N N

ψ F N N F N N

ψ D N D N

ψ F N ψ D N ψ

ψ f N ψ for j

= =

= =

=

=

= ×

= × ≤ ≤

= × = − =

= × −

= × = × = ×

= × = =

∑ ∑

∑

 (11) 

 
This is reasonable since Pr(Nk) here is a cumulative 

probability function (Fig. 14) Notice that: 
 

( ) ( )

( )0

0 1,  0 1

 ( 0) ( 1)

 0

r k k

k C

k C

P N F N

and D D N D

for every N N

≤ ≤ ≤ ≤

≅ ≤ ≤ =

≤ ≤

 

 
And: 

 

0

If 0

0 0 ( ) 0

k

r k

N

D D F P N

→ ⇒

→ ≅ ⇒ → ⇒ →

 

If 

1 1 ( ) 1

k C

C r k

N N

D D F P N

→ ⇒

→ = ⇒ → ⇒ →

 

 

This, since the degradation is very flat near 0 and 

starts increasing with N, becoming very acute at N = NC; 

hence, near NC, Pr is the greatest and is nearly equal to 1. 

Furthermore, we have: 

 

• RUL(Nk) = NC-Nk and it corresponds to a 

degradation D(Nk) 

• RUL(Nk-1) = NC-Nk-1 and it corresponds to a 

degradation D(Nk-1), this implies that (Fig. 15): 

 

( ) ( ) ( )

( ){ }
1

1

- 

( )

r k k k

C C k

j

j k

P N D N D N

D N RUL N D N RUL N

ψ

ψ

−

−

= ×   

 = × − −  −   

 (12) 

 

Analysis and Extreme Chaotic Conditions 

Although (Abou Jaoude, 2015) but there are 

random factors (temperature, humidity, applied load 

location, water action, etc...) that affect the system and 

make its degradation function deviate from its 

calculated trajectory predefined by these laws. An 

updated follow-up of the degradation behavior with 

time or cycle number is done by Pr due to its definition 

that evaluates the jumps in D.

 
 

Fig. 14. Degradation and P
r
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Fig. 15. Pr and RUL 

 

In fact, an accentuated effect of chaos on the system 

leads to a bigger jump in the degradation trajectory and 

hence to a greater probability of failure Pr. If for 

example, due to extreme chaotic causes, D jumps 

directly from 0 to 1 then RUL goes straight from NC to 0 

and consequently Pr jumps instantly from 0 to ψj: 

 

( ) ( ) ( )

( ) ( )

[ ]

( ) ( )

k 1

0

r 0

c

0

 

 

1 0  

( )

 0 (1)

r k k

j C

j j

k r r C

j

N N
k

j

Nk

P N D N D N

D N D N

P N P N P N

ψ

ψ

ψ ψ

ψ

−

=

=

= ×  −  

= ×  −  

= × − =

= = +

= + ×

∑

 

 

where, N goes directly from N0 to NC. 

In the ideal extreme case, if the system never 

deteriorates staying indefinitely at D0 = 0 then RUL 

remains equal to NC and accordingly the jump in D is 

always 0, so ideally the probability of failure stays 0: 

 

( ) ( ) ( )

( ) ( )

[ ]

k 1

0 0
 

0 0  0,

r k k

j

j

j
P N D N D N

D N D N

ψ

ψ

ψ

−

= ×  −  

= ×  −  

= × − =

 

 

Where: 

 

( ) ( ) ( ) ( )0 1 1
D  ...   ... ...  0

k k
N D N D N D N

−

= = = = = =  

The Evaluation of the Paradigm Parameters 

We can infer from what has been elaborated 

previously the following: 

The real probability: 

 

( ) ( ) ( )k 1
 ,  1,2,3r j k kP N D N D N jψ

−

= ×  −  =   (13) 

 

The imaginary probability: 

 

( ) ( )

( ) ( ){ }1

P 1

1

m k r k

j k k

N i P N

i D N D Nψ
−

=  −  = 

 − × − 

 (14) 

 

The complementary probability: 

 

( ) ( ) ( ) ( )1P / 1 1  m k r k j k kN i P N D N D Nψ
−

= − = − ×  −    (15) 

 

The complex probability vector: 

 

( ) ( ) ( ) ( ) ( ) 1
k r k m k r k r k

Z N P N P N P N i P N= + = +  −    (16) 

 

The degree of our knowledge: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2

2

| |  1 2

1 2 1 1  2  2

k k r k m k

r k r k r k r k

DOK N Z N iP N P N

P N P N P N P N

= +

= −  −  = − + 

 (17) 

 

The chaotic factor: 
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( ) ( ) ( ) ( )

m

2

k

( ) =  2 ( ) ( )

2 1 2  2

r k k

r k r r k r k

k
Chf N iP N P N

P N P N P N P N= −  −  = − + 
 (18) 

Chf is null when Pr(Nk) = Pr(0) = 0 (point J) and 

when  Pr(Nk)  =  Pr(NC)  = 1 (point L) (Fig. 10 and 

11). 

 

 

  
 

Fig. 16. Flowchart of the complex probability prognostic model 
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The Magnitude of the Chaotic Factor MChf: 

 

( ) ( ) ( ) ( )

( ) ( )2

2 1

2 2

k k r k r k

r k r k

MChf N Chf N P N P N

P N P N

= =  −  

= −
 (19) 

 

MChf is null when Pr(Nk) = Pr(0) = 0 (point J) and 

when Pr(Nk) = Pr(NC) = 1 (point L) (Fig. 10 and 11). 

At any instant Nk (point K) (Fig. 10 and 11), the 

probability expressed in the complex set C is: 

 
2 2

2

( ) [ ( ) ( ) / ]

( ) 2 ( ) ( )

( ) ( ) 1

k r k m k

k r k m k

k k

Pc N P N P N i

Z N iP N P N

DOK N Chf N

= +

= −

= − =

 (20) 

 

Then: 

 

( ) ( ) ( ) ( )

( )

k
/

[1 ] 1 always

r k m k r k

r k

Pc N P N P N i P N

P N

= + =

+ − =

 

 
Hence, the prediction of D(Nk) and RUL(Nk) of the 

system in C is permanently certain. 

Let us consider thereafter the suspension system to 

model the cumulative distribution function F(Nk) = D(Nk) 

and visualize as well as quantify all the EKA parameters. 

Flowchart of the Complex Probability Prognostic 

Model 

The following flowchart summarizes all the 
procedures of the proposed complex probability 
prognostic model Fig. 16. 

Simulation of the New Paradigm 

The Parameters Analysis in the Suspension 

Prognostic for Mode 1 

We rescaled RUL = [0; 6,836,000] to [0; 1] in 
order to fit and represent it with all the EKA 
parameters and D which vary in [0; 1] on the same 
graph while having all of them as functions of the 
number of cycles N = [0; 6,836,000]. 

We notice from the Fig. 17-20 that the DOK is 
maximum (DOK = 1) when MChf is minimum (MChf 
= 0) (points J and L) and that means when the magnitude 
of the chaotic factor (MChf) decreases our certain 
knowledge (DOK) increases.  

 

 
 

Fig. 17. Degradation and EKA parameter for mode 1 
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Fig. 18. Degradation and EKA parameters with MChf for mode 1 
 

 
 

Fig. 19. Degradation, rescaled RUL and EKA parameters for mode 1 
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Fig. 20. Degradation, rescaled RUL and EKA parameters with MChf for mode 1 

 

At the beginning (point J) Pr(N = N0 = 0) = 0, the 

system is intact (zero damage: D = 0) and has zero 

chaotic factor (Chf (0) = MChf (0) = 0) before any usage, 

at this instant (cycles number) DOK(0) = 1 and RUL(0) = 

NC-0 = NC = 6,836,000 cycles = NC/1. We have here the 

probability of the system collapse Pr(0) is 0; hence, this 

is the system raw state. At this point Pm/i(0) = 1, thus 

PC(0) = Pr(0) + Pm/i(0) = 0+1 = 1. 
Afterward, 0<N<NC, RUL(N) = NC-N with Pr(N) = 

ψ1× [D(N)-D(N-1)] ≠ 0 and Pc(N) = Pr(N) + Pm/i(N) = 1 
and MChf starts to increase during the functioning due to 
the environment and intrinsic conditions thus leading to 
a decrease in DOK. 

If N = NC/2 = 6,836,000/2 = 3,418,000 cycles = half 

life of the suspension system, then RUL = NC-N/2 = 

3,418,000 cycles = NC/2, D = 0.0887, DOK = 0.9265, 

Chf = -0.0735, MChf = 0.0735, Pr = 0.0382, Pm/i = 

0.9618, with Pc =Pr + Pm/i = 0.0382+0.9618 = 1. 

If D = 0.5 then N = 9,573,100 cycles, RUL = NC-N = 

1,276,900 cycles = NC/8.5, DOK = 0.5403, Chf = -

0.4597, MChf = 0.4597, Pr = 0.3581, Pm/i = 0.6419, with 

Pc = Pr + Pm/i = 0.3581+0.6419 = 1. At this point, both 

the rescaled RUL and D intersect. We can see that with 

the increase of N and hence the decrease of RUL, the 

probability of failure Pr increases also. Furthermore, 

notice in the last Fig. 20 the complete symmetry at the 

vertical axis D = 1/2 = degradation half way to 

complete damage. 

If N = 6,287,900 cycles (point K) both DOK 
(minimum) and MChf (maximum) reach 0.5 where 
RUL(N) = NC-N = 6,836,000-6,287,900 = 548,100 
cycles = NC/12.47, D = 0.6274, Pr = 0.5, Pm/i = 0.5 
and Chf = -0.5, with Pc = Pr + Pm/i = 0.5+0.5 = 1 as 
always. Thus, all the EKA parameters will intersect at the 
point K. We have here maximum chaos and the 
minimum of the system knowledge; therefore, the 
probability of the system crash is Pr = 1/2 = probability 
half way to complete damage. 

If D = 0.9 then N = 6,718,100 cycles, RUL = NC-N = 

117,900 cycles = NC/58, DOK = 0.7550, Chf = -0.2450, 

MChf = 0.2450, Pr = 0.8571, Pm/i = 0.1429, Pc = Pr + 

Pm/i = 0.8571+0.1429 = 1. Here, since D = 0.9 which is 

very close to 1, then the failure probability Pr is very 

near to 1 since we will reach total damage very soon. 

With the increase of the time of functioning, MChf and 

Chf return to zero, DOK returns to 1 where we reach total 

damage (D = 1) at N = NC = 6,836,000 cycles and hence 

the breakdown of the system (point L). At this last point, 

failure here is certain, this is the system wear out state; 

therefore, Pr =1, Pm/i = 0, RUL(N) = NC-N = NC-NC = 0 

with Pc =Pr + Pm/i = 1+0 = 1 and so the logical explanation 

of the value of DOK = 1 follows. 
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We note that the same logic and analysis concerning 

the degradation, the remaining useful lifetime, as well as all 

the EKA parameters, apply for all the three modes of roads. 

The Complex Probability Cubes 

In the first figure (Fig. 21), we can see the simulation 

of DOK and Chf as functions of each other and of the 

cycles number N for mode 1 of roads. The line in 

magenta is Pc
2
(N) = DOK(N)-Chf (N) = 1 = Pc(N). This 

line, projected on the N = 0 plane, starts at the point 

(DOK = 1, Chf = 0) when N = 0, reaches the point (DOK 

= 0.5, Chf = -0.5) when N = 6,287,900 cycles (point K in 

Fig. 17-20) and returns at the end to (DOK = 1, Chf = 0) 

when N = NC = 6,836,000 cycles. The other curves are 

the graphs of DOK(N) and Chf(N) in different planes. 

Notice that they all have a minimum at N = 6,287,900 

cycles (point K in Fig. 17-20), as explained previously. 

In the second figure (Fig. 22), we can notice the 

simulation of the failure probability Pr(N) and its 

complementary probability Pm/i(N) in terms of the cycles 

number N for mode 1 of roads. The line in cyan is Pc
2
(N) 

= Pr(N) + Pm/i(N) = 1 = Pc(N). This line, projected on the 

N = 0 plane, starts at the point (Pr = 0, Pm/i = 1) and ends 

at the point (Pr = 1, Pm/i = 0). The red curve represents 

Pr(N) in the plane Pr = Pm/i and the blue curve represents 

Pm/i(N) in the plane Pr + Pm/i = 1. Notice the importance of 

the point (Pr = 0.5, Pm/i = 0.5) corresponding to N = 

6,287,900 cycles (point K in Fig. 17-20). Note that similar 

cubes can be drawn for modes 2 and 3 with their 

corresponding NC and points J, K and L. 

The Parameters Analysis in the Suspension 

Prognostic for Mode 2 

Just like for mode 1 simulations, we rescaled RUL = 

[0; 10,850,000] to [0; 1] in order to fit and represent it 

with all the EKA parameters and D which vary in [0; 1] 

on the same graph while having all of them as functions 

of the number of cycles N = [0; 10,850,000]. 
We note from the Fig. 23-26 that the DOK is maximum 

(DOK = 1) when MChf is minimum (MChf = 0) (points J 
and L) and that means when the magnitude of the chaotic 
factor (MChf) decreases our certain knowledge increases. 

At the beginning (point J) Pr(N = 0) = 0, the system is 
intact (zero damage: D = 0) and has zero chaotic factor 
(Chf (0) = MChf(0) = 0) before any usage. At this instant 
(cycles number) DOK(0) = 1 and RUL(0) = NC-0 = NC = 
10,850,000 cycles = NC/1. Here Pm/i(0) = 1, with Pc(0) 
=Pr(0) + Pm/i(0) = 0+1 = 1.  

 

 

 
Fig. 21. DOK and Chf in terms of N and of each other for mode 1 
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Fig. 22. P
r
 and P

m
/i in terms of N for mode 1 

 

Afterward, 0<N<NC, RUL(N) = NC-N with Pr(N) = 

ψ2× [D(N)-D(N-1)] ≠ 0 and Pc(N) =Pr(N) + Pm/i(N) = 1 

and MChf starts to increase during the functioning due 

to the environment and intrinsic conditions thus 

leading to a decrease in DOK. 

If N = NC/2 = 10,850,000/2 = 5,425,000 cycles = 

half life of the suspension system, then RUL =NC-N/2 = 

10,850,000-5,425,000 cycles = 5,425,000 = NC/2, D = 

0.0846, DOK = 0.9342, Chf = -0.0658, MChf= 0.0658, 

Pr = 0.0341, Pm/i= 0.9659, with Pc = Pr + Pm/i = 

0.0341+0.9659 = 1. 

If D = 0.5 then N = 9,573,100 cycles, RUL = NC-N = 

1,276,900 cycles = NC/8.5, DOK = 0.5403, Chf = -0.4597, 

MChf = 0.4597, Pr = 0.3581, Pm/i = 0.6419, with Pc = 

Pr + Pm/i = 0.3581+0.6419 = 1. At this point, both the 

rescaled RUL and D intersect. We can see that with the 

increase of N and hence the decrease of RUL, the 

probability of failure Pr increases also. Furthermore, 

notice in the last Fig. 26 the complete symmetry at the 

vertical axis D = 1/2 = degradation half way to 

complete damage. 

If N = 10,004,200 cycles (point K) both DOK 

(minimum) and MChf (maximum) reach 0.5 where 

RUL(N) = NC-N = 10,850,000-10,004,200 = 845,800 

cycles = NC/12.83, D = 0.6355, Pr = 0.5, Pm/i = 0.5 

and Chf = -0.5, with Pc = Pr + Pm/i = 0.5+0.5 = 1 as 

always. Thus, all the EKA parameters will intersect 

at the point K. We have here maximum chaos and 

the minimum of the system certain knowledge; 

therefore, the probability of the system crash is Pr = 

1/2 = probability half way to complete damage. We 

note that relatively to mode 1 (severe road 

conditions), the point K in Fig. 23 and 24 is no more 

at (6,287,900; 0.5) but shifted to the right and is now 

at (10,004,200; 0.5) since the probability 

distribution for mode 2 (fair road conditions) is 

naturally different. Hence, DOK, Chf and MChf are 

more skewed to the left relatively to mode 1. 

If D = 0.9 then N = 10,667,000 cycles, RUL = NC-N = 

183,000 cycles = NC/59.3, DOK = 0.7325, Chf = -0.2675, 

MChf = 0.2675, Pr = 0.8410, Pm/i = 0.1590, Pc =Pr + 

Pm/i = 0.8410+0.1590 = 1. Here, since D = 0.9 which is 

very close to 1, then the failure probability Pr is very 

near to 1 since we will reach total damage very soon. 

With the increase of the time of functioning, MChf 

and Chf return to zero, DOK returns to 1 where we reach 

total damage (D = 1) at N = NC = 10,850,000 cycles and 

hence the breakdown of the system (point L). At this last 

point, failure here is certain, this is the system wear out 

state; therefore, Pr = 1, Pm/i = 0, RUL(N) = NC-N = NC-NC 

= 0 with Pc = Pr + Pm/i = 1+0 = 1 and so the logical 

explanation of the value of DOK = 1 follows. 
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Fig. 23. Degradation and EKA parameters for mode 2 
 

 
 

Fig. 24. Degradation and EKA parameters with MChf for mode 2 
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Fig. 25. Degradation, rescaled RUL and EKA parameters for mode 2 

 

 
 

Fig. 26. Degradation, rescaled RUL and EKA parameters with MChf for mode 2 
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Fig. 27. Degradation and EKA parameters for mode 3 

 

 
 

Fig. 28. Degradation and EKA parameters with MChf for mode 3 
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Moreover, at each instant N, the remaining useful 

lifetime RUL(N) is certainly predicted in the complex set 

C with Pc = DOK-Chf = DOK + MChf maintained as 

equal to one through a continuous compensation 

between DOK and Chf. This compensation is from 

instant N = 0 where D(N) = 0 until the failure instant NC 

where D(NC) = 1. We can understand now that DOK is 

the measure of our certain knowledge (100% probability) 

about the expected event, it does not include any 

uncertain knowledge (with a probability less than 100%). 

We note that the same logic and analysis for mode 1 

of road are applied to mode 2 of road concerning the 

degradation, the remaining useful lifetime, as well as all 

the EKA parameters. 

The Parameters Analysis in the Suspension 

Prognostic for Mode 3 

Just like for modes 1 and 2 simulations, we rescaled 
RUL = [0; 17,222,000] to [0; 1] in order to fit and 
represent it with all the EKA parameters and D which 
vary in [0; 1] on the same graph while having all of them 
as functions of the number of cycles N = [0; 17,222,000]. 

We note from the Fig 27-30 that the DOK is 
maximum (DOK = 1) when MChf is minimum (MChf = 
0) (points J and L) and that means when the magnitude 
of the chaotic factor (MChf) decreases our certain 
knowledge increases.  

At the beginning (point J) Pr(N = 0) = 0, the system is 
intact (zero damage: D = 0) and has zero chaotic factor 
(Chf (0) = MChf(0) = 0) before any usage, at this instant 
(cycles number) DOK(0) = 1 and RUL(0) = NC-0 = NC = 
17,222,000 cycles = NC/1. Here Pm/i(0) = 1 with Pc(0) = 
Pr(0) + Pm/i(0) = 0+1 = 1. 

Afterward, 0<N<NC, RUL(N)= NC-N with Pr(N) = 

ψ3× [D(N)-D(N-1)] ≠ 0 and Pc(N) = Pr(N) + Pm/i(N) = 1 

and MChf starts to increase during the functioning due to 

the environment and intrinsic conditions thus leading to 

a decrease in DOK. 

If N = NC/2 = 17,222,000/2 = 8,611,000 cycles = half 

life of the suspension system, then RUL = NC-N/2 = 

17,222,000-8,611,000 cycles = 8,611,000 = NC/2, D = 

0.0977, DOK = 0.9157, Chf = -0.0843, MChf = 0.0843, 

Pr = 0.0441, Pm/i = 0.9559, with Pc =Pr + Pm/i = 

0.0441+0.9559 = 1. 

If D = 0.5 then N = 14,947,000 cycles, RUL = NC-N = 

2,275,000 cycles =NC/7.6, DOK = 0.5383, Chf = -0.4617, 

MChf = 0.4617, Pr = 0.3616, Pm/i = 0.6384, with Pc = Pr + 

Pm/i = 0.3616+0.6384 = 1. At this point, both the rescaled 

RUL and D intersect. We can see that with the increase of N 

and consequently the decrease of RUL, the probability of 

failure Pr increases also. Furthermore, notice in the last 

figure (Fig. 28) the complete symmetry at the vertical axis 

D = 1/2 = degradation half way to complete damage. 

If N = 15,750,000 cycles (point K) both DOK 

(minimum) and MChf (maximum) reach 0.5 where 

RUL(N) = NC-N = 17,222,000-15,750,000 = 1,472,000 

cycles = NC/11.7, D = 0.6303, Pr = 0.5, Pm/i = 0.5 and 

Chf = -0.5 with Pc = Pr + Pm/i = 0.5+0.5 = 1 as always. 

Hence, all the EKA parameters will intersect at the point 

K. We have here maximum chaos and the minimum of 

the system knowledge; therefore, the probability of the 

system crash is Pr = 1/2 = probability half way to 

complete damage. We note that relatively to mode 1 

(severe road conditions) and mode 2 (fair road 

conditions), the point K in Fig. 27 and 28 is no more at 

(6,287,900; 0.5) or (10,004,200; 0.5) but shifted more to 

the right and is now at (15,750,000; 0.5) since the 

probability distribution for mode 3 (good road conditions) 

is eventually different. Hence, DOK, Chf and MChf are 

more negatively skewed relatively to modes 1 and 2. 

If D = 0.9 then N = 16,885,000 cycles, RUL = NC-N = 

337,000 cycles = NC/51.1, DOK = 0.7308, Chf = -0.2692, 

MChf = 0.2692, Pr = 0.8397, Pm/i = 0.1603, with Pc = Pr 

+ Pm/i = 0.8397+0.1603 = 1. Here, since D = 0.9 which 

is very close to 1, then the failure probability Pr is very 

near to 1 since we will reach total damage very soon. 

With the increase of the time of functioning, MChf 

and Chf return to zero, DOK returns to 1 where we reach 

total damage (D = 1) at N = NC = 17,222,000 cycles and 

hence the breakdown of the system (point L). At this last 

point, failure here is certain, this is the system wear out 

state; therefore, Pr = 1, Pm/i = 0, RUL(N) = NC-N = NC-

NC = 0 with Pc = Pr + Pm/i = 1+0 = 1 and so the logical 

explanation of the value of DOK = 1 follows. 

Moreover, at each instant N, the remaining useful 

lifetime RUL(N) is certainly predicted in the complex set 

C with Pc maintained as equal to one through a 

continuous compensation between DOK and Chf. This 

compensation is from instant N = 0 where D(N) = 0 until 

the failure instant NC where D(NC) = 1, keeping always 

Pc = DOK-Chf = DOK + MChf = 1. Furthermore, what is 

truly interesting in three modes simulations is that we 

have quantified both the degree of our knowledge and 

the chaotic factor of the vehicle suspension system. 

It is clear from the three modes simulations that DOK 

is the measure of our certain knowledge (100% probability) 

about the expected event and it does not include any 

uncertain knowledge (with a probability less than 100%). 

We note that the same methodology and analysis for 

mode 1 and 2 of roads are applied to mode 3 of road 

concerning the degradation, the remaining useful 

lifetime, as well as all the EKA parameters. Thus, we can 

consequently conclude that whatever the road conditions 

are, both the logic and the method implemented are 

similar. This proves the validity of the new axioms 

developed and the novel prognostic model adopted. 

The Parameters Visualization in the Suspension 

Prognostic for the Three Modes 

Furthermore, the following simulations (Fig. 31-34) 

recapitulate all the previous figures. 
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Fig. 29. Degradation, rescaled RUL and EKA parameters for mode 3 

 

 
 

Fig. 30. Degradation, rescaled RUL and EKA parameters with MChf for mode 3 
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Fig. 31. Degradation and EKA parameters for the three modes 

 

 
 

Fig. 32. Degradation and EKA parameters with MChf for the three modes 
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Fig. 33. Degradation, rescaled RUL and EKA parameters for the three modes 

 

 
 

Fig. 34. Degradation, rescaled RUL and EKA parameters with MChf for the three modes 
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Conclusion and Perspectives 

The analytic linear prognostic model elaborated in a 

previous work permits to predict, at each cycle or 

instant, the remaining useful lifetime of the system by 

a simple and practical way. The lifetimes are 

concluded from the time reading at each instant on the 

degradation curves or trajectories. To show the 

efficiency of this prognostic model, it was applied in 

simulation to predict the fatigue life of the vehicle 

suspension systems. The degradation trajectories 

deduced allowed us to determine their remaining useful 

lifetimes. The proposed model belongs to the model-

based approach. Whenever the analytic damage laws 

are available, like the linear damage propagation law of 

Palmgren-Miner used in my previous and current 

papers, this model can be adaptable to new situations 

or cases. In industrial systems, this model shows that it 

is convenient and practical as a flexible tool for 

prognostic analysis. 
In the current paper I applied the theory of 

Extended Kolmogorov Axioms to analytic and linear 

prognostic of vehicle suspension system. Hence, I 

established a tight link between the new paradigm and 

degradation or the remaining useful lifetime. Thus, I 

developed the theory of “Complex Probability” beyond 

the scope of my previous four papers on this topic. 

Although the analytic laws used previously are 

deterministic and very well-known but there are 

random factors (temperature, humidity, applied load 

location, water action, etc...) that affect the system and 

make its degradation function deviate from its 

calculated trajectory predefined by these laws. An 

updated follow-up of the degradation behavior with 

time or cycle number is done by the failure probability 

Pr due to its definition that evaluates the jumps in D. In 

fact, an accentuated effect of chaos on the system leads 

to a bigger jump in the degradation trajectory and 

hence to a greater probability of failure. As it was 

proved and illustrated, when the degradation index is 0 

or 1 and correspondingly the RUL is NC or 0 then the 

Degree of Our Knowledge (DOK) is one and the 

chaotic factor (Chf and MChf) is 0 since the state of the 

system is totally known. During the process of 

degradation (0< D <1) we have: 0.5< DOK <1, -0.5< 

Chf <0 and 0< MChf <0.5. Notice that during the 

whole process of degradation we have Pc = DOK - Chf 

= DOK + MChf = 1, that means that the phenomenon 

which seems to be random and stochastic in R is now 

deterministic and certain in C = R + M and this after 

adding to R the contributions of M and hence after 

subtracting the chaotic factor from the degree of our 

knowledge. Moreover, for each value of an instant N, I 

have determined its corresponding probability of 

failure which is a function of the degradation jump. 

Therefore, at each cycle N, RUL(N) = NC-N is certainly 

predicted in the complex set C with Pc maintained as 

equal to one through a continuous compensation 

between DOK and Chf. This compensation is from 

instant N = 0 where D(N) = 0 until the failure instant 

NC where D(NC) = 1. Furthermore, using all these 

graphs illustrated throughout the whole paper, we can 

visualize and quantify both the system chaos (Chf and 

MChf) and the system certain knowledge (DOK and Pc). 

This is certainly very interesting and fruitful and shows 

once again the benefits of extending Kolmogorov's 

axioms and thus the originality and usefulness of this 

new field in applied mathematics and prognostic that can 

be called verily: “The Complex Probability Paradigm”. 

As prospective and future works, it is planned to 

more develop the novel proposed prognostic 

methodology and to apply it to a wide set of dynamic 

systems. In addition, the nonlinear damage propagation 

law will be considered as well as the extended 

stochastic model which is based on the accumulation 

of damage due to fatigue crack propagation in 

stochastic conditions where the initial crack length and 

the loading are taken as random. 
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Nomenclature 

R = Real set of events 

M = Imaginary set of events 

C = Complex set of events 
i = The imaginary number where i

2
 = -1 

EKA = Extended Kolmogorov's Axioms 

Prob = probability of any event 

Pr = Probability in the real set R 

Pm = Probability in the imaginary set M 

corresponding to the real probability in R 

Pc = Probability of an event in R with its 

associated event in M 

 = Probability in the complex set C 

Z = Complex probability number and vector = 

sum of Pr and Pm 

DOK = |Z|
2
 = Degree of Our Knowledge of the 

random experiment and event 

Chf = Chaotic factor 

MChf = Magnitude of the Chaotic factor  

N = Number of load cycles 

NC = Number of cycles till system failure 

D = Degradation of a system 

RUL = Remaining Useful Lifetime of a system 


