
American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014
ISSN: 1941-7020
© 2014 S. Armah et al., This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/ajeassp.2014.149.164 Published Online 7 (1) 2014 (http://www.thescipub.com/ajeas.toc)

Corresponding Author: Stephen Armah, Department of Mechanical Environmental, North Carolina A and T State University,

1601 E. Market Street, Greensboro, NC 27411, USA Tel: (336) 285-3753

149 Science Publications

AJEAS

IMPLEMENTATION OF AUTONOMOUS NAVIGATION
ALGORITHMS ON TWO-WHEELED GROUND MOBILE ROBOT

1Stephen Armah, 2Sun Yi and 3Taher Abu-Lebdeh

1,2Department of Mechanical Engineering,
3Department of Civil, Architectural and Environmental Engineering,

North Carolina A and T State University, Greensboro, NC 27411, USA

Received 2014-02-20; Revised 2014-02-23; Accepted 2014-04-07

ABSTRACT

This study presents an effective navigation architecture that combines ‘go-to-goal’, ‘avoid-obstacle’ and
‘follow-wall’ controllers into a full navigation system. A MATLAB robot simulator is used to implement
this navigation control algorithm. The robot in the simulator moves to a goal in the presence of convex and
non-convex obstacles. Experiments are carried out using a ground mobile robot, Dr Robot X80SV, in a
typical office environment to verify successful implementation of the navigation architecture algorithm
programmed in MATLAB. The research paper also demonstrates algorithms to achieve tasks such as ‘move
to a point’, ‘move to a pose’, ‘follow a line’, ‘move in a circle’ and ‘avoid obstacles’. These control
algorithms are simulated using Simulink models.

Keywords: Wheeled Mobile Robots, PID-Feedback Control, Navigation Control Algorithm, Differential

Drive, Hybrid Automata

1. INTRODUCTION

The field of mobile robot control has attracted
considerable attention of researchers in the areas of
robotics and autonomous systems in the past decades.
One of the goals in the field of mobile robotics is the
development of mobile platforms that robustly operate in
populated environments and offer various services to
humans. Autonomous mobile robots need to be equipped
with appropriate control systems to achieve the goals.
Such control systems are supposed to have navigation
control algorithms that will make mobile robots
successfully ‘move to a point’, ‘move to a pose’, ‘follow
a path’, ‘follow a wall’ and ‘avoid obstacles (stationary
or moving)’. Also, robust visual tracking algorithms to
detect objects and obstacles in real-time have to be
integrated with the navigation control algorithms.

A mobile robot is an automatic machine that is
capable of movement in given environments; they are
not fixed to one physical location. Wheeled Mobile

Robots (WMRs) are increasingly present in industrial
and service robotics, particularly when flexible motion
capabilities are required on reasonably smooth grounds
and surfaces. Several mobility configurations (wheel
number and type, their location and actuation and single-
or multi-body vehicle structure) can be found in different
applications (De Luca et al., 2001). The most common
for single-body robots are differential drive and synchro
drive (both kinematically equivalent to a unicycle),
tricycle or car-like drive and omnidirectional steering
(De Luca et al., 2001).

The main focus of the research is the navigation
control algorithm that has been developed to enable
Differential Drive Wheeled Mobile Robot (DDWMR) to
accomplish its assigned task of moving to a goal free from
any risk of collision with obstacles. In order to develop
this navigation system a low-level planning is used, based
on a simple model whose input can be calculated using a
PID controller or transform into actual robot input. The
research also presents control algorithms that make mobile

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

150 Science Publications

AJEAS

robots ‘move to a point’, ‘move to a pose’, ‘follow a line’,
‘follow a circle’ and ‘avoid obstacles’ taken from the
literature (Corke, 2011; Egerstedt, 2013).

A MATLAB robot simulator is used to implement the
navigation control algorithm and the individual control
algorithms were simulated using Simulink models. For
the navigation control algorithm, the robot simulator is
able to move to a goal in the presence of convex and
non-convex obstacles. Also, several experiments are
performed using a ground robot, Dr Robot X80SV, in a
typical office environment to verify successful
implementation of the navigation architecture algorithm
programmed in MATLAB.

Possible applications of WMR include security robots,
land mine detectors, planetary exploration missions, Google
autonomous car, autonomous vacuum cleaners and lawn
mowers, toxic cleansing, tour guiding, personal assistants to
humans, etc. (Jones and Flynn, 1993).

The remainder of this study is organized as
follows: In section II the kinematic model of the
DDWMR is shown. The control algorithms are
presented in section III. In section IV simulations and
experiments performed in MATLAB/Simulink are
explained. Simulation and experimental results are
summarized in section V. Concluding remarks and
future work is presented in section VI.

2. KINEMATIC MODEL OF THE
DDWMR

The DDWMR setup used for the presented study is
shown in Fig. 1 (top view). The mobile robot is made up
of a rigid body and non-deforming wheels and it is
assumed that the vehicle moves on a plane without
slipping, i.e., there is a pure rolling contact between the
wheels and the ground.

The configuration of the vehicle is represented by the
generalized coordinates q = (x,y,θ), where (x,y) is the
position and θ is the orientation (heading) of the center
of the axis of the wheels, C, with respect to a global
inertial frame {O,X,Y}. Let {OV, XV, YV} be the vehicle
frame. The vehicle’s velocity is by definition ν in the
vehicle’s x-direction, L is distance between the wheels,
R is radius of the wheels, νr is the right wheel angular
velocity, νl is the left wheel angular velocity and ω is the
heading rate. The kinematic model of the DDWMR
based on the stated coordinate is given by:

()

()

()

r l

r l

r l

R
x cos

2
R

y sin
2
R

L

= ν + ν θ

= ν + ν θ

θ = ν − ν

&

&

&

 (1)

For the purpose of implementation the kinematic

model of a unicycle is used, which corresponds to a
single upright wheel rolling on the plane, with the
equation of motion given as:

x cos

y sin

= ν θ
= ν θ

θ = ω

&

&

&

 (2)

The inputs in (Equation 1 and 2) are νr, νl, ν and ω.

These inputs are related as Equation 3:

r l

2 L 2 L

2R 2R

ν + ω ν − ων = ν = (3)

A Simulink model shown in Fig. 2 have been developed

that implements the unicycle kinematic model.

Fig. 1. Coordinates for differential drive wheeled mobile robot

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

151 Science Publications

AJEAS

Fig. 2. Simulink block for the unicycle kinematic model

The velocity input has a rate limiter to model finite
acceleration and limiters on the velocity and the
heading or turn rate.

3. CONTROL ALGORITHMS

Control of the unicycle model inputs is about
selecting the appropriate input, u = (νω)T and
applying the traditional PID-feedback controller,
given by Equation 4:

t

p l D0

de(t)
u(t) PID(e) K e(t) K e()d K

dt
= = + τ τ +∫ (4)

where, e, define for each task below, is the error between
the desired value and the output value, Kp is the
proportional gain, Kl is the integrator gain, KD is the
derivative gain and t is time. The control gains used in
this research are obtained by tweaking the various values
to obtain satisfactory responses. If the vehicle is driven at
a constant velocity, ν = ν0 then the control input will
only vary with the angular velocity, ω, thus:

PID(e)ω = (5)

3.1. Developing Individual Controllers

This section presents control algorithms that make
mobile robots ‘move to a point’, ‘move to a pose’,
‘follow a line’, ‘follow a circle’ and ‘avoid obstacles’.

3.1.1. Moving to a Point

Consider a robot moving toward a goal point, (xg, yg),
from a current position, (x, y), in the xy-plane, as
depicted in Fig. 3 below.

Fig. 3. Coordinates for moving to a point

The desired heading (robot’s relative angle), θg, is

determined as:

g
g goal

g

y y
arctan

x x

 −
θ = θ =   − 

 (6)

And the error, e, is defined Equation 7:

ge = θ − θ (7)

To ensure e∈[-π,π], a corrected error, e’ is used

instead of e as shown below Equation 8:

() ()()e' arctan 2 sin e ,cos e [,]= ∈ −π π (8)

Thus ω can be controlled using (Equation 5). If the

robot’s velocity is to be controlled, a proportional

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

152 Science Publications

AJEAS

controller gain, Kν, is applied to the distance from the
goal, shown below (Corke, 2011) Equation 9:

() ()2 2

g gK x x y yνν = + + − (9)

3.1.2. Moving to a Pose

The above controller could drive the robot to a
goal position but the final orientation depends on the
starting position. In order to control the final
orientation (Equation 5) is rewritten in matrix form as
(Corke, 2011):

x cos 0

y sin 0

0 1

θ   
ν    = θ      ω    θ   

&

&

&

 (10)

Equation 10 is then transformed into the polar

coordinate form using the notation shown in Fig. 4 below.
Applying a change of variables, we have Equation 11:

2 2
x y

y

x

arctan

ρ = ∆ + ∆

 ∆
α = − θ  ∆ 

β = −θ − α

 (11)

Which results in Equation 12:

cosa 0

sin a
1 , if ,

2 2

sin a
0

 
 − ρ 
  ν  π π  α = − α ∈ −      ωρ     β   

− 
ρ 

&

&

&

 (12)

And assumes the goal {G} is in front of the vehicle.
The linear control law Equation 13:

K K Kρ α βν = ρ ω = α + β (13)

Drives the robot to unique equilibrium at (ρ,α,β) =

(0,0,0). The intuition behind this controller is that the
terms Kρρ and Kαα drive the robot along a line toward
{G} while the term Kββ rotates the line so that β→0
(Corke, 2011). The closed-loop system Equation 14:

K cos

K sin K K

K sin

ρ

ρ α β

ρ

 ρ − α 
  α = α − α − β  

   β − α   

&

&

&

 (14)

Is stable so long as Kρ>0, Kβ>0, Kα-Kρ>0 (Corke,

2011). For the case where the goal is behind the robot, that

is ,
2 2

π π α ∉ − 
 

the robot is reverse by negating ν and ω in

the control law. The velocity ν always has a constant sign
which depends on the initial value of α (Corke, 2011).

Fig. 4. Coordinates for moving to a pose

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

153 Science Publications

AJEAS

Fig. 5. Coordinates for avoiding obstacle (Egerstedt, 2013)

3.1.3. Obstacle Avoidance

In a real environment robots must avoid obstacles in
order to go to a goal. Depending on the positions of the
goal and the obstacle (s) relative to the robot, the robot
need move to the goal using θg from a ‘pure go-to-goal’
behavior or blending the ‘avoid obstacle’ and the ‘go-to-
goal’ behaviors. In pure obstacle avoidance the robot
drives away from the obstacle and move in the opposite
direction. The possible θg that can be used in the control
law discussed in section III-A.1 are shown in Fig. 5
below, where θobst is the obstacle heading.

3.1.4. Following a Line

Another useful task for a mobile robot is to follow a
line on a plane defined by ax+by+c = 0. This requires two
controllers to adjust the heading. One controller steers
the robot to minimize the robot’s normal distance from
the line given by Equation 15:

2 2

(a,b,c).(x, y,1)
d

a b
=

+
 (15)

The proportional controller Equation 16:

d d dK d, K 0α = − > (16)

Turns the robot toward the line. The second
controller adjust the heading angle to be parallel to the
line Equation 17:

g

a
arctan

b
 θ = − 
 

 (17)

Using the proportional controller:

()h h g hK , K 0α = θ − θ > (18)

The combined control law Equation 19:

()d h gK d Kω = − + θ − θ (19)

Turns the wheel so as to drive the robot toward the

line and moves along it (Corke, 2011).

3.1.5. Following a Circle

Instead of a straight line the robot can follow a
defined path on the xy-plane and in this section the robot
follows a circle. This problem is very similar to the
control problem presented in section III-A.1, except that
this time the point is moving. The robot maintains a
distance dd behind the pursuit point and an error, e, can
be formulated as (Corke, 2011) Equation 20:

() ()2 2

g g de x x y y d= − + − − (20)

That will be regulated to zero by controlling the

robot’s velocity using a PI controller Equation 21:

d p l 0
PI(e) K e(t) K e()d

τ
ν = = + τ τ∫ (21)

The integral term is required to provide a finite

velocity demand νd when the following error is zero. The
second controller steers the robot toward the target which

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

154 Science Publications

AJEAS

is at the relative angle given by (Equation 6) and a
controller given by (Equation 18).

3.2. Developing Navigation Control Algorithm

This section introduces how the navigation
architecture, that consist of go-to-goal, follow-wall and
avoid obstacle behaviors, was developed. In order to
develop the navigation system a low-level planning was
used, by starting with a simple model whose input can be
calculated by using a PID controller or transform into
actual robot input, depicted in Fig. 6 (Egerstedt, 2013).
For this simple planning a desired motion vector, x, is
picked and set equal to the input, u, (Equation 22).

20 0 1 0
x u x u, x

0 0 0 1

   
= = + ∈ℜ   

   
& (22)

This selected system is controllable as compared to the

unicycle system which is non-linear and not controllable
even after it has been linearized. This layered architecture
makes the DDWMR act like the point mass model shown
in (Equation 22) (Egerstedt, 2013).

3.2.1. Go-To-Goal (GTG) Mode

Consider the point mass moving toward a goal point, xg,
with current position as x in the xy-plane. The error, e = xg-
x, is controlled by the input u = Ke, where K is gain matrix.

Since e Ke= −& the system is asymptotically stable if K>0.
An appropriate K is selected to obey the function shown in
Fig. 7a above such that ()e K || e || e= −& , where a and b are

constants to be selected; in this way the robot will not go
faster further away from the goal (Egerstedt, 2013).

3.2.2. Obstacle Avoidance (AO) Mode

Let the obstacle position be x0, then e = x0-x is
controlled by the input u = Ke and since e Ke= −& the
system is desirably unstable if K>0. An appropriate K is
selected to obey the function shown in Fig. 7b above
such that ()e K || e || e= −& , where c and ε are constants to

be selected (Egerstedt, 2013).

3.2.3. Blending AO and GTG Modes

In a ‘pure GTG’ mode, uGTG, or ‘pure AO’ mode,
uAO, or what is termed as hard switches, performance can
be guaranteed but the ride can be bumpy and the robot
can encounter the zeno phenomenon (Egerstedt, 2013).
A control algorithm for blending the uGTG and uAO modes
is given by (Equation 23). This algorithm ensures
smooth ride but does not guarantee performance
(Egerstedt, 2013):

()GTG,AO GTG AOu ()u 1 () u , () [01]= α ∆ + − α ∆ α ∆ ∈ (23)

Fig. 6. Planning model input to actual robot input

 (a) (b)

Fig. 7ab. Suitable graph for an appropriate K (a) Go-to-goal mode (b) Obstacle avoidance mode

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

155 Science Publications

AJEAS

where, ∆ is a constant distance to the
obstacle/boundary and α is the blending function to be
selected, giving appropriately as an exponential
function by:

() 1 e−β∆α ∆ = − (24)

where, β is a constant to be selected.

3.2.4. Follow-Wall (FW) Mode

As pointed out in section III-B.2, in a pure obstacle
avoidance mode the robot drives away from the
obstacle and move in the opposite direction, but this is
overly cautious in a real environment where the task is
to go to a goal. The robot should be able to avoid
obstacles by going around its boundary and this
situation leads to what is termed as the follow-wall or
an induced or sliding mode, uFW, between the uGTG
and uAO modes; this is needed for the robot to
negotiate complex environments (Egerstedt, 2013).

The FW mode maintains ∆ to the obstacle/boundary
as if it is following it and the robot can clearly move in
two different directions, clockwise (c) and counter-
clockwise (cc), along the boundary, Fig. 8. This is
achieved by rotating uAO by π/2 and -π/2 to obtain

cc
AWu and c

AWu respectively and then scaled by δ to obtain

a suitable induced mode, (Equation 25-27), where R(∅)
is a rotation matrix (Egerstedt, 2013):

cos sin
R()

sin cos

∅ − ∅ 
∅ =  ∅ ∅ 

 (25)

cc
FW AO AO

0 1
u R(/ 2)u u

1 0

− 
= δ π = δ  

 
 (26)

c
FW AO AO

0 1
u R(/ 2)u u

1 0

 
= δ −π = δ  − 

 (27)

The direction the robot selects to follow the boundary

is determined by the direction of uGTG and it is
determined using the dot product of uGTG and uFW, as
shown in (Equation 28 and 29) (Egerstedt, 2013):

()Tcc cc cc
GTG FW GTG FW FWu ,u u u 0 u= > ⇒ (28)

()Tc c c
GTG FW GTG FW FWu ,u u u 0 u= > ⇒ (29)

Another issue to be addressed is when the robot
releases uFW, that is when to stop sliding. The robot stops
sliding when “enough progress” has been made and there
is a “clear shot” to the goal, as shown in (Equation 30-32),
where τ is the time of last switch (Egerstedt, 2013):

genough progres :|| x x || dτ− < (30)

gwhere d || x() x ||τ = τ − (31)

()T

AO GTG AO GTGclear shot : u ,u u u 0= > (32)

3.2.5. Implementation of the Navigation

Algorithms

The behaviors or modes discussed above are put
together to form the navigation architecture shown in
Fig. 9 below. The robot started at the state x0 and arrived
at the goal xg, switching between the three different
operation modes; this system of navigation is termed the
hybrid automata where the navigation system has been
described using both the continuous dynamics and the
discrete switch logic (Egerstedt, 2013).

An illustration of this navigation system is shown
in Fig. 10, where the robot avoids a rectangular block
as it moves to a goal.

3.2.6. Tracking and Transformation of the
‘Simple’ Model Input

The simple planning model input, u = (u1 u2)
T can be

tracked using a PID controller or clever transformation
can be used to transform it into the unicycle model input,
u = (νω)T (Egerstedt, 2013). These two approaches are
discussed below.

Method 1: Tracking Using a PID Controller

Let the output from the planning model be u = (u1

u2)
T and the current position of the point mass be x = (x

y)T, Fig. 11a below, then the input, u = (ν ω)T, to the
unicycle model can be determined as shown below
(Egerstedt, 2013) Equation 33-35:

2
g

1

u
arctan

u

 
θ =  

 
 (33)

()gPIDω = θ − θ (34)

From Equation 2:

2 2 2 2 2 2 2 2

1 2x y cos sin u u || u ||+ = ν θ + ν ⇒ ν = + =& & (35)

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

156 Science Publications

AJEAS

Fig. 8. Setup for follow-wall mode (Egerstedt, 2013)

Fig. 9. Setup for navigation architecture

Fig. 10. Illustration of the navigation system

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

157 Science Publications

AJEAS

 (a) (b)

Fig. 11. (a) Coordinates for point mass in a specific direction (b) Coordinates for DDWMR model showing the new point

Method 2: Transformation

In this clever approach a new point (xn, yn), of
interest is selected on the robot at a distance k from the
center of mass, (x, y), as shown in Fig. 11b (Egerstedt,
2013), where xn = (xn yn)

T and nx u=& .

If the orientation is ignored then (Egerstedt, 2013)
Equation 36:

n

n

x x kcos

y y ksin

= + θ

= + θ
 (36)

Thus:

n

n

x x k sin

y y k cos

= − θ θ

= + θ θ

&& &

&& &

 (37)

Substituting (Equation 2) into (Equation 37) and

using n 1x u=& and n 2y u=& , we have (Egerstedt, 2013)

Equation 38:

n 1

n 2

1

2

1

2

1
1

2

x cos k sin u

y sin k cos u

cos sin u

sin cos k u

1 0 u
R()

0 k u

1 0 u
R()

0 k u−

= ν θ − ω θ =

= ν θ + ω θ =

θ − θ ν     
⇒ =     θ θ ω     

ν     
⇒ θ =     ω     

ν     
⇒ = −θ     ω     

&

&

 (38)

4. SIMULATIONS AND EXPERIMENS

4.1. Simulations of Individual Controllers

Simulink models developed, by modifying similar
models in (Corke, 1993-2011), that implement the
control algorithms discussed in section III are presented
in Fig. 12-15. These models are based on the unicycle
model in Fig. 2.

4.2. Simulations of the Navigation System

A MATLAB robot simulator introduced in
(MATLAB Robot Simulator (Software), 2013) was used
to simulate the navigation architecture control algorithms
presented in section III; the control algorithm combines
the GTG, AO and FW controllers into a full navigation
system for the robot. The robot simulator mimics the
Khepera III (K3) mobile robot, whose model is based on
the unicycle model presented in section II. The K3 is
equipped with 11 Infrared (IR) range sensors, of which
nine are located in a ring around it and two are located
on the underside of the robot. The IR sensors are
complemented by a set of five ultrasonic sensors (Corke,
2011). The K3 has a two-wheel differential drive with a
wheel encoder for each wheel.

The MATLAB algorithm that controls the simulator
implements Finite State Machine (FSM) to solve the
full navigation problem. The FSM uses a set of
if/elseif/else statements that first check which state (or
behavior) the robot is in and then based on whether an
event (condition) is satisfied, the FSM switches to
another state or stays in the same state, until the robot
reaches its goal (Egerstedt, 2013).

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

158 Science Publications

AJEAS

Fig. 12. Model that drives the robot to a point

Fig. 13. Model that drives the robot to a pose

Fig. 14. Model that drives the robot along a line

Fig. 15. Model that moves the robot in a unit circle (Corke, 1993-2011)

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

159 Science Publications

AJEAS

 (a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 16. (a-h) Sequence showing the MATLAB robot simulator implementing the navigation system

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

160 Science Publications

AJEAS

Figure 16a-h below shows a sequence of
movement of the MATLAB robot simulator
implementing the navigation system. The robot
navigates around a cluttered, complex environment
without colliding with any obstacles and reaching its
goal location successfully.

4.3. Experiments Using Dr Robot X80SV

The control algorithm built for the navigation
architecture presented in Section III has been
experimented on Dr Robot X80SV, programmed using
MATLAB GUI, in an office environment. The Dr Robot
X80SV can be made to move to a goal whiles avoiding
obstacles in front of it.

The Dr Robot X80SV, shown in Fig. 17a below, is a
fully wireless networked that uses two quadrature
encoders on each wheel for measuring its position and
seven IR and three ultrasonic range sensors for collision
detection. It has 2.6× high resolution Pan-Tilt-Zoom
CCD camera with two-way audio capability, two 12V
motors with over 22 kg.cm torque each and two
pyroelectric human motion sensors.

The Dr Robot X80SV has a dimension of 38cm
(length) ×35 cm (width) ×28 cm (height), maximum
payload of 10kg (optional 40 kg) with robot weight of
3 kg. Its 12V 3700 mAh battery pack has three hours
nominal operation time for each recharging and can
drive up to a maximum speed of 1.0 m s−1. The
distance between the wheels is 26cm and the radius of
the wheels is 8.5cm.

The PID-feedback system depicted in Fig. 17b above
shows how the DC motor system of the robot is
controlled. Figure 18 shows the setup used for the
experiments. After a connection is established between

the host PC and the robot through the wireless router the
MATLAB program receives and sends the
motion/sensors signals using ActiveX control. The
program directly exchange multimedia data with the
Pan-Tilt-Zoom camera also through an ActiveX control.

A screenshot of the main MATLAB interface used for
the Dr Robot X80SV control is shown in Fig. 19 below.
The interface was developed by mimicking a similar
interface developed in C# by Dr Robot Inc. The
motivation for using MATLAB instead of building upon
the provided C# interface is to take advantage of the ease
of simulation, quick and ease of developing GUI and
making use of the in-built control strategies libraries in
MATLAB for this research and future studies.

The main GUI interface has three sections:
Information about the robot settings and sensors,
multimedia and the vision and control. The robot settings
information includes the IP addresses of the robot and
the camera, the robot wheel radius, distance between the
robot wheels and the encoder count per revolution. The
sensors information, updated in real-time, includes the
IR, ultrasonic, motor, human, temperature, battery and
the position of the robot.

The multimedia section include real-time video
stream from the robot, which can be controlled using a
pan and tilt tools. The section also has tools for
capturing images and recording the video stream. In
addition, the section also has a tool to capture live
audio from the robot.

The vision and control section has tools for
performing ‘Basic Motion Control’, ‘Individual Motion
Control (PID and MPC)’, ‘Navigation System (PID and
MPC) and ‘Object Recognition and Tracking’.

Fig. 18. Setup used for the experiments (Robot, 2008)

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

161 Science Publications

AJEAS

Fig. 19. MATLAB GUI showing the Dr robot X80SV settings and sensors information, multimedia and control

 (a) (b)

 (c) (d)

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

162 Science Publications

AJEAS

 (e) (e)

Fig. 20. (a-f) Experimental setup showing sequence of the Dr robot X80SV movement

Currently, the Model Predictive Control (MPC) and
the ‘Object Recognition and Tracking’ tools are not
working; these are future research work. The ‘Basic
Motion Control’ makes the robot perform operations
such as move forward, backward, rotate, etc. The
‘Individual Motion Control (PID)’ makes the robot
‘move to a point’, ‘move to a pose’, ‘follow a path’
and ‘avoid obstacles. The ‘Navigation System (PID)’
makes the robot to move to a goal in the presence of
obstacles.

Figure 20a-f above shows an experimental setup
showing a sequence of movement of the Dr Robot
X80SV implementing the navigation control
algorithm.

5. RESULTS AND DISCUSSION

5.1. Simulation of Individual Controllers Results

The time domain Simulink simulations were carried
out over a 10 sec duration for each model (refer to the
simulation setups in Fig. 12-15). The trajectories in Fig.
21 were obtained by using proportional gains of 0.5 and
4.0 for Kν and Kh respectively; the final goal point was
(4.9920, 5.0036), compared to the desired goal of (5,5)
for the (5,9,π) initial state.

Trajectories in Fig. 22 were obtained using Kρ = 3.0,
Kα = 8.0 and Kβ =-3.0; the final pose was (4.9451,
5.0004, 2.7693), compared to the desired pose of (5,5,π)
for the (5,9,π) initial state.

The trajectories in Fig. 23 were obtained with Kd =
0.5 and Kh = 1.0, driving the robot at a constant speed of
1.0. The trajectory in Fig. 24 was obtained using Kh = 5,
PID controller gains of Kp = 1.0, Kl = 0.5 and KD = 0.0
and the goal was a point generated to move around the
unit circle with a frequency of 0.2 Hz.

Fig. 21. Move to a point

Fig. 22. Move to a pose

5.2. Simulation of Navigation System Results

The trajectory shown in Fig. 25a (refer to the
simulation setup in Fig. 16) was obtained by using PID

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

163 Science Publications

AJEAS

controller gains of Kp = 5.0, Kl = 0.01 and KD = 0.1, α =
0.6, ∈ = 0.05, ν = 0.1 m s−1, initial state of (0,0,0) and
desired goal of (1, 1,π/2). The final goal point associated
with the simulation was (1.0077, 0.9677, 1.1051) and the
average stabilization time was about 35s.

5.3. Experimental Results

The trajectory shown in Fig. 25b (refer to a similar
experimental setup in Fig. 20) was obtained by using
PID controller gains of Kp = 1000, Kl = 1000 and KD = 5
for the position control and Kp = 10, Kl = 0 and KD = 1
for the velocity control, ∈ = 0.01, ν = 0.5 m s−1, initial
state of (0,0,0) and desired pose of (2,0,0). The final pose
associated with the experiment was (200197, 0.0266,-
0.0096) and the average stabilization time was about 50s.

Even though there was steady-state errors in the
values obtained, the result was encouraging. Possible
causes of the errors are friction between the robot
wheels and the floor, imperfection in the sensors
and/or unmodeled factors (e.g., friction and backlash)
in the mechanical parts of the DC motor. Moreover,
despite the apparent simplicity of the kinematic model
of a WMR, the existence of nonholonomic constraints
(due to state or input limitations) turns the PID-
feedback stabilizing control laws into a considerable
challenge; due to Brockett’s conditions (Brockett,
1983), a continuously differentiable, time-invariant
stabilizing feedback control law cannot be obtained.

Note that during the experiments the robot
sometimes got lost or wandered around before
arriving at the desired pose. This is because the
navigation system is not robust. It was built using a low-
level planning based on a simple model of a point mass
and the application of a linear PID controller.

Fig. 23. Follow a line

Fig. 24. Follow a circle

 (a) (b)

Fig. 25. Trajectory in xy-plane (a) Simulation (b) Experiment

Stephen Armah et al. / American Journal of Engineering and Applied Sciences 7 (1): 149-164, 2014

164 Science Publications

AJEAS

6. CONCLUSION

In this study, an effective navigation control
algorithm was presented for a DDWMR, simulated using
a MATLAB robot simulator that mimics the K3 robot
and implemented on the Dr Robot X80SV platform using
a developed MATLAB GUI. The algorithm makes the
robot move to a pose, whiles avoiding obstacles in the
way. Even though the final steady-state values obtained
from the experiments could not be stabilized, the results
were encouraging.

This research paper has also demonstrated how to
make a unicycle, kinematically equivalent to DDWMR,
‘move to a point’, ‘move to a pose’, ‘follow a line’,
‘move in a circle’ and ‘avoid obstacles’. These were
simulated using Simulink models.

In future, the authors will integrate real-time
vision-based object detection and recognition to
address the imperfection of the IR and ultrasonic
range sensors. In addition, application of an optimal
control strategy such as MPC to handle the
nonholonomic constraints of the WMR will be
studied. Furthermore, parameters such as length of
path or journey time optimization will be considered.

7. ACKNOWLEDGMENT

This study was supported by the NC space grant.

8. REFERENCES

Brockett, R.W., 1983. Asymptotic stability and feedback
stabilization: Differential geometric control theory.
Birkhauser, Boston.

Corke, P., 2011. Robotics, Vision and Control:
Fundamental Algorithms in MATLAB. 1st Edn.,
Springer, Berlin Heidelberg Springer, ISBN-10:
3642201431, pp: 570.

Corke, P., 1993-2011. Robotics Toolbox for MATLAB
(Version 9.8) (Software).

De Luca, A., G. Oriolo and M. Vendittelli 2001. Control
of Wheeled Mobile Robots: An Experimental
Overview. In: RAMSETE: Articulated and Mobile
Robotics for Services and Technology, Nicosia, S.
(Ed.), Springer, Berlin, ISBN-10: 3540420908, pp:
181-226.

Egerstedt, M., 2013. Control of mobile robots.
Jones, J.L. and A.M. Flynn, 1993. Mobile Robots:

Inspiration to Implementation. 1st Edn., A K Peters,
Wellesley, ISBN-10: 1568810113, pp: 349.

MATLAB Robot Simulator (Software), 2013. Georgia
Institute of Technology, Georgia: Georgia Tech
Research Corporation.

Robot, 2008. C# Advance X80 demo program (Software.

