
American Journal of Engineering and Applied Sciences, 2012, 5 (3), 251-260

ISSN: 1941-7020

© 2014 Tilakaratna and Rajapakse, This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/ajeassp.2012.251.260 Published Online 5 (3) 2012 (http://www.thescipub.com/ajeas.toc)

Corresponding Author: Prabodha Tilakaratna, School of Information Technology, Monash University Sunway Campus,

 Jalan Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia Tel: (+603) 5514 6071

251 Science Publications

AJEAS

Ontological Framework for Object-Oriented Analysis and Design

Prabodha Tilakaratna and Jayantha Rajapakse

School of Information Technology, Faculty of Information Technology,

Monash University Sunway Campus, Jalan Lagoon Selatan,

Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia

Received 2012-03-12, Revised 2012-07-31; Accepted 2012-09-14

ABSTRACT

Regardless of the large number of Object-Oriented (OO) modeling languages currently being used in the

Information Systems (IS) modeling process, unavailability of an OO modeling language that can be used in

both the analysis and design phases disintegrates the two phases. The problem is, such disintegration can

lead to a high level of missing information in the real world system from the analysis phase to the design

phase. The approach of this study is to propose a framework to produce design phase models from analysis

phase models using ontology based Unified Modeling Language (UML), thereby integrating the two phases.

The results obtained from the porposed framework involve: A consructed language which can be used in

generating the analysis phase scripts; and the development of script files based on the UML constructs at the

analysis and design phases to automatically generate the UML scripts for those two phases. Since this study

is a part of an ongoing research study, it can be concluded that, at the end of this study (1) both analysis and

design phases would be able to integrate using a common OO modeling language (2) the manual work

involved in the current analysis and design modeling would be reduced (3) the complexities and difficulties

faced by the modelers (By modelers we mean the analysts and designers who are doing the analysis and

design phase modeling) in using UML modeling tools would be reduced.

Keywords: Conceptual Model, System Model, Ontology, Constructed Language, XMI Format, Unified

Modeling Language (UML), Object-Oriented (OO), Information Systems (IS)

1. INTRODUCTION

 According to Wand and Weber (1988), IS are not

just representations of real world systems. They

represent how the human beings perceive the real world

systems. Human perceptions regarding the real world

characteristics are identified, abstracted and modeled as

conceptual and system models during the analysis and

design phases. Primary objective of these two phases

comprise making all the captured information readily

available for the subsequent IS development activities with

no missing information (Kim et al., 2008; Mishra and

Lohani, 2007). Any transformation with missing

information between either human perception of real

world system and conceptual model, or conceptual

model and system model will result an inaccurate final

outcome. Hence, the final IS will not be an accurate

representation of the real world system. Thus, faultless

modeling plays a significant role in IS development.

Nevertheless, IS projects do not use proper modeling

during the analysis and design phases due to various

reasons and most trivial of them are stated below:

• No common OO modeling language exist for both

analysis and design phases modeling (Evermann and
Wand, 2009). To be used in both the phases in a
disciplined way, an OO language should be able to
model both real world characteristics (conceptual
modeling) as well as the IS characteristics (system
modeling) seamlessly. Many OO modeling languages
do not have both these capabilities together. Thus,

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

252 Science Publications

AJEAS

different modeling languages need to be used for each
phase thereby disintegrating these phases

• So far, considerable portion of analysis and
design modeling processes are largely manual
(Overmyer et al., 2001). Primary tools used for
identification, abstraction and modeling the
conceptual and system models are pencil and paper,
with the results being transferred to a modeling tool
after the modeling is largely completed

• Various modeling tools are available to make the IS
modeling process easier. But most of them are
complex and less user friendly to be used. Moreover
they do not provide adequate helping facilities for
the modelers regarding the functionalities of those
tools. Kuhrmann (2011) declares that complexity
and less user friendliness associated with the
modeling tools are major problems in conceptual
and system modeling

 Availability of a proper framework or tool which
mitigates the above problems may encourage the
modelers to do their job well. Currently up to our
knowledge, there is no such framework or tool available.
Having observed the above problems, this study
proposes an ontological framework as the solution, that
uses UML as the OO modeling language.
 The constructs (By constructs we mean concepts and
core guidelines that are used to form a language or a
domain) of the existing OO modelling languages primarily
developed for system modeling and are not capable of
modeling the characteristics of real world systems
seamlessly (Evermann and Wand, 2005a). Since the
analysis phase more concern on real world systems,
Evermann and Wand (2005b) suggested adding the real
world system characteristics for the constructs of generic
UML using ontological approach. Consequently this will
create a new version of UML with new ontological UML
constructs, which can be used for conceptual modeling.
Ultimately it will help the use of UML for both analysis
and design phases in a disciplined way.
 Use of a common OO modeling language (with two
language versions) will preserve the real world
characteristics during the transformation process from
the human perception of real world system to conceptual
model. Besides, a set of UML based transformation rules
from-analysis-to-design can be defined when transferring
the conceptual model to the system model. This research
project expects to define such transformation rules to
generate system models from the corresponding
conceptual models with no human involvement thereby
reducing the involved manual work. This is an ongoing
research study. Thus, during this study the entire work to
be covered by the research study will be presented in
brief with necessary real life examples. Further
experiments and empirical suited regarding this ongoing
study will be covered in the future research activities.

1.1. Related Work

 The accuracy of the final IS to be developed
depends on how well it is modeled during the analysis
and design phases. Erroneous transformation of
information in either of the two phases will result an
erroneous representation of the real world system at the
implementation of the IS (Kim et al., 2008). Thus, the
modeling plays a trivial role in IS development.
 Nevertheless, the OO modeling process is largely
manual and difficult. Normally modelers start modeling
by identifying the characteristics of real world systems as
perceived by human beings. Those characteristics will be
transformed into conceptual models and, during this
stage usually pencil and paper are used. Same manual
procedure is being repeated at the design phase. Doing
the modeling manually is not an easy task. The reason is
that, OO modeling languages such as UML have grown
quite large and currently covers about 250 modeling
classes that are highly interrelated (Silingas and Butleris,
2009). Favre (2003) have evaluated UML using a quality
framework and identified that UML is one of the most
complex modeling approach.
 Manual work and the complexity involve in current
modeling practices are said to be reduced by modeling
tools. But the user friendliness and documents support
regarding the functionalities provided by many OO
modeling tools are not adequate enough. Nguyen and Chun
(2006) conducted a research study with six modeling tools
and identified that those tools currently provide little
assistance in managing the associations with the models and
hence provide little support for modeling.
 As aforementioned, although modelers tend to use OO
modeling languages in both analysis and design phases,
those languages are developed to be used only in system
modeling. UML is one such standard OO modeling
languages, which can be used in IS modeling (Koppe, 2010;
Paige et al., 2003; Rumbaugh et al., 1999). Nevertheless,
UML constructs are developed to describe and design
the functionalities and characteristics of ISs. Thus, it
provides less support in modeling the characteristics
of real world systems and hence cannot be used
effectively in conceptual modeling.
 As a result of the above reasons, even if the OO
modeling is important in IS development, it is not carried
out in a proper and a disciplined way. Many IS
development teams build OO models on whiteboards only
during user group meetings to help communicate their
understandings of the real world systems (Fowler, 2003).
Hence it is important to find solutions to make the OO
modeling in a more accurate and disciplined way.
 Having observed the aforementioned requirements,
Evermann and Wand (2005b) modified the UML to be
used with conceptual modeling by defining new UML
language constructs from Bunge’s ontological concepts

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

253 Science Publications

AJEAS

(Bunge, 1977; 1979). A mapping is created between the
ontology based real world characteristics and the UML
constructs thereby making this new ontology based UML
version to be used in conceptual modeling. Thus, UML
can be used as a common OO modeling language in both
analysis and design phases to integrate those two phases
with no missing information. Core objective of the
framework proposed in this study comprises defining
proper UML based transformation rules to convert
conceptual models into system models seamlessly.
 Besides, the proposed framework converts the
human perception of real world systems into language
statements of a specific constructed language defined for
this framework. Next, those constructed language
statements will be transformed into conceptual models.
Constructed language is a language that has been built by
a person or a group of people, rather than naturally
evolving over time (Gopsill, 1989; McGuigan and
Foster, 2011). These languages are being built for
various reasons; to ease human communication (e.g.
Esperanto-an international auxiliary language), to
develop computer programs (e.g., Python-a
programming language), to do linguistic experiments.
(Oostendorp, 2000). But up to our knowledge, currently
no constructed language is built to satisfy the following
three requirements together; (1) represents real world
characteristics (2) uses normal English language words
to represent them in constructed language statements (3)
can be mapped with the constructs of UML. Hence the
proper definition of a new constructed language for the
framework rules will ultimately transforms the real
world characteristics into conceptual models in a
disciplined way, thereby integrating real world system,
conceptual model and system model seamlessly.
 The interface of the framework should be designed
in a way to take inputs (real world system
characteristics) in Natural Language (NL) format and
produce constructed language statements. Since NL is
easily used by anyone, many researchers try to develop
NL based approaches for UML modeling. Tichy and
Koerner (2010) use NL processing and semantic
technologies to generate UML models from NL inputs.
They directly convert the NL input documents into a
constructed language which later will be transformed
into UML models. Although the approach is similar to
ours, the constructed language built by them has a
graphical notation which cannot be incorporate with the
UML constructs used in our framework. Deeptimahanti
and Babar (2009) propose a domain independent UML
tool which generates UML models from NL
requirements using efficient Natural Language
Processing (NLP) tools. They directly convert the NL
inputs into XML Metadata Interchange (XMI) files of

conceptual models using generic UML. Since the
constructs of generic UML does not support conceptual
modeling, this framework is also not suitable for our
purpose. The interface proposed by Overmyer et al.
(2001) in their software tool Linguistic Assistance for
Domain Analysis (LIDA), is the most applicable
interface to be incorporated with our framework. LIDA
tool provides an interface for the analysts to feed NL
documents, from which the UML models are being
generated. Only the required NL words will be captured
form the input documents in generating the diagrams.
The basic structure of this interface needs to be modified
to be suited with the requirements of our framework
where it should; (1) allow the analysts to input real world
characteristics except the concepts captured form the
input document (2) convert all the captured NL words
into constructed language statements using the rules
specified for that language. With these modifications,
LIDA tool interface can be used with our framework.
 The study proceeds as follows. Materials and methods
of the framework descibes next with the proposed
modeling framework. Subsequently, the results obtained
from the practical use of the proposed framework is
explained. Since this is an ongoing research study, final
part of the paper concludes the research study along with a
discussion of the future research.

2. MATERIALS AND METHODS OF THE

FRAMEWORK

 Current modeling process in IS development is
depicted in Fig. 1. It distinctly shows that both analysis
and design phases build models using two different
modeling languages. Besides, large portion of analysis
and design phases modeling is manual. The UML based
ontological framework proposed in this study mitigates
above problems thereby enhancing the current IS
modeling process. Primary objective of this proposed
framework involve integrating both analysis and design
phases using a common OO modeling language, UML.
Thus, UML must be capable to be used in both analysis
and design phases in a disciplined way. The ontology
based framework that comprises a new UML version for
the analysis phase proposed by Evermann and Wand
(2005b) is used in our framework for the creation of
conceptual models. Evermann and Wand’s framework is
specifically chosen because:

• They have selected UML as the OO modeling

language for their framework, which is the same used
in our framework

• The concept behind their framework well suits in
solving the problem of using the OO modeling
languages in conceptual modeling in a disciplined way

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

254 Science Publications

AJEAS

Fig. 1. Existing modeling process in the current practice. (Before introducing the framework)

• They have initiated incorporating the real world

characteristics to UML, which can be used as the

starting point of our framework

 Having a common OO modeling language for both
conceptual and system modeling only, will not precisely
integrate analysis and design phases. Along with a
common modeling language, the availability of proper
transformation rules to transform the conceptual models
into system models with no missing information will
ensure a proper and accurate integration between
analysis and design phases. A precise comparison
between the UML constructs defined for each phase will
help to build new transformation rules. Nevertheless,
analysis phase UML constructs are defined based on
Bunge’s ontology (Evermann and Wand, 2005b). Thus
prior to the comparison, design phase UML constructs
also need to be defined using the same ontology.
 Currently up to our knowledge, no research study
has been carried out to define ontology based UML
constructs for the design phase. To define ontology
based UML constructs, IS characteristics need to be
applied for UML using ontology. Once the UML
constructs of both analysis and design phases are defined
using Bunge’s ontology, definition of the transformation
rules can be initiated. Next, those rules need to be
mapped to the UML version used in system modeling
(i.e., generic UML). Subsequently, if the transformation
rules are defined seamlessly, two important conclusions
can be made out of that:

• A model created using analysis phase UML version

can precisely be transformed into a model of the

design phase UML version seamlessly. Which
means conceptual models can be transformed into
system models without losing any information
captured from the real world system

• A precise integration can be created between analysis
and design phases using UML. The first conclussion
is used as the basis of the proposed framework.
Besides, the framework is further enhanced as
depicted in Fig. 2. Enhanced framework is capable of
taking the human perception regarding real world
systems into the statements of a constructed language
(a language specifically built for this framework) at
the analysis phase and to output the conceptual
models from them

 The framework interface is developed according to
the interface of the LIDA tool (Overmyer et al., 2001), as
specified in the Related work section. The LIDA interface
will be modified based on the language rules of a

constructed language, thereby converting all the inputs fed
to the interface into constructed language statements.
Interface development will be done during the
implementation of the software solution of the framework,
which is out of the scope of this research study. Even
though NL is more convenient for the modelers, a

constructed language is devised to be used inside the
framework except NL. Because, NL words and sentences
are too complicated to be mapped with UML constructs.
The constructed language is also similar to NL but more
specific and abstract than that and easy to be mapped with
UML constructs. Further details about this constructed

language are given under the Framework in practice
section with real world examples.

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

255 Science Publications

AJEAS

Fig. 2. Proposed ontological framework

 Once the constructed language statements are

provided by the interface, those will be converted into

ontological UML constructs of conceptual model, using an

ontological approach. The ontological UML constructs

generated for the conceptual model are used as the input at

the design phase, thereby transforming them into

ontological UML constructs of system model.
 Next, the created ontological UML constructs for
both analysis and design phases will be converted into
the language statements of another language, Extensible
Markup Language (XML). The ontological UML
constructs will not directly be converted into UML
models. Because, our purpose is to make the final
conceptual and system model to be accessed using most
of the currently available UML modeling tools. In order
to do so, the information of the two models (the UML
constructs) needs to be saved using a file format which is
compatible with most of the standard UML modeling
tools in the current practice. Hence, XMI is selected as
the file format which is compatible with most of the
standard UML modeling tools. XML is the programming
language which is used to create XMI files. Thus, the
ontological UML constructs of both analysis and design
phases need to be transformed into XML language
statements. Later, those XMI statements will create the
XMI script files for both constructs sets.
 This XMI script files contains transformation
information about how to convert the UML language
constructs into UML symbols. Since XMI format is
compatible with most UML modeling tools, once a script
file is imported to a UML tool, it has the ability to
transform the symbols into the corresponding UML
diagram as specified in the script file. Ultimately
conceptual model for the analysis phase and system
model for the design phase can be generated with the
help of these XMI script files.

3. RESULTS FROM THE PRACTICAL

USE OF THE FRAMEWORK

 UML possesses fourteen different types of diagrams
which can be used in OO modeling. Out of them, only
class diagram is considered to be used with the proposed
framework. Class diagram is the main diagram type in
UML which represent the main objects and their
interactions of an IS to be developed. Its purpose is to
graphically depict the relationships holding among objects
manipulated by a system (Evans, 1998). Specifically this
diagram type is used because, UML class diagrams are
already enhanced to be used in both conceptual and
system modeling.
 Using UML class diagrams, some parts of the
framework are being investigated. Those parts are described

below with a real world scenario. An IT institute wants to
develop a system to assign their students to lecturers, based
on the subjects they have selected. Properties of a student
include student ID, name and address and for a lecturer
those are lecturer ID, name and subjects they are teaching.
Registration of the student and lecturer records needs to be
performed. Furthermore modification and deletion of
student records and subject assignment for the lecturers
need be done via the system. Each student should be
assigned to one lecturer and each lecture can have zero to
many students. This scenario is used in the following two
sub sections to describe the activities of the framework.

3.1. Building the Constructed Language

 This sub section presents information about the use
of constructed language for the proposed framework.
The modified LIDA interface (Overmyer et al., 2001)
will be capable of converting the inputs fed into to the
interface constructed language statements. Although
modelers can feed inputs to the LIDA interface in NL, a
specific constructed language is used within the

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

256 Science Publications

AJEAS

framework except NL, because of the complexity in
using NL. NL inputs can contain thousands of words and
different complex sentences, which may be difficult to
map with the ontological UML constructs (analysis
phase). Hence, a specific constructed language will be
built for our framework.
 As depicted in Fig. 2, constructed language statements
generated from the modified LIDA interface are converted
into the ontological UML constructs of analysis phase. This
means, the scope of the constructed language comprises
representing the UML constructs defined for the analysis
phase with no missing information. Hence, this language
uses the UML constructs defined for the analysis phase as
the basis in building the language. Thus, the constructed
language uses normal English words and sentences but
builds in a way to represent the large English vocabulary
with a limited but sufficient number of words. Once the
constructed language is built to represent all the UML
constructs defined for the analysis phase precisely, it can be
claimed that the limit of the constructed language is reached
up to the required level. Besides, this constructed language
organizes the long and complex English sentences in a
clearer manner with simple statements. Thus, all the
aforementioned factors ultimately help to make the
constructed language statements more precise and clearer
than the NL inputs (McGuigan and Foster, 2011).
 Some important constructed language rules are
specified below. Fundamental ontological UML
constructs defined for the analysis phase are considered
in building those rules.

3.2. Rule 1

 A UML class must be declared with a single word
and within square brackets.
 Evermann and Wand (2005b) defined UML rules for
the analysis phase using Bunge (1977; 1979) ontology.
According to their definition and according to Bunge’s
ontology, only physical things in the world are modeled as
objects (Evermann and Wand, 2005b). They have found
alternative constructs in UML for conceptual items such as
‘lecture’, ‘order’ and described those in their research paper
in detail. Having observed Evermann and Wand’s UML
rules for the analysis phase, we have made some
amendments to the aforementioned rule as corollary one.

3.3. Corollary 1

 In OO conceptual modeling, every class name
specified inside a square bracket must represent a
physical thing in the real world.
 UML classes and attributes need to be defined in
constructed language statements as follows.

3.4. Definition 1

 Once a class is identified, that can be declared as; class:
[class name]. Initially ‘class’ key word should be declared
along with the class name, which is separated by a colon.

3.5. Definition 2

 Once an attribute is identified, that can be declared
as; attribute: Attribute name [respective class name].
Initially ‘attribute’ key word should be declared along
with the attribute name which is separated by a colon.
Attribute name should follow the respective class name.
 The above language rules defined for the
constructed language can be illustrated using the real
world scenario as follows. Two main classes are
identified from the scenario, student and lecturer:

Class : [Student]; [Lecturer]

Attribute : student-ID, name, address, [Student];

 lecturer-ID, name, subjects, [Lecturer]

 According to the analysis phase UML rules, UML
attributes are divided into two parts as attributes of
ordinary classes and of association classes. Attributes of
an ordinary classes means the attributes possess by the
class itself (e.g., colour). Attributes of association classes
means the attributes that exist between two or more
classes (e.g. employed by) (Evermann and Wand,
2005b). According to this UML rule, following
constructed language rules can be defined.

3.6. Rule 2

Attributes of ordinary classes should be declared with
‘attributeA’ key word and attributes of association
classes should be declared with ‘arrtibuteO’ keyword.

3.7. Corollary 2

 Attributes of ordinary classes can only have one
corresponding class and attributes of association classes
must have more than one class.
 The given examples for the two attribute types;
colour and employed by, are not given in the real world
scenario. But we can add them to the student and lecturer
classes as the below given way:

Attribute: colour [Student]
Attribute: employedBy [Student],[Lecturer]

 During the design phase of OO modeling, methods
that each class is responsible of are modeled.
Nevertheless, at the analysis phase not the methods but
the messages sent and received by each class are
modeled. For the ease of transforming the conceptual
model into system model, the word method will be used
as the constructed language symbol.

3.8. Definition 3

 Once a method (message to or from) of a particular
class is identified, that can be declared as; method:

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

257 Science Publications

AJEAS

method name [respective class name]. Initially ‘method’
key word should be declared along with method name
which is separated by a colon. Method name should
follow the respective class name. For example, method
(message to or from) can be added to the above defined
classes as follows:

method: getRegistered(), makeModify() [Student];

addCourse() [Lecturer]

 UML class diagrams possess three different
relationship types; association, whole/part relationships
and generalization/specialization. Out of those three
relationship types, an association relationship can be
represented in constructed language as follows. Tour

3.9. Definition 4

 Association relationship-Two class names should be
written as declared earlier and should be written in
between the ‘association’ key word.
 Multiplicity also can be declared with the
association relationship declaration. Multiplicity means
the term used to describe constraints on the number of
participating classes (Bennett et al., 2001).

3.10. Corollary 3

 Multiplicity of a class should be defined just after the
name of that class and it should be declared within brackets.
 The two classes identified from the scenario can be
related with each other through association relationship.
This association relationship can be represented using
constructed language statements along with their
multiplicity, as follows:

Association: [Student] (0..*) association [Lecturer] (1)

 Above constructed language rules are defined for
classes, attributes, operations and association
relationships. Those rules are defined in a way to map the
constructed language statements with the analysis phase
UML constructs. But the analysis phase ontology based
UML contains hundreds of different constructs and more
complex UML rules also remain. Hence the constructed
language needs to be built in a way to be correctly mapped
with as much as currently available analysis phase
ontological UML constructs and UML rules.

3.11. XMI Script Files

 The proposed ontological framework does not directly
convert the ontological UML constructs generated for
conceptual and system models into UML diagrams. But it
converts these ontological UML constructs into a file which
stores information about the UML diagram to be generated.
The reason behind this is; if the UML constructs directly

convert into conceptual and system models, a new file
format (e.g., *.doc is the file format for MS Word 2003)
which is specific to this framework needs to be defined to
save the outputs. Then the output results can only be
modified using this framework. Nevertheless, the aim is to
develop the framework in a way, where the conceptual and
system models output by the framework can be modified
using almost all UML modeling tools. Thus, the modelers
can either use this framework or their preferred modeling
tool to modify the models output from our framework.
 In order to achieve this, ontological UML constructs
need to be converted into a file format which is
compatible with most of the standard UML modeling
tools. This compatibility requirement triggered the use of
XMI in our framework. XMI is a file format which
mostly used to interchange the data between different
UML modeling tools. Most of the standard UML
modeling tools can import XMI files as well as export
the UML diagrams developed using those tools as XMI
files. What XMI files do is, they store the details of
UML diagrams given by the ontological UML constructs
using XML language. XML is the markup language
which is used to script XMI files. For example, student
class can be taken from the aforementioned real world
scenario with student-ID attribute and register operation.
As depicted in Fig. 3, the details of class student are stored
in a XMI script file using XML language statements.
 As illustrated, XMI file only contains some XML
tags (XML statements written within < > are known as
XML tags) and XMI file is only a text document. Hence
XMI script file itself does not show the conceptual or
system model directly; instead that file needs to be open
with an XMI compatible UML modeling tool thereby the
tool converts the XML tags specified in the XMI script
file into corresponding UML symbols.
 Definition or modifications of the existing UML
constructs will not be performed during this research
study. Instead, mapping ontological concepts to the
existing UML constructs and transformation rules
definition for the design phase will be performed.
Hence, defining new XML tags for the existing UML
constructs is not required. Because that, if an existing
UML construct or a set of constructs is drawn using a XMI
compatible modeling tool, that tool is capable of exporting
the corresponding UML diagram as an XMI file. This
means for each existing UML construct, predefined XML
tags are available in each UML modeling tool.
 Thus, we only have to ensure that the ontological
UML constructs generated by the framework for each
conceptual and system model, are transformed into XML
tags with no missing information. In order to do this,
necessary XML tag(s) need to be assigned for each
ontological construct for both UML versions. So
mapping the XML tags for the ontological UML
constructs can be achieved as depicted in Table 1.

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

258 Science Publications

AJEAS

Fig. 3. Student UML class with its’ XMI script file information

Fig. 4. Complete set of XML tags used to define an UML object

Table 1. Basic XML tags assignment to analysis phase UML constructs and ontological concepts

Analysis phase UML construct Ontological concept Analysis phase XML definition (Basic XML tag)

Object Thing <XPD:ATTR name = Name type = string> student-Object </XPD:ATTR>
Attribute Property <XPD:ATTR name = Name type = string> student-ID </XPD:ATTR>
Class Functional schema <XPD:ATTR name = Name type = string> Student </XPD:ATTR>

 The first two columns of the table are taken from
Evermann and Wand (2005b) research study and in the
third column necessary XML tags are mentioned. The table
only illustrates the primary XML tag which includes the
UML construct name. Except this tag, some more XML
tags are required to describe a UML construct precisely. For
example, the XML tags set depicted in Fig. 4, are required
to describe an UML object correctly.
 The XML language used in Fig. 4 is known as XML
Processing Description Language (XPDL), hence all the
XML tags start from that word. Each object represented
in this language contains an arbitrary mixture of ATTR
(attribute) and OBJ (sub-object) elements and using them
all the objects will be described in the XMI script file.
Correspondingly, the above depicted set of XML tags
includes all the details of the UML object; Student.
 Thus, all the XML tags used for each ontological UML
construct need to be identified clearly, to have a perfect
transformation. Sometimes, merging the XML tags of two
different UML constructs may need to be done in order to
map the XML tags seamlessly with the ontological UML
constructs and their corresponding ontological concepts.
Correspondingly this process need to be continued for the
ontological UML constructs of both analysis and design
phases. Accurate XML tag assignment ensures a faultless

transformation form conceptual and system models to XMI
script files thereby representing the real world system
accurately in both analysis and design phases.

4. CONCLUSION

 This study proposes an ontology based UML
framework for OO conceptual and system modeling. It
is a part of an ongoing research project and certain
parts of the framework are illustrated using real world
examples. The future work will cover the following
aspects of the framework:

• As explained in the Constructed language sub

section; to represent the characteristics of real world
systems precisely at the analysis phase, constructed
language rules need to be developed to map the
ontological UML constructs defined for the analysis
phase with no missing information

• As mentioned in this study, a faultless model
transformation can be achieved by defining proper
transformation rules between analysis and design
phases by matching the two sets of ontological
language constructs defined for each phase. Since
ontological UML constructs are already defined
for analysis phase, we hope to work in defining

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

259 Science Publications

AJEAS

ontological UML constructs for the design phase.
This can be done by assigning system domain
characteristics into generic UML, using
ontological concepts. Mario Bunge (1977; 1979)
ontological approach is specifically used in our
research study because

• It is rooted in ontological work done over a long period
of time and it is in line with the old practices as well as
current practices in the world (Bunge, 1977)

• It has been successfully adopted to IS modeling by
several researchers (Evermann and Wand, 2005b;
2009; Wand and Weber, 1988; 1989)

• Evermann and Wand is using this ontology in
developing UML constructs for analysis phase,
which we use in our framework (Evermann and
Wand, 2005b)

 Once the system domain characteristics are assigned
with necessary ontological concepts, those need to be
mapped with generic UML to define UML constructs for
the design phase. According to Bunge’s ontology, thing
is the fundamental concept and all the other ontological
concepts built under this thing. The world consist of
things and only of things and moreover those substantial
things physically exist in the world. Only the constructs of
UML class diagram are considered for the mapping with
ontological concepts because, in this study we only use
UML class diagrams to explain the framework. Since all
the concepts of Bunge’s ontology are built under thing,
logically it should be mapped with the fundamental UML
construct, object. But, OO system modeling defines a
UML object as; Something that is or is capable of being
seen, touched or otherwise sensed and about which users
store data and associated behavior (Whitten and Bentley,
2005). Hence objects can or cannot be physical
(substantial) in OO system modeling thereby mapping
Bunge thing to UML object is infeasible.
 Since Bunge’s fundamental ontological concept
(thing) is difficult to map with a design phase UML
construct, mapping the other ontological concepts with
relevant UML constructs may not be an easy task.
Because, until a suitable UML construct will be found
for Bunge-thing, it will not be possible to proceed with
the remaining ontological concepts. Hence, this part of
the framework is supposed to be carried out as a future
research work:

• Subsequently, the framework will convert the two sets

of ontological UML constructs defined for analysis and
design phases into XML language statements. Using
these statements, XMI scrip files will be generated. As
mentioned in the Framework in practice section, no
new XML tag or set of tags need to be defined to be
suited with ontological UML constructs. What need to
be done is, ensuring that all the ontological UML

constructs used in conceptual and system modleing can
be precisely mapped using the predefined XML tags
with no missing information. At this level this activity
is continuing and to be completed as a future work.

• Once the activities comprises in the proposed
framework are being completed precisely, an empirical
study will be carried out to evaluate the validity and the
usefullness of the framework in the practical scenario

• Finally we hope to do an investigation to find the UML
tools in current practice, which can be made
compatible with our framework. Because, XMI cannot
be used with every UML tool. Even if XMI is used,
different tools may have different unique ways in
representing the XMI script file. After a thorough
analysis of these conflicts and gaps, we expect to find a
standard format for the XMI script file, which may
capable to be used with all the UML tools that uses
XMI. This is the final future activity we expect to carry
out with our research study

 With all the above mentioned activities, our final
goal is to create an UML based ontological framework
that can be used to (1) integrate both analysis and design
phases using a common OO modeling language (2)
reduce the manual work involved in the current OOAD
process (3) minimize the complexities and difficulties
faced by the modelers in using UML modeling tools.

6. ACKNOWLEDGEMENT

 We are indebted to Prof. Ron Weber (Faculty of
Information Technology-Monash University, Australia)
and Mr. Kapila Dias (University of Colombo School of
Computing, Sri Lanka) for the helpful comments and
reference suggestions given on this study.

7. REFERENCES

1. Bennett, S., S. McRobb and R. Farmer, 2001.
Object-Oriented Systems Analysis and Design
using UML. 2nd Edn., McGraw-Hill Education.
ISBN-10: 0077098641, pp: 632.

2. Bunge, M., 1977. Treatise on Basic Philosophy:
Ontology I: The Furniture of the World. 1st Edn.,
Springer, Dordrecht, ISBN-10: 9027707804, pp:
370.

3. Bunge, M., 1979. A World of Systems. 1st Edn.,
Springer, Dordrecht, ISBN-10: 9027709459, pp:
314.

4. Deeptimahanti, D.K. and M.A. Babar, 2009. An
automated tool for generating UML models from
natural language requirements. Proceedings of the
24th IEEE/ACM International Conference on
Automated Software Engineering, Nov. 16-20,
IEEE Xplore Press, Auckland, pp: 680-682. DOI:
10.1109/ASE.2009.48

P. Tilakaratna and J. Rajapakse / American Journal of Engineering and Applied Sciences 5 (3) (2012) 251-260

260 Science Publications

AJEAS

5. Evans, A.S., 1998. Reasoning with UML class
diagrams. Proceedings of the 2nd IEEE Workshop
on Industrial Strength Formal Specification
Techniques, Oct. 21-23, IEEE Xplore Press, Boca
Raton, FL., pp: 102-113. DOI:
10.1109/WIFT.1998.766304

6. Evermann, J. and Y. Wand, 2005a. Toward
formalizing domain modeling semantics in
language syntax. IEEE Trans. Software Eng., 31:
21-37. DOI: 10.1109/TSE.2005.15

7. Evermann, J. and Y. Wand, 2005b. Ontology
based object-oriented domain modelling:
Fundamental concepts. Requirements Eng., 10:
146-160. DOI: 10.1007/s00766-004-0208-2

8. Evermann, J. and Y. Wand, 2009. Ontology based
object-oriented domain modeling: Representing
behavior. J. Database Manage., 20: 48-77.
http://www.journalogy.net/Publication/4398062/o
ntology-based-object-oriented-domain-modeling-
representing-behavior

9. Favre, L., 2003. UML and the Unified Process. 1st

Edn., Idea Group Inc., Hershey, ISBN-10:

1931777446, pp: 314.

10. Fowler, M., 2003. UML Distilled: A Brief Guide
to the Standard Object Modeling Language. 3rd
Edn., Addison-Wesley Professional, Essex, UK.,
ISBN-10: 0321193687, pp: 208.

11. Gopsill, F.P., 1989. International languages: A
matter for Interlingua. 1st Edn., British Interlingua
Society, ISBN-10: 0951169564, pp: 282.

12. Kim, J., S. Park and V. Sugumaran, 2008.
DRAMA: A framework for domain requirements
analysis and modeling architectures in software
product lines. J. Syst. Software, 81: 37-55. DOI:
10.1016/j.jss.2007.04.011

13. Koppe, C., 2010. Teaching Software Process with
Openup. University of Amsterdam.
http://koeppe.nl/publications/teachingsoftwareproc
esswithopenup_v2.pdf

14. Kuhrmann, M., 2011. User assistance during
domain-specific language design. Proceedings of
the ICSE 2011 Workshop on Flexible Modeling
Tools (Flexi Tools), May 22-22, Waikiki, Honolulu,

HI, USA., pp: 1-5.
15. McGuigan, B. and N. Foster, 2011. What is a

Constructed language? Conjecture Corporation.
http://www.wisegeek.com/what-is-a-constructed-
language.htm

16. Mishra, R.K. and B. Lohani, 2007. An object-
oriented software development approach to design
simulator for airborne altimetric lidar. Proceedings
of the National Conference on Emerging Trends in
Information Technology, (ETIT’ 07), SGITS
Indore, India.

17. Nguyen, P. and R. Chun, 2006. Model driven
development with interactive use cases and UML
models. Proceedings of the International
Conference on Software Engineering Research
and Practice Programming Languages and
Compilers, (SERPPLC’ 06), pp: 534-540.
http://arnetminer.org/publication/model-driven-
development-with-interactive-use-cases-and-uml-
models-
585429.html;jsessionid=3BB7F318364B4210078
6B7E3385142CD.tt

18. Oostendorp, M.V., 2000. Constructed language
and linguistic theory. Association Belgique de
Linguistique.
http://www.vanoostendorp.nl/pdf/cllt.pdf

19. Overmyer, S.P., L. Benoit and R. Owen, 2001.
Conceptual modeling through linguistic analysis
using LIDA. Proceedings of the 23rd International
Conference on Software Engineering, May 12-19,
IEEE Xplore Press, pp: 401-410. DOI:
10.1109/ICSE.2001.919113

20. Paige, R., P. Agarwal and P. Brooke, 2003.
Combining agile practices with UML and EJB: A
case study in agile development. Proceedings of
the 4th International Conference on Extreme
Programming and Agile Processes in Software
Engineering, (EPAPSE’ 03) Springer-Verlag
Berlin, pp: 351-353.
http://dl.acm.org/citation.cfm?id=1763935

21. Rumbaugh, J., I. Jacobson and G. Booch, 1999.
The Unified Modeling Language Reference
Manual. 1st Edn., Addison-Wesley Professional,
Reading, Mass., ISBN-10: 020130998X, pp: 550.

22. Silingas, D. and R. Butleris, 2009. Towards
customizing UML tools for enterprise architecture
modeling. IADIS.

23. Tichy, W.F. and S.J. Koerner, 2010. Text to
software: Developing tools to close the gaps in
software engineering. Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, Nov. 7-11, ACM Press,
New York, USA., pp: 379-383. DOI:
10.1145/1882362.1882439

24. Wand, Y. and R. Weber, 1988. An ontological
analysis of some fundamental information systems
concepts. Proceedings of the 9th International
Conference on Information Systems, (IS’ 88), pp:
213-225.

25. Wand, Y. and R. Weber, 1989. An ontological
evaluation of systems analysis and design
methods. Inform. Syst. Concepts.

26. Whitten, J. and L. Bentley, 2005. Systems
Analysis and Design Methods. 7th Edn., McGraw-
Hill, Irwin ISBN-10: 0073052337, pp: 768.

