
American Journal of Engineering and Applied Sciences, 2012, 5 (3), 261-265

ISSN: 1941-7020

© 2014 Kaur and Singh, This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/ajeassp.2012.261.265 Published Online 5 (3) 2012 (http://www.thescipub.com/ajeas.toc)

Corresponding Author: Parminder Kaur, Department of Computer Science and Engineering, Guru Nanak Dev University,

Amritsar-143005, India

261 Science Publications

AJEAS

Configuration Management Issues in Software Process Management

Parminder Kaur and Hardeep Singh

Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar-143005, India

Received 2012-03-12, Revised 2012-09-02; Accepted 2012-09-14

ABSTRACT

A software development process is concerned primarily with the production aspect especially the

management of software development. The development of a software process passes through various

phases and there is a need to manage all issues particularly configuration issues during the evolution of a

software process. This study makes an attempt to deal with various configuration issues with the help of an

opensource configuration management tool. The analysis of different software development paradigms is

also presented in order to discuss the brief explanation with respect to software process management.

Keywords: Component-Based Development (CBD), Concurrent Version System (CVS), Open Software

Description (OSD), ClearCase (CLE), SourceSafe (VSS)

1. INTRODUCTION

Software process research deals with the methods and
technologies used to assess, support and improve software
development activities. Component-Based Development
(CBD) has emerged as a key element in the development
of complex software systems within the domain of
software processes. It follows the principle of “divide and
conquer” for managing complexity i.e., breaking a large
problem into smaller pieces and solves those smaller
pieces, then build up more elaborate solutions from
simpler foundations (Sametinger, 2001; Brown, 1998;
Pressman and Pressman, 2004). Component technology
offers the potential to assemble applications much more
rapidly than ever before. A key to assembling applications
quickly is the ability to reuse existing prefabricated
components to meet the desired requirements of the
application (Szyperski et al., 2002; Brown, 2000;
Heineman and Councill, 2001; Wallnau, 2002).

Traditional software process development follows two
approaches: One, when the software is developed entirely
from scratch and the other, where everything is outsourced.
Each component is developed as a standardized product,
with all associated advantages. The components are
available at different prices and with different qualities like
level of performance, resource efficiency, robustness and

degree of certification. Some individual components can
also be custom-made so that they could meet the specific
requirements or to foster strategic advantages.

The major requirement of component-based systems

is to manage the life-cycle evolution of software

components. As change occurs, new revision/variant of

the existing component takes place. The satisfactory

result of that revision/variant becomes the basis of next

version. Revisions can be performed in a serial as well

as parallel fashion (i.e., by a single person or by a

group of persons at a same time). So, the need exists to

keep the track of multiple versions of constituent

components. Configuration management is used for

retrieving the information about the system with respect

to various changes of available components.

To keep track of changes or to maintain the evolution
history of the components, various open-source as well as

commercial version control systems are available. Various
version control tools, like SCCS (Rochkind, 1975), RCS
(Tichy, 1985), Perforce (PER), BitKeeper (BIT),
ClearCase (CLE), SourceSafe (VSS), Concurrent Version
System (CVS) and Subversion (SUB), provide support for
configuration identification and version control, allowing

the software development to be integrated directly with
configuration management processes.

Parminder Kaur and Hardeep Singh / American Journal of Engineering and Applied Sciences 5 (3) (2012) 261-265

262 Science Publications

AJEAS

1.1. Software Development Approaches

A software system can be understood from a life-cycle
process of system development. There are several different
approaches, which can be considered for the development
life-cycle of software system. All these approaches are
based on the same activities such as (Brown, 2000):

• Requirement analysis and system specification
• System and software design
• Implementation and unit testing
• Integration, system verification and validation
• Operation support and maintenance
• Disposal

Sequential Model, Evolutionary Development Models,
Unified Process and Component-Based Development are
some of the different software development approaches. A
brief description of these models is as follows.

1.2. The Sequential Model

The sequential model e.g., a waterfall model follows
a systematic, sequential approach that begins at system
level and progresses successively at each stage. The
output from one activity becomes the input for the next
activity. The disadvantage of this approach is that it
requires defining and describing all system as well as
software requirements, beforehand, by the customer
explicitly. It is also very difficult to add or modify any
requirement during the development process. Another
problem, with the sequential model is the late response to
the customer and by that time, working version of the
model may become ineffective.

The sequential model provides a template onto which
methods for analysis, design, implementation,
integration, verification, validation and maintenance can
be placed. Therefore it has remained the most influential
software development process model.

1.3. Evolutionary Development Models

The basic principle of evolutionary development models
is to develop a system in various stages and each stage helps
in increasing the knowledge about system requirements and
functionality. This model reduces the risk of detecting
critical problems in later phases of the development.
Iterative approach, Incremental model and Prototyping
model are based on the principles of evolutionary
development approach (Pfleeger and Kitchenham, 2001;
Wallnau, 2002). Boehm has combined all these approaches
in a model, in which, activities are performed several times
in an iterative manner, beginning with a base functionality
and addressing issues like objective setting, risk assessment
and reduction, development, validation and planning for the
next loop Boehm and Basili (2000). The iteration process
can be concluded when a complete working software
system has been developed.

The disadvantage of this approach is the increased
difficulty of project coordination and evaluation. It is also
difficult to determine the exact number of iterations, as new
iterations may get added due to the occurrence of changes.

1.4. Unified Process

Unified Process, developed by Jacobson for Object-
Oriented and Component-Based Systems, was an
iterative incremental development process (Jacobson et al.,
1999). This process incorporates four phases named as
Inception (the phase, in which the system is described
in a formalized way), Elaboration (the phase, in which
the system architecture is defined and created),
Construction (the development of completely new
products with reuse capabilities) and Transition
(installation of the system and training of its users).

Several iterations of core activities like requirements,
analysis, design, implementation and test occur in each of
these four phases. The incremental part of unified process is
based on the fact that successful iterations will result in the
release of a system. Unified Process has the advantages of
both incremental and iterative models. It also inherits the
disadvantages of both incremental and iterative approaches.

1.5. Social Analysis of Software Development
Approaches

In any social process, interactions occur among
components playing particular roles. Many roles are generic
as they appear in methodologies within all development
paradigms. This section provides the social implications of
development paradigms like Traditional Life Cycle,
Iterative-Incremental and Component-based Development,
using a multidimensional framework as shown in Fig. 1.

1.6. Traditional Life Cycle Paradigm

The traditional life-cycle paradigm follows a linear
approach to systems development, processing through
analysis, design, coding, testing and maintenance.
Traditional approaches tend to be developer-centered.
Although request for application to be developed is initiated
by the user, yet, developers control the development
process. Methodologies within this paradigm tend to be
structured and formal for the judgment of acceptability at
each phase. One methodology that exemplifies this
approach is structured analysis and design (Yourdon, 1989).

1.7. Iterative-Incremental Paradigm

The iterative-incremental paradigm follows an iterative
process, repeating various activities until design
specifications are better understood and fully developed.
Methodologies within this paradigm are neither developer
centered nor user centered. The developer may direct some
activities but results are obtained by their joint responsibility
and effort. Many iterative-incremental methodologies fit
within an Object-Oriented paradigm that focuses on
software reuse. The most general methodology for this
paradigm is prototyping.

Parminder Kaur and Hardeep Singh / American Journal of Engineering and Applied Sciences 5 (3) (2012) 261-265

263 Science Publications

AJEAS

Fig. 1. Social Analysis of development paradigms (Robey et al., 2001)

1.8. Component-Based Development Paradigm

Component-Based Development (CBD) paradigm
depends upon the availability of a wide variety of reliable
utilities and business-application components so that they
can be easily created and configured (Nierstrasz et al.,
1992). Unlike objects, components are platform dependent
and thus concrete enough to avoid the risks and problems
of instantiating general objects on a particular machine
and within a specific application at the language level.
Most component-based development relies upon the use
and reuse of components available from independent
component suppliers.

Today, there are three major forces in component
software arena-Object Management Group, with its
CORBA-based standards (COR), (Marvie and Merle,
2001), Microsoft, with its COM-based standards (COM),
(MCDEC, 1995) and Sun Microsystems with its Java-
based standards (JAVA), (Frederic et al., 2009). These
component models focus on corporate enterprise,
desktop and network solutions. The ready availability of
commercial component-based infrastructures e.g.,
COM/COM+/DCOM/.NET, JAVA, CORBA and plug-
ins for software such as Adobe Acrobat, Visual BASIC
(Shapiro, 2002) and Netscape have made component-
based development a reality. Companies such as
ComponentSource.com, Flashline.com, ILOG and Rogue
Wave Software sell thousands of ready-made
components, mostly in the COM, Java, C, C++, Delphi
and .NET categories and generate substantial revenues.

The major requirement of component-based systems is
to manage the life-cycle evolution of software
components. As change occurs, new revision/variant of
the existing component takes place. The satisfactory result
of that revision/variant becomes the basis of next version.
Revisions can be performed in a serial as well as parallel
fashion (i.e., by a single person or by a group of persons at
a same time). So, there is a need to keep track of multiple
versions of constituent components. To keep track of

changes or to maintain the evolution history of the
components, various open-source as well as commercial
version control systems are available. Various version
control tools, like SCCS (Rochkind, 1975), RCS (Tichy,
1985), Perforce (PER), BitKeeper (BIT), ClearCase
(CLE), SourceSafe (VSS), Concurrent Version System
(CVS) and Subversion (SUB), provide support for
configuration identification and version control, allowing
the software development to be integrated directly with
configuration management processes.

1.9. Component Configuration Management

In component based systems, it is difficult to manage
components during the lifetime of a system. A system of
components is usually configured only during the
buildtime when known and tested versions of
components are used. When new versions of components
are evolved, the system itself has no method to detect the
recent installed components. There might be a check that
the version of replaced component is at least the same as
or newer than the original version, in order to ensure the
100% functionality of new component. Some sort of
mechanism must be present in the system to check the
version of replaced component. This mechanism
prevents the system from using old components, but it
does not guarantee system’s functionality when new
components are installed (Larsson and Crnkovic, 1999;
Crnkovic and Larsson, 2002).

Configuration Management (CM) refers to a disciplined
approach to manage the evolution process of software
development and maintenance. It manages the artefacts
produced in the development process, controls the changes
to the software and its components. It helps in managing the
systems built with components and checking dependencies
between components during evolution process. Some level
of configuration control can be achieved if it is possible to
identify components with their version and dependencies to
other components. CM is the art of keeping track of which
items within a product have changed, how they have
changed and how they are combined. It is who, what, when,
why and how of every change, system build and integration.

To identify the change in the system, following
points are to be considered:

• Identification of components including their versions
• Identification of direct and indirect independencies
• Get required information to confine the implicit

dependencies

To get the full dependency graphs about all the
components and the type of change occurred in a
component, there is a need of meta-data. Meta-data
provides the information like name, creation date, version,
compatibility change, provided interfaces and required
interfaces, which is helpful during the building of a system
with consistent configuration management. Open Software
Description (OSD) (W3C), an XML-based language, is

Parminder Kaur and Hardeep Singh / American Journal of Engineering and Applied Sciences 5 (3) (2012) 261-265

264 Science Publications

AJEAS

defined as a standard to describe components and their
dependencies by World Web Consortium. Tools like
Subversion (SUB), CVS (CVS, 2009) can also be used to
describe the dependencies at build-time.

1.10. Experimental Work

The tool “Dependency Walker” (DPW) has been used
to find dependencies by parsing the components. It is used
for the evaluation of the presented configuration model. It
parses through the system, finds all shared libraries and
generates the dependency graph. Scanning all shared
libraries and executables in a system creates a dependency
graph. Various features of the tool then extend this graph.
Processes can be supervised and when new components
are dynamically loaded into the memory, the graph is
extended with dynamic dependencies.

As the new version of the component is installed, it is
the task of component configuration management to
handle all the conflicts. Because in such a case, the new
component may have some additional dependent files, so
these are the issues to be handled by version management.
The information with respect to various versions can be
obtained using this tool.

Various versions of Adobe Acrobat Reader, Netscape
Navigator, Internet Explorer, Windows Movie Maker
[registered products of respective owners] are studied to
check the dependencies between components and their
shared libraries and it is found that as new version
evolves, changes in dependencies occur.

This case study, Table 1, shows that different
versions of a software product operated in same
environment, have different number of dependencies.

For example version V5 and V6 of Adobe Acrobat
Reader share the similar development patterns as well as
dependencies where as version V7 onwards indicate a
change in design. The reduced number of dependencies
may indicate toward the simple architecture of the
component integration. Same situation can be seen in case
of Moviemaker software. Similarly, in case of Netscape
Navigator and Internet Explorer change in design has taken
place. This shows that there exists a relationship between
dependencies and functionalities provided by the respective
software. This indicates that with simple architecture, a
system of components can be updated with enhanced features.
Subversion, an open source project that attempts to remain
as similar as possible to CVS while improving its
capabilities with additional features, is used to keep check
on configuration management activities. Table 2 enlists
various features of Subversion. Subversion offers directory
versioning. Also, it is easy to handle file name changes in
Subversion than in CVS, which requires a combined copy
and deletion to rename a file.

Table 1. Number of major dll files available in different versions

of Adobe Acrobat Reader, Netscape Navigator, Internet
Explorer and Windows Movie Maker (---- shows that
related version are not available to us)

.dll files Adobe Netscape Internet
Version acrobat reader navigator explorer Moviemaker
5.1 18 ---- ---- 23
6.0 21 8 5 3
6.2 ---- 9 ---- ----
7.0 6 9 14 ----
8.0 5 10 ---- ----
9.0 6 20 ---- ----

Table 2. Comparison of version control systems (VCID, 2012)

Feature CVS Subversion Aegis BitKeeper SourceSafe Perforce ClearCase Synergy

Platforms MS Windows MS Windows MS Windows, MS MS Windows, MS Windows MS Windows
 (clients), UNIX UNIX UNIX UNIX Windows UNIX UNIX UNIX
Atomic No Yes Yes Yes No Yes Yes Yes
Commits
Tracking Yes Yes Yes Yes Yes Yes Yes Yes
Uncommitted
Changes
File/Directory No Yes Yes Yes Yes Yes Yes Yes
moves,
renames
Remote No Yes, via tool Yes Yes No Yes, via tool Yes, via tool Yes
Repository
replication
Propagating No Yes, via tool Yes Yes No No Yes, via tool Yes
changes to
Parent
repository
Repository Limited Yes Yes Yes Limited Yes Yes No
Permissions
Line-wise Yes Yes Yes Yes Not directly Yes Yes Via scripting
history
tracking
Ease of deployment Good Good Medium Good Very Good Very Good Poor Good
Networking support Good Very Good Poor Good Good Good Poor Good
Portability Good Excellent Medium Very good Good Excellent Medium Very good
License Open source Open source Open Source Proprietary Proprietary Proprietary Proprietary Proprietary

Parminder Kaur and Hardeep Singh / American Journal of Engineering and Applied Sciences 5 (3) (2012) 261-265

265 Science Publications

AJEAS

Subversion lets us to create and store arbitrary properties,
called metadata along with any file or directory; it creates
versions of the file properties just as it does for the file
contents. It also allows treating a collection of files or
directory modifications as a single unit.
 Subversion is a powerful tool that can help solve many
problems arising in cooperative and distributed
development. Subversion is targeted at text files as this
allows subversion to merge documents that are edited at the
same time by different people. Subversion can even cope
with conflicting edits (e.g., two persons changing the same
line). Unfortunately, this is not possible for binary files such
as Word documents. For Word documents, one can use the
internal tracking feature to tell other people about changes,
but there is no possibility to merge two Word documents.
As such, Word documents should never be edited by two
persons at the same time.

2. CONCLUSION

 Component-based systems are becoming increasingly
important in software process management. The continuous
change in component-based systems, demand for an
efficient version control mechanism. Tools like
Dependency Walker as well as Subversion prove helpful in
keeping the track of changes during the evolution of
software. Various configuration control issues can be solved
with the use of these tools. Future work includes the
validation of these tools on a large networked data and
design of an automated tool which helps in detecting the
configuration issues during the installation of a new component.

3. REFERENCES

1. Boehm, B. and V.R. Basili, 2000. Gaining
intellectual control of software development.
Computer, 33: 27-33. DOI:
10.1109/MC.2000.841781

2. Shapiro, J.R., 2002. The Complete Reference:
Visual Basic. NET. 1st Edn., Tata McGraw-Hill,
New York, ISBN-10: 0070495114, pp: 865.

3. Brown, A.W., 1998. An overview of CBD.
4. Brown, A.W., 2000. Large-Scale, Component-

Based Development. 1st Edn., Prentice Hall
PTR, Upper Saddle River, ISBN-10:
013088720X, pp: 286.

5. Crnkovic, I. and M. Larsson, 2000. A case study:
Demands on component-based development.
Proceedings of the International Conference on
Software Engineering, Jun. 04-11, IEEE Xplore
Press, Limerick, pp: 23-31. DOI:
10.1109/ICSE.2000.870393

6. CVS, 2009. CVS-concurrent version control
system.

7. Robey, D., R. Welke and D. Turk, 2001.
Traditional, iterative and component-based
development: A social analysis of software
development paradigms. Inform. Technol.
Manage., 2: 53-70. DOI:
10.1023/A:1009982704160

8. Frederic, P., M. Agnes, F. Vandome and J.
McBrewster, 2009. Java (software platform).

9. Heineman, G.T. and W.T. Councill, 2001.
Component-Based Software Engineering: Putting
the Pieces Together. 1st Edn., Addison-Wesley,
Boston, ISBN-10: 0201704854, pp: 818.

10. Jacobson, I., G. Booch and J. Rambaugh, 1999.
The United Software Development Process. 1st
Edn., Addison Wesley, ISBN-10: 0201571692,
pp: 512.

11. Larsson, M. and I. Crnkovic, 1999. New
challenges for configuration management.
Proceedings of the 9th International Symposium
on System Configuration Management, (SCM’
99), Springer-Verlag London, UK., pp: 232-
243. http://dl.acm.org/citation.cfm?id=719006

12. Marvie, R. and P. Merle, 2001. CORBA
component model: Discussion and use with
open CCM. The Pennsylvania State University.
http://citeseerx.ist.psu.edu/viewdoc/summary?d
oi=10.1.1.2.2486

13. MCDEC, 1995. The component object model
specification. Microsoft Corporation.
http://www.daimi.au.dk/~datpete/COT/COM_S
PEC/pdf/com_spec.pdf

14. Nierstrasz, O., S. Gibbs and D. Tsichritzis, 1992.
Component-oriented software development.
Commun. ACM, 35: 160-165. DOI:
10.1145/130994.131005

15. Pfleeger, S.L. and B.A. Kitchenham, 2001. Principles
of survey research: part 1: turning lemons into
lemonade. ACM SIGSOFT Software Eng. Notes, 26:
16-18. DOI: 10.1145/505532.505535

16. Pressman, R. and R. Pressman, 2004. Software
Engineering: A Practitioner’s Approach. 6th
Edn., McGraw-Hill Science/Engineering/Math,
ISBN-10: 007301933X, pp: 880.

17. Rochkind, M.J., 1975. The source code control
system. IEEE Trans. Software Eng., SE-1: 364-
370. http://www.basepath.com/aup/talks/SCCS-
Slideshow.pdf

18. Sametinger, J., 2001. Software Engineering
with Reusable Components. 1st Edn., Springer,
Berlin, ISBN-10: 3540626956, pp: 272.

19. Szyperski, C., D. Gruntz and S. Murer, 2002.
Component Software: Beyond Object-Oriented
Programming. 2nd Edn., ACM Press, London,
ISBN-10: 0201745720, pp: 589.

20. Tichy, W.F., 1985. Rcs-a system for version
control. Software: Practice Exp., 15: 637-654.
DOI: 10.1002/spe.4380150703

21. VCID, 2012. Better SCM initiative:
Comparison.

22. Wallnau, K., 2000. Technical Concepts of
Component-based Software Engineering. 1st Edn.,
Carnegie Mellon University, Pittsburgh, pp: 53.

23. Yourdon, E., 1989. Modern Structured Analysis. 1st
Edn., Yourdon Press, Mexico, ISBN-10:
0135986249, pp: 672.

