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Abstract: Neural networks have been frequently used in various areas. In 

the implementation of the networks, time delays and uncertainty are 

present and known to lead to complex behaviors, which are hard to 

predict using classical analysis methods. In this study, stability and robust 

stability of neural networks considering time delays and parametric 

uncertainty is studied. For stability analysis, the rightmost eigenvalues (or 

dominant characteristic roots) are obtained by using an approach based on 

the Lambert W function. The Lambert W function has already been 

embedded in various commercial software packages (e.g., MATLAB, 

Maple and Mathematica). In a way similar to non-delayed systems, 

stability is determined from the positions of the characteristic roots in the 

complex plane. Conditions for oscillation and robust stability are also 

given. Numerical examples are provided and the results are compared to 

existing approaches (e.g., bifurcation method) and discussed. 
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Introduction  

During the last several decades, neural networks have 

received wide interest due to their applications in various 

areas, such as signal processing, image processing, 

power systems and optimization (Kim et al., 1996; 

Haque and Kashtiban, 2005). Because successful 

performance of some of those systems hinges on stability 

of neural networks stability analysis and stabilization are 

significant problems. However, in the implementation of 

neural networks, due to finite switching speed of 

amplifiers and signal transmission among neurons, time 

delays are present and affect stability results. Moreover, 

designing a network to operate more quickly will 

increase the relative size of the delay. The time delays 

lead to complex dynamical behaviors and often induce 

unstable behaviors. The neural networks that have the 

time delays are represented by Delay Differential 

Equations (DDEs). Unlike Ordinary Differential 

Equations (ODEs), DDEs has an infinite number of roots 

of the characteristic equations, which are transcendental. 

For this reason, time-delay systems cannot be handled by 

using classical methods developed for ordinary systems 

and thus, are often ignored. Unfortunately, existing 

approaches for time-delay systems are limited in three 

critical ways: (1) They approximate time delays in 

modeling and, thus, reduce accuracy (e.g., Padé 

approximation); (2) They rely on model-based prediction 

of future trajectories (e.g., Smith predictor), which is 

vulnerable to uncertainty; (3) Or, they are dependent 

upon Lyapunov functions, which induce 

conservativeness in the results. Those shortcomings 

mainly come from lack of analytical solutions for time-

delay systems. Thus, a new effective approach based on 

analytical solutions is needed and can contribute 

advances in theory and development of methodologies. 

A systematic approach for time-delay systems has 

been developed using the Lambert W function (Yi et al., 

2010; 2011). In this study, stability of neural networks is 

determined based on the Lambert W function-based 

method. Using the approach, the stability condition can 

be expressed analytically in term of system parameters. 

Thus, the approach is more intuitive and similar to 

methods for non-delay systems. Also, considering 
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uncertainty caused by linearization and/or parametric 

uncertainty, robust stability analysis is conducted. 

Conditions for periodic solutions, which can be used to 

restore various complex patterns (Yu et al., 2008), is 

presented using the approach. Note that the Lambert W 

function is already embedded in the various commercial 

software packages, such as Matlab, Maple and 

Mathematica. Also, some basic MATLAB codes are 

available on websites (Yi et al., 2014). 

In addition to time delays, in practice, the weight 

coefficients of the neurons depend on certain resistance 

and capacitance values which are subject to have 

uncertainties. Parametric uncertainty, which are frequently 

neglected in idealized models, can lead to instability not 

predicted by theory (Marcus and Westervelt, 1989). For 

example, parametric fluctuation in neural network 

implementation on Very Large-Scale Integration (VLSI) 

chips is unavoidable (Cao and Wang, 2005). It is 

important to ensure the asymptotic stability of the 

designed network in the presence of such uncertainties 

(i.e., to ensure the robust stability) (Singh, 2004). Thus, 

the approach presented in this study will be of interest. 

Background 

A circuit equation for a network of N neurons (the 

well-known Hopfield model) was introduced in 

(Hopfield, 1984). Afterward, considering the finite 

switching speed of amplifiers, a delay, h’, is added to the 

network model in (Marcus and Westervelt, 1989). The 

resulting network model is represented by using a system 

of DDEs given by Equation 1: 
 

( ) ( ) ( )( )
1

1
' ' ' '

N

i i i ij j j

ji

C u t u t T f u t h
R =

= − + −∑ɺ  (1) 

 

In the network, ui(t’) represents the voltage of ith 

neuron. The parameters, Ci and Ri, are the capacitance 

and resistance of the neuron, respectively. The output of 

jth neuron is connected to the input of ith neuron through 

the connection factor, Tij. The transfer function, f(u), is 

sigmoid. First, consider a network, which consists of 

identical neurons. Then, after several procedures of 

linearization and simplification, the equations becomes 

(Marcus and Westervelt, 1989): 

 

( ) ( ) ( )i i i ix t x t x t hβλ= − + −ɺ  (2) 

 

where, the gain β is the slope of fi(u) at u = 0 and λi is the 

eigenvalues of the connection matrix. The characteristic 

equation of Equation 2 is: 

 

1 0
i i

s his eβλ −+ − =  (3) 

Then, the origin is asymptotically stable when R(si) 

<0 for all i. When R(si) >0 for some i, the origin is 

unstable to perturbations in the direction of the 

eigenvector associated with si. Thus, to determine 

stability of the network, it is essential to obtain the roots 

of Equation 3. However, because of the exponential 

term, 
s hie , in Equation 3, the characteristic equation is 

transcendental and the number of roots becomes infinite. 

The difficulty in using analysis and control methods for 

ODEs is caused by the fact that it is not feasible to find 

all the infinite number of roots si of Equation 3 and to 

identify the rightmost root among them. The Lambert W 

function, defined as: 

 

( ) ( )
k

W HkW H e H=  (4) 

 

Has been known to be useful in solving for the 

characteristic roots and, subsequently, deriving 

analytical solutions to DDEs (Corless et al., 1996;  

Asl and Ulsoy, 2003). In section 3, this Lambert W 

function-based approach is used to analyze stability 

and robust stability of neural networks. Also the 

results are generalized in section 4. 

Stability Analysis 

Stability Analysis Using Locations of Roots 

The roots of the characteristic equation of Equation 3 

are derived using Equation 4 as: 

 

( )
( ) ( )

( ) ( )

( )

1

1

1

1

1
1

i

i

s h

i i

s h h

i i

h

i i

h

i i

s e

s he he

W he s h

s W he
h

βλ

βλ

βλ

βλ

+

+ =

+ =

= +

= −

 (5) 

 

As seen in Equation 5, the characteristic roots are 

expressed in terms of the gain, β and the eigenvalues, λi 

and the time-delay, h. Because there are an infinite 

number of branches of the Lambert W function, Wk, an 

infinite number of roots, sik, exist. However, the 

rightmost (i.e., dominant) root, which determines 

stability, is always obtained by using the principal 

branch, k = 0 (Fig. 1) (Shinozaki and Mori, 2006). This 

is the primary advantage of the approach. Thus, the 

stability condition is given in an analytical form derived 

from the solution in Equation 5. That is, the system is 

stable if and only if: 

 

{ } ( ){ }0 00 h

i is W he hβλℜ < ⇒ℜ <  (6) 
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Then, for stable networks, bifurcation happens when 

the rightmost root cross the imaginary axis. That is, 

R(si0) = 0 and ∂R{si0}/∂γ>0, where γ is a parameter of the 

system. That is: 

 

( ){ }
( )0

0

1

and 0

h

i
h

i

W he
h

W he h

βλ
βλ

γ

 ∂ℜ 
 ℜ = >

∂
 (7) 

 

Figure 1 show Spectrum of roots for λ1 = 1. Due to 

the time-delay, the number of the roots of the 

characteristic equation becomes infinite, unlike non-

delayed systems. Using the branch of the Lambert W 

function, all the roots in spectrum are obtained and each 

root is distinguished individually. Moreover, the 

principal branch of the Lambert W function identifies the 

rightmost root, which determines stability of the 

network, among those roots.  

For the second condition in Equation 7, the analytical 

expression for the derivative of the principal branch of 

the Lambert W function, which is given by Equation 8: 

 

( ) ( )
( )( )1

W Hd
W H

dH H W H
=

+
 (8) 

 

Example 1: Ferromagnetic Network 

For illustration, consider an example from (Marcus 

and Westervelt, 1989). The transfer function in Equation 

1 is given by Equation 9: 

 

( ) 1

1 u
f u

e σ−=
+

 (9) 

 

where, σ is any threshold (scale) value being applied by the 

neuron. Then, the gain, β, is the slope of f (u) at the origin, u 

= 0. For example, β = 1/4 for σ = 1. The ferromagnetic 

interaction matrix is defined as Equation10: 

 

0 1 1 1

1 0 1 1
1

1 1 0 1
1

1 1 1 0

J
N

 
 
 
 =

−  
 
  

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

 (10) 

 

Then, the eigenvalues for this matrix are Equation 11: 

 

( )
1,once

1 / 1 , 1 degenerate
i

N N
λ


= − − −

 (11) 

 

For example, if N = 3 (network of 3 neurons), the 

matrix, J, has three eigenvalues, λ1 = 1, λ2 = -0.5 and λ3 = 

-0.5. With the normalized time-delay h = 1 and β = 1/4, 

for each λ, the rightmost root, si, is obtained by using the 

principal branch (k = 0) as s10 = -0.5616, s20 = -1.6525 

and s30 = -1.6525, respectively. 

Thus, this network is stable. Figure 1 shows the 

spectrum of roots for λ1 = 1. Due to the time-delay, the 

number of the roots of the characteristic equation 

becomes infinite, unlike non-delayed systems. Using the 

branch of the Lambert W function, all the roots in the 

spectrum are obtained and each root is distinguished 

individually. Moreover, the principal branch of the 

Lambert W function identifies the rightmost root, which 

determines stability of the network, among those roots. 

As seen in Fig. 1, to determine stability, one does not 

have to calculate all the roots. Just with one root in the 

spectrum, stability is determined efficiently. According 

to the criterion in Equation 6, this network is stable. On 

the other hand, the rightmost root also for λ1 = 1 but with 

for σ = 8 (thus, β = 2) is s10 = 0.3748. Because the 

dominant root is in the Right Half Plane (RHP) the 

network becomes unstable. Figure 2 shows the spectrum 

of the characteristic roots. 

Example 2: Complex Coefficients 

Since the Lambert W function is defined also for 

complex arguments, the approach can be readily applied 

to some other types of neural networks, for example, 

introduced in (Gopalsamy and Leung, 1996; Olien and 

Belair, 1997) and the references therein. Consider a 

network from (Gopalsamy and Leung, 1996) Equation 12: 

 

( ) ( ) ( )

( ) ( ) ( )

1

2

tanh

tanh

dx t
x t b c y t h

dt

dy t
y t b c x t h

dt

= − +  −  

= − + − −  

 (12) 

 

After linearization about the origin, one gets 

Equation 13: 

 

( ) ( ) ( )1

2

01 0
x x x

00 1

bc
t t t h

bc

−   
= + −   −−   

ɺ  (13) 

 

Because the two coefficient matrices in Equation 13 

commute and, thus, are simultaneously triangularizable 

(Radjavi and Rosenthal, 2000). If c1c2>0, the system is 

decoupled into two scalar equations of complex 

coefficients as Equation 14: 

 

( ) ( ) ( )1 2

1 2

01 0
ˆ ˆ ˆ

0 1 0

b c c
t t t h

b c c

 −− 
= + −  − −    

x x xɺ  (14) 

 

For example, for b = 1 and c1 = c2 = 2, one gets: 

 

( ) ( ) ( )ˆ ˆ ˆ2x t x t jx t h= − ± −ɺ  (15) 
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Fig. 1.  Spectrum of roots for λ1 = 1 

 

 
 

Fig. 2. Spectrum of roots for λ1 = 1 and σ = 8. Because the dominant root is in the right half plane (RHP), the network is unstable 

 

Even for complex arguments, the stability condition 

in Equation 6 holds (Shinozaki and Mori, 2006). Thus, 

the stability of the network is analyzed using the 

Lambert W function-based approach. In (Gopalsamy and 

Leung, 1996), the condition for stability is obtained via 

bifurcation analysis. Instead, the condition is given in 

terms of the Lambert W function. That is, the network is 

stable if and only if 

( )

( )

0 1 2

0 1 2

1
1 ,

max 0
1

1

h

h

W b c c he
h

W b c c he
h

  ℜ − − −  
   

< 
  ℜ − −    

 (16) 

 
Figure 3 shows the values of the real parts of the 

rightmost roots of Equation 14, for b = 1 and c1 = c2 = 2. 
As the time-delay increases, the real part also increases. 
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When h is 0.302, bifurcation happens and the network 
becomes destabilized, which agrees with the results in 
(Gopalsamy and Leung, 1996). This approach can be 
extended to robust stability of complex-valued neural 
networks, which have been found highly useful in 
broadening the scope of applications of neural networks 
(Hirose, 2009). This will be discussed later more in 
details in Subsection 3.3. 

Stability problems of neural networks having time 

delays have been studied in literature using bifurcation 

analysis (Yu et al., 2008; Marcus and Westervelt, 1989), 

Also, robust stability has been studied in literature using 

Linear Matrix Inequalities (LMIs) (Cao and Wang, 2005; 

Zhang et al., 2005; Li et al., 2010) and Lyapunov 

functions (Yucel and Arik, 2009). The LMI-based 

techniques have been successfully used to tackle various 

stability problems for neural networks with time delays 

(Zhang et al., 2005). Compared to such methods, the 

method based on the Lambert W function directly finds 

the roots of the characteristic equations, which have 

infinite number of roots. Thus, it provides stability 

conditions analytically expressed in terms of system 

parameters and problems are relatively easy to formulate. 

It provides sufficient and necessary conditions for stability 

and, thus, conservativeness of the methods based on 

Lyapunov functions can be reduced. Also, one can 

determine how stable the system is as well as whether 

stable or not, from the rightmost characteristic roots. 

Therefore, it is possible to address stability problems in a 

way similar to non-delay problems. 

Existence of Oscillations 

To increase information that can be stored in 

networks, research regarding periodic solutions has been 

conducted extensively (Yu et al., 2008) and the 

references therein). When the characteristic roots cross 

the imaginary axis, conditions for existence of purely 

imaginary roots (i.e., R(srightmost) = 0 and I(srightmost) ≠ 0) 

can be used to study bifurcation of time-delay systems. 

Bifurcation of dynamical systems is investigated by 

using the normal form method and center manifold 

theorem in literature (Stépán, 1989). Alternatively, such 

analysis is conducted by using graphical approach (i.e., 

Nyquist stability criterion) (Moiola and Chen, 1996) and 

was applied to neural networks (Yu and Cao, 2007). 

Here, the condition for existence of non-zero imaginary 

parts is expressed in terms of the Lambert W function. 

As seen in Fig. 4, if the real argument of the Lambert W 

function, H, is equal to or greater than -1/e, the value of 

W0(H) is real and the network does not show oscillation. 

However, if H is smaller than -1/e or complex, the 

rightmost roots have non-zero imaginary parts and the 

trajectory shows oscillation. Thus, one can conclude that 

the network system has a periodic solution if and only if 

the parameters satisfy the two conditions (i.e., 1) 

R(srightmost) = 0 and 2) I(srightmost) ≠ 0) simultaneously: 

 

( ){ }01)

1
2)

h

i

h

i

W he h

he
e

βλ

βλ

ℜ =

< −
 (17) 

 

Which are derived from the roots in Equation 5. 

Example 3: Antiferromagnetic Network 

The antiferromagnetic connection matrix given by 

Equation 18 (Marcus and Westervelt, 1989): 

 

0 1 1 1

1 0 1 1
1

1 1 0 1
1

1 1 1 0

J
N

− − − 
 − − − 
 = − − −

−  
 
 − − − 

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

 (18) 

 

The eigenvalues of the matrix are Equation 19: 

 

( )
1,once

1 / 1 , 1 degenerate
i

N N
λ

−
=  − −

 (19) 

 

For example, for time-delay, h = 1 and 4 neurons (N 

= 4), the eigenvalues in Equation 19 are λ1= -1 and λ2,3,4 

= 1/3. As seen in Fig. 5, for λ1 = -1 (upper), when β = 

2.2617, the network satisfied the two conditions in 

Equation 17. For λ2,3,4 = 1/3 (lower), because 

( ){ }0

h

iW he hβλℜ <  the rightmost root is stable. Thus, the 

rightmost roots are purely imaginary when β = 2.2617 

(thus, σ = 9.047). That is, srightmost = ±2.0287j. Figure 6 

shows oscillatory trajectories (xi) of the networks for β = 

2.2617, h = 1 and N = 4. Because the rightmost 

characteristic roots are purely imaginary, the amplitude 

of the oscillation sustains constantly over time. 

Robust Stability 

As discussed in Introduction, when uncertainty exist 

in time-delay systems, robust stability is one of the 

primary concerns for control. Considerable amount of 

results on the topics has been presented in literature. 

Mostly, robust stability has been studied based on the 

Lyapunov-Krasovskii functional method. The approach 

yields stability conditions given by Linear Matrix 

Inequality (LMI) (Singh, 2004). Instead of constructing 

Lyapunov-Krasovskii functionals and deriving LMI 

conditions, robust stability also can be addressed directly 

from the locations of the rightmost characteristic roots of 

delay differential equations (Shinozaki and Mori, 2006; 

Yi et al., 2010) and references therein). 
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Fig. 3. Values of the real parts of the rightmost roots of Equation 14, for b = 1 and c1 = c2 = 2. As the time-delay increases, the real 

part also increases. When h is 0.302, bifurcation happens and the network becomes destabilized 
 

 
 
Fig. 4. Two real branches of the Lambert W function. If the argument of the principal branch of the Lambert W function, H, is larger 

than -1/e, the rightmost W0(H) (Corless et al., 1996) 
 

 
 
Fig. 5. For λ1 = -1 (upper), when β = 2.2617, the network satisfied the two conditions in (17).  For λ2,3,4 = 1/3 (lower), 

because ( ){ }0

h

iW he hβλℜ =  the system is stable. Thus, the rightmost roots are purely imaginary when β = 2.2617 (thus, σ = 9.047) 
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Fig. 6. Oscillatory trajectories (xi) of the networks for β = 2.2617, h = 1 and N = 4.  Because the rightmost characteristic roots are purely 

imaginary, the amplitude of the oscillation sustains over time 

 

For example, assume that β has uncertainty as β + ∆β 

and ∆β = ±0.2β. Then, using the results in (Shinozaki 

and Mori, 2006), without exhaustive search for every 

value in β-0.2β≤β≤β +0.2β, just with one root, s0 = 

1/h×W0((β +0.2β)λihe
h
) -1, robust stability of the network 

can be determined. 

Besides neural networks of the real parameters, 

recently, the introduction of complex-valued neural 

networks, which handle more information by using 

complex- valued parameters and variables, has widened 

applications of artificial neural net-works (Garimella, 

2006), such as digital signal processing, Magnetic 

Resonance Imaging (MRI) reconstruction (Hirose, 

2009). As shown in this section, the Lambert W function 

can be used to analyze dynamics of such complex-valued 

neural networks. 

Multiple-Neuron Systems 

Solution to General Systems of DDEs 

The method for first-order scalar DDEs based has 

been extended to general systems of DDEs using the 

matrix Lambert W function as: 

 

dx( ) Ax( ) A x( )t t t h= + −ɺ  (20) 

 

where, x(t)∈ Rn is a state ∈vector; A∈ Rn×n, Ad ∈ Rn×n. 

In (Yi et al., 2010), the solution, which is expressed in 

terms of the matrix Lambert W function, to (20) was 

developed and given by: 

 

1
( ) where, W ( )kS t I

k k k d k

k

x t e C S A hQ A
h

∞

=−∞

= = +∑  (21) 

For detailed explanation regarding solving for Qk and 

calculating C
I
k from initial conditions, refer to (Yi et al., 

2010). In a way to similar to scalar DDEs in Sect. 3., 

from the solution form in Equation 21, stability analysis 

can be conducted. 

Rightmost Eigenvalues and Stability 

For systems of DDEs, stability is determined in a 

similar way to the scalar case. That is, the finite (n) 

eigenvalues of S0, among all the Sk, have the rightmost one, 

which determines the stability of the system (Yi et al., 

2010). For scalar cases, this has been proven in 

(Shinozaki and Mori, 2006). Such a proof can readily be 

extended to systems of DDEs where A and Ad commute. 

Although such a proof is not currently available in the 

case of the general matrix-vector DDEs, the same 

behavior has been observed in all cases where Ad does 

not have repeated zero eigenvalues. Refer to (Yi et al., 

2010; Shinozaki and Mori, 2006) and references therein 

for more details about stability analysis using the 

Lambert W function. 

Example 5: Multi-Neuron Network 

Consider a network from (Yu and Cao, 2007): 

 

( )
( )

( )
( )

( )( )
( )( )

11 1

2 2 2

tanh1 0 1 2

0 2 2 3 tanh

x tx t x t

x t x t x t

 −           = − +         −            

ɺ

ɺ
 (22)  

 

Figure 7 shows the rightmost eigenvalues of the 

system (22) after linearization. As seen in Fig. 7, 

bifurcation occurs between h = 0.5182 and h = 0.5183, 

which agrees with the results in (Yu and Cao, 2007). 

Stability was investigated by using bifurcation method 
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and applying the Nyquist stability criterion in (Yu and 

Cao, 2007). Compared to such methods, the Lambert W 

function-based approach enables one to tell how stable 

the system is from the exact positions of the rightmost 

roots. If the rightmost roots of a system are located 

further from the imaginary axis, the system is more 

stable and vice versa. 

Stability Radius and Robust Stability 

The decision on robust stability can be made by using 

robust stability indices (Hu and Davison, 2003). Assume 

that the perturbed system (20) can be written in the form: 

 

{ } { }
{ } { }1 1 2 2

x( ) A A x( ) A A ( )

A E∆ F x( ) A E∆ F x( )

d d

d

t t x t h

t t h

δ δ= + + + −

= + + + −

ɺ
  (23) 

 

where, E ∈ R
n×m

, Fi∈R
li×n

 and ∆i ∈ R
m×li

 denotes the 

perturbation matrix. Provided that the unperturbed 

system (20) is stable, the real structured stability radius 

of Equation 23 is defined as (Hu and Davison, 2003): 

 

( ){ }1inf : system(23)is unstabler σ= ∆
ℝ

 (24) 

where, ∆ = [∆1 ∆2] and σ1(∆) denotes the largest singular 

value of ∆. The largest singular value, σ1(∆), is equal to 

the operator norm of ∆, which measures the size of ∆ by 

how much it lengthens vectors in the worst case. Thus, 

the stability radius in Equation 24 represents the size of 

the smallest perturbations in parameters, which can 

cause instability of a system. The real stability radius 

problem concerns the computation of the real stability 

radius when the nominal system is known. The stability 

radius is computed by using the method presented in 

(Hu and Davison, 2003). The obtained stability radius 

provides a basis for assigning eigenvalues for robust 

stability of systems of DDEs with uncertain parameters. 

For example, consider the network in Equation 22 and 

the rightmost characteristic roots in Fig. 7. Figure 8 

shows computed stability radius for each stable roots in 

Fig. 7. For h = 0.5180, if there is no uncertainty in 

coefficients, the network is stable. However, the 

corresponding stability radius is rR = 0.0101. Thus, if the 

size of the uncertainty is larger than the radius (i.e., σ1(∆) 

>0.0101), the system can be destabilized by the 

uncertainty. On the other hand, if σ1(∆) < 0.0101, the 

system with uncertainty is robustly stable. 

 

 

 
Fig. 7. Characteristic roots of the system in Equation 22 for different values of time delay, h. The rightmost roots are identified using 

the novel property of the Lambert W function and used for stability analysis. Also, the distance from the imaginary axis of 

stable roots informs how stable the system is 
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Fig. 8. Stability radius (‘X’) for each stable root in Fig. 7. For h = 0.5180, the corresponding stability radius is rR = 0.0101. Thus, if 

the size of the uncertainty is larger than the radius (i.e., σ1(∆) >0.0101), the system can be destabilized by the uncertainty. 

That is, the system is not robustly stable 
 

Conclusion 

Stability and robust stability of neural networks has 

been investigated through solving for the characteristic 
roots of delay differential equations. Although DDEs 
render transcendental characteristic equations, the 
characteristic roots and dominant ones can be found by 
using the Lambert W function. Based on the Lambert W 
function-based approach, stability conditions are derived 

from the locations of the characteristic roots in the 
complex plain. Besides stability, from the locations of 
the roots (i.e., distance from the imaginary axis), it is 
possible to know how stable the systems is. Also, using 
the property of the Lambert W function, robust stability 
conditions are given in terms of parameters without 

constructing Lyapunov functions. 
In future, the Lambert W function-based approach 

can also be applied to more general complex-valued 

neural networks. Also, stabilization of neural networks 

can be investigated further using the presented approach 

based on the Lambert W function. Applications to 

physical systems (e.g., for pattern recognition) are being 

studied by authors. 
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