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ABSTRACT 

This study presents an effective navigation architecture that combines ‘go-to-goal’, ‘avoid-obstacle’ and 
‘follow-wall’ controllers into a full navigation system. A MATLAB robot simulator is used to implement 
this navigation control algorithm. The robot in the simulator moves to a goal in the presence of convex and 
non-convex obstacles. Experiments are carried out using a ground mobile robot, Dr Robot X80SV, in a 
typical office environment to verify successful implementation of the navigation architecture algorithm 
programmed in MATLAB. The research paper also demonstrates algorithms to achieve tasks such as ‘move 
to a point’, ‘move to a pose’, ‘follow a line’, ‘move in a circle’ and ‘avoid obstacles’. These control 
algorithms are simulated using Simulink models. 
 
Keywords: Wheeled Mobile Robots, PID-Feedback Control, Navigation Control Algorithm, Differential 

Drive, Hybrid Automata 
 

1. INTRODUCTION 

The field of mobile robot control has attracted 
considerable attention of researchers in the areas of 
robotics and autonomous systems in the past decades. 
One of the goals in the field of mobile robotics is the 
development of mobile platforms that robustly operate in 
populated environments and offer various services to 
humans. Autonomous mobile robots need to be equipped 
with appropriate control systems to achieve the goals. 
Such control systems are supposed to have navigation 
control algorithms that will make mobile robots 
successfully ‘move to a point’, ‘move to a pose’, ‘follow 
a path’, ‘follow a wall’ and ‘avoid obstacles (stationary 
or moving)’. Also, robust visual tracking algorithms to 
detect objects and obstacles in real-time have to be 
integrated with the navigation control algorithms. 

A mobile robot is an automatic machine that is 
capable of movement in given environments; they are 
not fixed to one physical location. Wheeled Mobile 

Robots (WMRs) are increasingly present in industrial 
and service robotics, particularly when flexible motion 
capabilities are required on reasonably smooth grounds 
and surfaces. Several mobility configurations (wheel 
number and type, their location and actuation and single-
or multi-body vehicle structure) can be found in different 
applications (De Luca et al., 2001). The most common 
for single-body robots are differential drive and synchro 
drive (both kinematically equivalent to a unicycle), 
tricycle or car-like drive and omnidirectional steering 
(De Luca et al., 2001).  

The main focus of the research is the navigation 
control algorithm that has been developed to enable 
Differential Drive Wheeled Mobile Robot (DDWMR) to 
accomplish its assigned task of moving to a goal free from 
any risk of collision with obstacles. In order to develop 
this navigation system a low-level planning is used, based 
on a simple model whose input can be calculated using a 
PID controller or transform into actual robot input. The 
research also presents control algorithms that make mobile 
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robots ‘move to a point’, ‘move to a pose’, ‘follow a line’, 
‘follow a circle’ and ‘avoid obstacles’ taken from the 
literature (Corke, 2011; Egerstedt, 2013).  

A MATLAB robot simulator is used to implement the 
navigation control algorithm and the individual control 
algorithms were simulated using Simulink models. For 
the navigation control algorithm, the robot simulator is 
able to move to a goal in the presence of convex and 
non-convex obstacles. Also, several experiments are 
performed using a ground robot, Dr Robot X80SV, in a 
typical office environment to verify successful 
implementation of the navigation architecture algorithm 
programmed in MATLAB. 

Possible applications of WMR include security robots, 
land mine detectors, planetary exploration missions, Google 
autonomous car, autonomous vacuum cleaners and lawn 
mowers, toxic cleansing, tour guiding, personal assistants to 
humans, etc. (Jones and Flynn, 1993). 

The remainder of this study is organized as 
follows: In section II the kinematic model of the 
DDWMR is shown. The control algorithms are 
presented in section III. In section IV simulations and 
experiments performed in MATLAB/Simulink are 
explained. Simulation and experimental results are 
summarized in section V. Concluding remarks and 
future work is presented in section VI. 

2. KINEMATIC MODEL OF THE 
DDWMR 

The DDWMR setup used for the presented study is 
shown in Fig. 1 (top view). The mobile robot is made up 
of a rigid body and non-deforming wheels and it is 
assumed that the vehicle moves on a plane without 
slipping, i.e., there is a pure rolling contact between the 
wheels and the ground. 

The configuration of the vehicle is represented by the 
generalized coordinates q = (x,y,θ), where (x,y) is the 
position and θ is the orientation (heading) of the center 
of the axis of the wheels, C, with respect to a global 
inertial frame {O,X,Y}. Let {OV, XV, YV} be the vehicle 
frame. The vehicle’s velocity is by definition ν in the 
vehicle’s x-direction, L is distance between the wheels, 
R is radius of the wheels, νr is the right wheel angular 
velocity, νl is the left wheel angular velocity and ω is the 
heading rate. The kinematic model of the DDWMR 
based on the stated coordinate is given by: 
 

( )

( )

( )

r l

r l

r l

R
x cos

2
R

y sin
2
R

L

= ν + ν θ

= ν + ν θ

θ = ν − ν

&

&

&

 (1) 

 
For the purpose of implementation the kinematic 

model of a unicycle is used, which corresponds to a 
single upright wheel rolling on the plane, with the 
equation of motion given as: 
 
x cos

y sin

= ν θ
= ν θ

θ = ω

&

&

&

 (2) 

 
The inputs in (Equation 1 and 2) are νr, νl, ν and ω. 

These inputs are related as Equation 3: 
 

r l

2 L 2 L

2R 2R

ν + ω ν − ων = ν =  (3) 

 
A Simulink model shown in Fig. 2 have been developed 

that implements the unicycle kinematic model. 
 

 
 

Fig. 1. Coordinates for differential drive wheeled mobile robot 
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Fig. 2. Simulink block for the unicycle kinematic model 
 
The velocity input has a rate limiter to model finite 
acceleration and limiters on the velocity and the 
heading or turn rate. 

3. CONTROL ALGORITHMS 

Control of the unicycle model inputs is about 
selecting the appropriate input, u = (νω)T and 
applying the traditional PID-feedback controller, 
given by Equation 4: 
 

t

p l D0

de(t)
u(t) PID(e) K e(t) K e( )d K

dt
= = + τ τ +∫  (4) 

 
where, e, define for each task below, is the error between 
the desired value and the output value, Kp is the 
proportional gain, Kl is the integrator gain, KD is the 
derivative gain and t is time. The control gains used in 
this research are obtained by tweaking the various values 
to obtain satisfactory responses. If the vehicle is driven at 
a constant velocity, ν = ν0 then the control input will 
only vary with the angular velocity, ω, thus: 
 

PID(e)ω =  (5) 
 
3.1. Developing Individual Controllers 

This section presents control algorithms that make 
mobile robots ‘move to a point’, ‘move to a pose’, 
‘follow a line’, ‘follow a circle’ and ‘avoid obstacles’. 

3.1.1. Moving to a Point 

Consider a robot moving toward a goal point, (xg, yg), 
from a current position, (x, y), in the xy-plane, as 
depicted in Fig. 3 below. 

 
 
Fig. 3. Coordinates for moving to a point 

 
The desired heading (robot’s relative angle), θg, is 

determined as: 
 

g
g goal

g

y y
arctan

x x

 −
θ = θ =   − 

 (6) 

 
And the error, e, is defined Equation 7: 

 

ge = θ − θ  (7) 

 
To ensure e∈[-π,π], a corrected error, e’ is used 

instead of e as shown below Equation 8: 
 

( ) ( )( )e' arctan 2 sin e ,cos e [ , ]= ∈ −π π  (8) 

 
Thus ω can be controlled using (Equation 5). If the 

robot’s velocity is to be controlled, a proportional 
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controller gain, Kν, is applied to the distance from the 
goal, shown below (Corke, 2011) Equation 9: 
 

( ) ( )2 2

g gK x x y yνν = + + −  (9) 

 
3.1.2. Moving to a Pose 

The above controller could drive the robot to a 
goal position but the final orientation depends on the 
starting position. In order to control the final 
orientation (Equation 5) is rewritten in matrix form as 
(Corke, 2011): 
 

x cos 0

y sin 0

0 1

θ   
ν    = θ      ω    θ   

&

&

&

 (10) 

 
Equation 10 is then transformed into the polar 

coordinate form using the notation shown in Fig. 4 below. 
Applying a change of variables, we have Equation 11: 
 

2 2
x y

y

x

arctan

ρ = ∆ + ∆

 ∆
α = − θ  ∆ 

β = −θ − α

 (11) 

 
Which results in Equation 12: 

cosa 0

sin a
1 , if ,

2 2

sin a
0

 
 − ρ 
  ν  π π  α = − α ∈ −      ωρ     β   

− 
ρ 

&

&

&

 (12) 

 
And assumes the goal {G} is in front of the vehicle.  
The linear control law Equation 13: 

 
K K Kρ α βν = ρ ω = α + β  (13) 

 
Drives the robot to unique equilibrium at (ρ,α,β) = 

(0,0,0). The intuition behind this controller is that the 
terms Kρρ and Kαα drive the robot along a line toward 
{G} while the term Kββ rotates the line so that β→0 
(Corke, 2011). The closed-loop system Equation 14: 
 

K cos

K sin K K

K sin

ρ

ρ α β

ρ

 ρ − α 
  α = α − α − β  

   β − α   

&

&

&

 (14) 

 
Is stable so long as Kρ>0, Kβ>0, Kα-Kρ>0 (Corke, 

2011). For the case where the goal is behind the robot, that 

is ,
2 2

π π α ∉ − 
 

the robot is reverse by negating ν and ω in 

the control law. The velocity ν always has a constant sign 
which depends on the initial value of α (Corke, 2011).

 

 
 

Fig. 4. Coordinates for moving to a pose 
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Fig. 5. Coordinates for avoiding obstacle (Egerstedt, 2013) 
 
3.1.3. Obstacle Avoidance 

In a real environment robots must avoid obstacles in 
order to go to a goal. Depending on the positions of the 
goal and the obstacle (s) relative to the robot, the robot 
need move to the goal using θg from a ‘pure go-to-goal’ 
behavior or blending the ‘avoid obstacle’ and the ‘go-to-
goal’ behaviors. In pure obstacle avoidance the robot 
drives away from the obstacle and move in the opposite 
direction. The possible θg that can be used in the control 
law discussed in section III-A.1 are shown in Fig. 5 
below, where θobst is the obstacle heading. 

3.1.4. Following a Line 

Another useful task for a mobile robot is to follow a 
line on a plane defined by ax+by+c = 0. This requires two 
controllers to adjust the heading. One controller steers 
the robot to minimize the robot’s normal distance from 
the line given by Equation 15: 
 

2 2

(a,b,c).(x, y,1)
d

a b
=

+
 (15) 

 
The proportional controller Equation 16: 

 

d d dK d, K 0α = − >  (16) 
 

Turns the robot toward the line. The second 
controller adjust the heading angle to be parallel to the 
line Equation 17: 
 

g

a
arctan

b
 θ = − 
 

 (17) 

Using the proportional controller: 
 

( )h h g hK , K 0α = θ − θ >  (18) 

 
The combined control law Equation 19: 

 

( )d h gK d Kω = − + θ − θ  (19) 

 
Turns the wheel so as to drive the robot toward the 

line and moves along it (Corke, 2011). 

3.1.5. Following a Circle 

Instead of a straight line the robot can follow a 
defined path on the xy-plane and in this section the robot 
follows a circle. This problem is very similar to the 
control problem presented in section III-A.1, except that 
this time the point is moving. The robot maintains a 
distance dd behind the pursuit point and an error, e, can 
be formulated as (Corke, 2011) Equation 20: 
 

( ) ( )2 2

g g de x x y y d= − + − −  (20) 

 
That will be regulated to zero by controlling the 

robot’s velocity using a PI controller Equation 21: 
 

d p l 0
PI(e) K e(t) K e( )d

τ
ν = = + τ τ∫  (21) 

 
The integral term is required to provide a finite 

velocity demand νd when the following error is zero. The 
second controller steers the robot toward the target which 
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is at the relative angle given by (Equation 6) and a 
controller given by (Equation 18). 

3.2. Developing Navigation Control Algorithm 

This section introduces how the navigation 
architecture, that consist of go-to-goal, follow-wall and 
avoid obstacle behaviors, was developed. In order to 
develop the navigation system a low-level planning was 
used, by starting with a simple model whose input can be 
calculated by using a PID controller or transform into 
actual robot input, depicted in Fig. 6 (Egerstedt, 2013). 
For this simple planning a desired motion vector, x, is 
picked and set equal to the input, u, (Equation 22). 
 

20 0 1 0
x u x u, x

0 0 0 1

   
= = + ∈ℜ   

   
&  (22) 

 
This selected system is controllable as compared to the 

unicycle system which is non-linear and not controllable 
even after it has been linearized. This layered architecture 
makes the DDWMR act like the point mass model shown 
in (Equation 22) (Egerstedt, 2013). 

3.2.1. Go-To-Goal (GTG) Mode 

Consider the point mass moving toward a goal point, xg, 
with current position as x in the xy-plane. The error, e = xg-
x, is controlled by the input u = Ke, where K is gain matrix. 

Since e Ke= −& the system is asymptotically stable if K>0. 
An appropriate K is selected to obey the function shown in 
Fig. 7a above such that ( )e K || e || e= −& , where a and b are 

constants to be selected; in this way the robot will not go 
faster further away from the goal (Egerstedt, 2013). 

3.2.2. Obstacle Avoidance (AO) Mode 

Let the obstacle position be x0, then e = x0-x is 
controlled by the input u = Ke and since e Ke= −& the 
system is desirably unstable if K>0. An appropriate K is 
selected to obey the function shown in Fig. 7b above 
such that ( )e K || e || e= −& , where c and ε are constants to 

be selected (Egerstedt, 2013). 

3.2.3. Blending AO and GTG Modes 

In a ‘pure GTG’ mode, uGTG, or ‘pure AO’ mode, 
uAO, or what is termed as hard switches, performance can 
be guaranteed but the ride can be bumpy and the robot 
can encounter the zeno phenomenon (Egerstedt, 2013). 
A control algorithm for blending the uGTG and uAO modes 
is given by (Equation 23). This algorithm ensures 
smooth ride but does not guarantee performance 
(Egerstedt, 2013): 
 

( )GTG,AO GTG AOu ( )u 1 ( ) u , ( ) [01]= α ∆ + − α ∆ α ∆ ∈  (23)

 

 
 

Fig. 6. Planning model input to actual robot input 
 

 
 (a) (b) 

 
Fig. 7ab. Suitable graph for an appropriate K (a) Go-to-goal mode (b) Obstacle avoidance mode 
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where, ∆ is a constant distance to the 
obstacle/boundary and α is the blending function to be 
selected, giving appropriately as an exponential 
function by: 
 

( ) 1 e−β∆α ∆ = −  (24) 
 
where, β is a constant to be selected. 

3.2.4. Follow-Wall (FW) Mode 

As pointed out in section III-B.2, in a pure obstacle 
avoidance mode the robot drives away from the 
obstacle and move in the opposite direction, but this is 
overly cautious in a real environment where the task is 
to go to a goal. The robot should be able to avoid 
obstacles by going around its boundary and this 
situation leads to what is termed as the follow-wall or 
an induced or sliding mode, uFW, between the uGTG 
and uAO modes; this is needed for the robot to 
negotiate complex environments (Egerstedt, 2013). 

The FW mode maintains ∆ to the obstacle/boundary 
as if it is following it and the robot can clearly move in 
two different directions, clockwise (c) and counter-
clockwise (cc), along the boundary, Fig. 8. This is 
achieved by rotating uAO by π/2 and -π/2 to obtain 

cc
AWu and c

AWu respectively and then scaled by δ to obtain 

a suitable induced mode, (Equation 25-27), where R(∅) 
is a rotation matrix (Egerstedt, 2013): 
 

cos sin
R( )

sin cos

∅ − ∅ 
∅ =  ∅ ∅ 

 (25) 

 

cc
FW AO AO

0 1
u R( / 2)u u

1 0

− 
= δ π = δ  

 
 (26) 

 

c
FW AO AO

0 1
u R( / 2)u u

1 0

 
= δ −π = δ  − 

 (27) 

 
The direction the robot selects to follow the boundary 

is determined by the direction of uGTG and it is 
determined using the dot product of uGTG and uFW, as 
shown in (Equation 28 and 29) (Egerstedt, 2013): 
 

( )Tcc cc cc
GTG FW GTG FW FWu ,u u u 0 u= > ⇒  (28) 

 

( )Tc c c
GTG FW GTG FW FWu ,u u u 0 u= > ⇒  (29) 

Another issue to be addressed is when the robot 
releases uFW, that is when to stop sliding. The robot stops 
sliding when “enough progress” has been made and there 
is a “clear shot” to the goal, as shown in (Equation 30-32), 
where τ is the time of last switch (Egerstedt, 2013): 
 

genough progres :|| x x || dτ− <  (30) 
 

gwhere d || x( ) x ||τ = τ −  (31) 
 

( )T

AO GTG AO GTGclear shot : u ,u u u 0= >  (32) 
 
3.2.5. Implementation of the Navigation 

Algorithms 

The behaviors or modes discussed above are put 
together to form the navigation architecture shown in 
Fig. 9 below. The robot started at the state x0 and arrived 
at the goal xg, switching between the three different 
operation modes; this system of navigation is termed the 
hybrid automata where the navigation system has been 
described using both the continuous dynamics and the 
discrete switch logic (Egerstedt, 2013). 

An illustration of this navigation system is shown 
in Fig. 10, where the robot avoids a rectangular block 
as it moves to a goal. 

3.2.6. Tracking and Transformation of the 
‘Simple’ Model Input 

The simple planning model input, u = (u1 u2)
T can be 

tracked using a PID controller or clever transformation 
can be used to transform it into the unicycle model input, 
u = (νω)T (Egerstedt, 2013). These two approaches are 
discussed below. 

Method 1: Tracking Using a PID Controller 

Let the output from the planning model be u = (u1 

u2)
T and the current position of the point mass be x = (x 

y)T, Fig. 11a below, then the input, u = (ν ω)T, to the 
unicycle model can be determined as shown below 
(Egerstedt, 2013) Equation 33-35: 
 

2
g

1

u
arctan

u

 
θ =  

 
 (33) 

 
( )gPIDω = θ − θ  (34) 

 
From Equation 2: 

 
2 2 2 2 2 2 2 2

1 2x y cos sin u u || u ||+ = ν θ + ν ⇒ ν = + =& &  (35) 
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Fig. 8. Setup for follow-wall mode (Egerstedt, 2013) 
 

 
 

Fig. 9. Setup for navigation architecture 
 

 
 

Fig. 10. Illustration of the navigation system 
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 (a) (b) 
 
Fig. 11. (a) Coordinates for point mass in a specific direction (b) Coordinates for DDWMR model showing the new point 
 
Method 2: Transformation 

In this clever approach a new point (xn, yn), of 
interest is selected on the robot at a distance k from the 
center of mass, (x, y), as shown in Fig. 11b (Egerstedt, 
2013), where xn = (xn yn)

T and nx u=& .  

If the orientation is ignored then (Egerstedt, 2013) 
Equation 36: 
 

n

n

x x kcos

y y ksin

= + θ

= + θ
 (36) 

 
Thus: 

 

n

n

x x k sin

y y k cos

= − θ θ

= + θ θ

&& &

&& &

 (37) 

 
Substituting (Equation 2) into (Equation 37) and 

using n 1x u=& and n 2y u=& , we have (Egerstedt, 2013) 

Equation 38: 
 

n 1

n 2

1

2

1

2

1
1

2

x cos k sin u

y sin k cos u

cos sin u

sin cos k u

1 0 u
R( )

0 k u

1 0 u
R( )

0 k u−

= ν θ − ω θ =

= ν θ + ω θ =

θ − θ ν     
⇒ =     θ θ ω     

ν     
⇒ θ =     ω     

ν     
⇒ = −θ     ω     

&

&

 (38) 

4. SIMULATIONS AND EXPERIMENS 

4.1. Simulations of Individual Controllers 

Simulink models developed, by modifying similar 
models in (Corke, 1993-2011), that implement the 
control algorithms discussed in section III are presented 
in Fig. 12-15. These models are based on the unicycle 
model in Fig. 2. 

4.2. Simulations of the Navigation System 

A MATLAB robot simulator introduced in 
(MATLAB Robot Simulator (Software), 2013) was used 
to simulate the navigation architecture control algorithms 
presented in section III; the control algorithm combines 
the GTG, AO and FW controllers into a full navigation 
system for the robot. The robot simulator mimics the 
Khepera III (K3) mobile robot, whose model is based on 
the unicycle model presented in section II. The K3 is 
equipped with 11 Infrared (IR) range sensors, of which 
nine are located in a ring around it and two are located 
on the underside of the robot. The IR sensors are 
complemented by a set of five ultrasonic sensors (Corke, 
2011). The K3 has a two-wheel differential drive with a 
wheel encoder for each wheel. 

The MATLAB algorithm that controls the simulator 
implements Finite State Machine (FSM) to solve the 
full navigation problem. The FSM uses a set of 
if/elseif/else statements that first check which state (or 
behavior) the robot is in and then based on whether an 
event (condition) is satisfied, the FSM switches to 
another state or stays in the same state, until the robot 
reaches its goal (Egerstedt, 2013). 



Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014 

 
158 Science Publications

 
AJEAS 

 
 

Fig. 12. Model that drives the robot to a point 
 

 
 

Fig. 13. Model that drives the robot to a pose 
 

 
 

Fig. 14. Model that drives the robot along a line 
 

 
 

Fig. 15. Model that moves the robot in a unit circle (Corke, 1993-2011) 
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 (a) (b) 
 

 
 (c) (d) 
 

 
 (e) (f) 
 

 
 (g) (h) 
 

Fig. 16. (a-h) Sequence showing the MATLAB robot simulator implementing the navigation system 
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Figure 16a-h below shows a sequence of 
movement of the MATLAB robot simulator 
implementing the navigation system. The robot 
navigates around a cluttered, complex environment 
without colliding with any obstacles and reaching its 
goal location successfully.  

4.3. Experiments Using Dr Robot X80SV 

The control algorithm built for the navigation 
architecture presented in Section III has been 
experimented on Dr Robot X80SV, programmed using 
MATLAB GUI, in an office environment. The Dr Robot 
X80SV can be made to move to a goal whiles avoiding 
obstacles in front of it. 

The Dr Robot X80SV, shown in Fig. 17a below, is a 
fully wireless networked that uses two quadrature 
encoders on each wheel for measuring its position and 
seven IR and three ultrasonic range sensors for collision 
detection. It has 2.6× high resolution Pan-Tilt-Zoom 
CCD camera with two-way audio capability, two 12V 
motors with over 22 kg.cm torque each and two 
pyroelectric human motion sensors.  

The Dr Robot X80SV has a dimension of 38cm 
(length) ×35 cm (width) ×28 cm (height), maximum 
payload of 10kg (optional 40 kg) with robot weight of 
3 kg. Its 12V 3700 mAh battery pack has three hours 
nominal operation time for each recharging and can 
drive up to a maximum speed of 1.0 m s−1. The 
distance between the wheels is 26cm and the radius of 
the wheels is 8.5cm. 

The PID-feedback system depicted in Fig. 17b above 
shows how the DC motor system of the robot is 
controlled. Figure 18 shows the setup used for the 
experiments. After a connection is established between 

the host PC and the robot through the wireless router the 
MATLAB program receives and sends the 
motion/sensors signals using ActiveX control. The 
program directly exchange multimedia data with the 
Pan-Tilt-Zoom camera also through an ActiveX control. 

A screenshot of the main MATLAB interface used for 
the Dr Robot X80SV control is shown in Fig. 19 below. 
The interface was developed by mimicking a similar 
interface developed in C# by Dr Robot Inc. The 
motivation for using MATLAB instead of building upon 
the provided C# interface is to take advantage of the ease 
of simulation, quick and ease of developing GUI and 
making use of the in-built control strategies libraries in 
MATLAB for this research and future studies. 

The main GUI interface has three sections: 
Information about the robot settings and sensors, 
multimedia and the vision and control. The robot settings 
information includes the IP addresses of the robot and 
the camera, the robot wheel radius, distance between the 
robot wheels and the encoder count per revolution. The 
sensors information, updated in real-time, includes the 
IR, ultrasonic, motor, human, temperature, battery and 
the position of the robot.  

The multimedia section include real-time video 
stream from the robot, which can be controlled using a 
pan and tilt tools. The section also has tools for 
capturing images and recording the video stream. In 
addition, the section also has a tool to capture live 
audio from the robot. 

The vision and control section has tools for 
performing ‘Basic Motion Control’, ‘Individual Motion 
Control (PID and MPC)’, ‘Navigation System (PID and 
MPC) and ‘Object Recognition and Tracking’.  

 

 
 

Fig. 18. Setup used for the experiments (Robot, 2008) 
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Fig. 19. MATLAB GUI showing the Dr robot X80SV settings and sensors information, multimedia and control 
 

 
 (a) (b) 
 

 
 (c) (d) 
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Fig. 20. (a-f) Experimental setup showing sequence of the Dr robot X80SV movement 
 
Currently, the Model Predictive Control (MPC) and 
the ‘Object Recognition and Tracking’ tools are not 
working; these are future research work. The ‘Basic 
Motion Control’ makes the robot perform operations 
such as move forward, backward, rotate, etc. The 
‘Individual Motion Control (PID)’ makes the robot 
‘move to a point’, ‘move to a pose’, ‘follow a path’ 
and ‘avoid obstacles. The ‘Navigation System (PID)’ 
makes the robot to move to a goal in the presence of 
obstacles. 

Figure 20a-f above shows an experimental setup 
showing a sequence of movement of the Dr Robot 
X80SV implementing the navigation control 
algorithm. 

5. RESULTS AND DISCUSSION 

5.1. Simulation of Individual Controllers Results 

The time domain Simulink simulations were carried 
out over a 10 sec duration for each model (refer to the 
simulation setups in Fig. 12-15). The trajectories in Fig. 
21 were obtained by using proportional gains of 0.5 and 
4.0 for Kν and Kh respectively; the final goal point was 
(4.9920, 5.0036), compared to the desired goal of (5,5) 
for the (5,9,π) initial state. 

Trajectories in Fig. 22 were obtained using Kρ = 3.0, 
Kα = 8.0 and Kβ =-3.0; the final pose was (4.9451, 
5.0004, 2.7693), compared to the desired pose of (5,5,π) 
for the (5,9,π) initial state. 

The trajectories in Fig. 23 were obtained with Kd = 
0.5 and Kh = 1.0, driving the robot at a constant speed of 
1.0. The trajectory in Fig. 24 was obtained using Kh = 5, 
PID controller gains of Kp = 1.0, Kl = 0.5 and KD = 0.0 
and the goal was a point generated to move around the 
unit circle with a frequency of 0.2 Hz. 

 
 

Fig. 21. Move to a point 
 

 
 
Fig. 22. Move to a pose 
 
5.2. Simulation of Navigation System Results 

The trajectory shown in Fig. 25a (refer to the 
simulation setup in Fig. 16) was obtained by using PID 
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controller gains of Kp = 5.0, Kl = 0.01 and KD = 0.1, α = 
0.6, ∈ = 0.05, ν = 0.1 m s−1, initial state of (0,0,0) and 
desired goal of (1, 1,π/2). The final goal point associated 
with the simulation was (1.0077, 0.9677, 1.1051) and the 
average stabilization time was about 35s. 

5.3. Experimental Results 

The trajectory shown in Fig. 25b (refer to a similar 
experimental setup in Fig. 20) was obtained by using 
PID controller gains of Kp = 1000, Kl = 1000 and KD = 5 
for the position control and Kp = 10, Kl = 0 and KD = 1 
for the velocity control, ∈ = 0.01, ν = 0.5 m s−1, initial 
state of (0,0,0) and desired pose of (2,0,0). The final pose 
associated with the experiment was (200197, 0.0266,-
0.0096) and the average stabilization time was about 50s. 

Even though there was steady-state errors in the 
values obtained, the result was encouraging. Possible 
causes of the errors are friction between the robot 
wheels and the floor, imperfection in the sensors 
and/or unmodeled factors (e.g., friction and backlash) 
in the mechanical parts of the DC motor. Moreover, 
despite the apparent simplicity of the kinematic model 
of a WMR, the existence of nonholonomic constraints 
(due to state or input limitations) turns the PID-
feedback stabilizing control laws into a considerable 
challenge; due to Brockett’s conditions (Brockett, 
1983), a continuously differentiable, time-invariant 
stabilizing feedback control law cannot be obtained. 

Note that during the experiments the robot 
sometimes got lost or wandered around before 
arriving at the desired pose. This is because the 
navigation system is not robust. It was built using a low-
level planning based on a simple model of a point mass 
and the application of a linear PID controller. 

 
 
Fig. 23. Follow a line 
 

 
 
Fig. 24. Follow a circle 

 

   
 (a) (b) 
 

Fig. 25. Trajectory in xy-plane (a) Simulation (b) Experiment 
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6. CONCLUSION 

In this study, an effective navigation control 
algorithm was presented for a DDWMR, simulated using 
a MATLAB robot simulator that mimics the K3 robot 
and implemented on the Dr Robot X80SV platform using 
a developed MATLAB GUI. The algorithm makes the 
robot move to a pose, whiles avoiding obstacles in the 
way. Even though the final steady-state values obtained 
from the experiments could not be stabilized, the results 
were encouraging. 

This research paper has also demonstrated how to 
make a unicycle, kinematically equivalent to DDWMR, 
‘move to a point’, ‘move to a pose’, ‘follow a line’, 
‘move in a circle’ and ‘avoid obstacles’. These were 
simulated using Simulink models. 

In future, the authors will integrate real-time 
vision-based object detection and recognition to 
address the imperfection of the IR and ultrasonic 
range sensors. In addition, application of an optimal 
control strategy such as MPC to handle the 
nonholonomic constraints of the WMR will be 
studied. Furthermore, parameters such as length of 
path or journey time optimization will be considered. 
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