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ABSTRACT 

Due to wide implementation of Epoxy insulators in industrial applications and its economic implications; 
development of various Epoxy insulator materials has to be evaluated along with a reliable prediction 
methodology of their lifetimes. In this study, a new methodology based on Artificial-Neural-Networks (ANN) is 
developed to predict Epoxy insulators lifetime using laboratory measurements of their surface leakage current 
under accelerated aging. The effect of adding fillers with various concentration rates to the Epoxy insulators such 
as; Calcium Silicate (CaSiO2), Mica and Magnesium Oxide (Mg(OH)2) on their lifetimes is compared with the 
base case (no filler and dry condition). Furthermore, the lifetime of each specimen under study is examined under 
various weather conditions such as dry, wet, salt wet (NaCl) and hydro carbon solvent Naphtha. The obtained 
results are weighing against the experimental measured data based on two ANN techniques; i.e., Feed-Forward-
Neural-Network (FNN) and Recurrent-Neural-Network (RNN). The results obtained from the FNN and RNN are 
compared to validate the proposed methodology to predict the lifetime of epoxy insulators in terms of the type 
and percentage concentration of filler. The obtained Epoxy insulators predicted lifetime under various filler 
concentrations and weather conditions are compared and conclusions are reported.   
 
Keywords: Recurrent-Neural-Network (RNN), Feed-Forward-Neural-Network (FNN), Artificial-Neural-

Networks (ANN), Processing Elements (PE) 

 

1. INTRODUCTION 

 Electrical aging of polymer insulated materials is 
still poorly known phenomena and the physical sense of 
the various parameters involved in the aging models is 
far from being obvious (Crine, 2007; 2005). Polymeric 
insulators have been worldwide applied, due to their 
lightweight, excellence in mechanical strength and 
possess superior contamination performances compared 
with the conventional porcelain or glass (Izumi et al., 
2000). However, the long-term characteristics of the 
mechanical, electrical and contamination characteristics 
of the material have not been sufficiently clarified and 
the establishment of its assessment and diagnostic 
methods is desired (Hackam, 1998). Both the mechanical 
and electrical properties of polymers can be further 
improved or modified by the addition of inorganic fillers. 
These fillers increase the mechanical strength and 

change the electrical properties of the composites 
(Brosseu et at., 2001; Ng et al., 2001). 
  Polymers are considered to be good insulating 
materials due to their stable physical and chemical 
properties (Ieda et al., 1994). The most commonly used 
thermoset plastic in polymer matrix composites are 
epoxy resins due to their good properties on curing and 
commonly used as coatings and composite matrices 
(Ellis, 1993). However, the current problems in 
engineering applications of epoxy thermosets include 
low stiffness, strength and the exothermic heat generated 
by the curing of epoxy resins that causes serious 
processing difficulties (Dean et al., 2003). These 
characteristics can be further improved by adding 
inorganic fillers that increase the mechanical strength 
and change the electrical properties of the composites 
(Ng et al., 2001). Therefore, additives are often used to 
modify the properties and characteristics of materials that 
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include diluents, fillers, modifiers, flame retardants, 
antioxidants, or plasticizers. Recently, many investigators 
reported that the incorporation of inorganic fillers into the 
epoxy resins exhibits good electrical and thermal stability.  
 Despite of the gained benefits by adding fillers, 
electrical aging of polymer insulated materials is still 
poorly known phenomena and the physical sense of the 
various parameters involved in the aging models is far 
from being obvious (Crine, 2007). Polymeric insulators 
possess superficial chemical changes caused by 
weathering and dry band arcing, erosion and tracking, 
which may ultimately lead to failure of the insulators 
(Gorur et al., 1988), difficult to evaluate service life, 
unknown reliability and difficult to detect faulty 
insulators. During normal dry conditions, the 
electrostatic field determines the voltage distribution of 
dry insulator and very small capacitive leakage current 
flows across the entire insulator. On the other hand, 
during wet conditions, the insulator’s resistive surface 
leakage current is much higher than that of the dry 
insulator condition. Furthermore, the leakage current 
increases with increasing contaminant flow rate, with 
other conditions, due to the increased loss of 
hydrophobicity as well as reduced the surface resistivity 
of the insulator (Kindersberg et al., 1996). Therefore, the 
long-term characteristics of the mechanical, electrical 
and contamination characteristics of the material have 
not been sufficiently clarified and the establishment of its 
assessment and diagnostic methods is desired (Kim and 
Hackam, 1995). In the last two decades, a vareity of 
prediction models have been proposed in the literatures 
that include time-series models, regression models, 
artifitial neural network models, adaptive neuro-fuzzy 
interface system and support vector machine models 
(Gensoglu and Uyar, 2009).  
 In order to determin the flashover behaviour of 
polluted high voltage insulators, the researchers have been 
brought to establish a modeling using artifitial neural 
networks (Gencoglu and Cebeci, 2009). This research 
work aims to predict the lifetime of Epoxy insulators with 
different compositions of various fillers. It focuses on 
estimating an appropriate percentage concentration of 
filler such as; CaSiO2, Mica and Mg(OH)2 which produces 
enhancements of the epoxy lifetime under dry condition. 
The effect of contamination conditions such as; wet, NaCl 
and Naphtha on the lifetime prediction of epoxy insulators 
and composites is evaluated. A reliable FNN methodology 
has been proposed and developed to estimate the insulator 
lifetime using experimental data of insulator’s leakage 
currents as a function of for various epoxy samples 
with different types and concentrations of filler under 
various reagent conditions. The obtained results are 
verified with various sets of experimental data. 

Conclusions and recommendations are reported for the 
test samples under study. 

2. MATERIALS AND METHODS 

2.1. Modeling Techniques using ANN 

 Artificial Neural Networks (ANN) are defined in 
(Tsoukalas and Uhrig, 1997; Rajasekaran and Pai, 2004) 
as a data processing system consisting of a large number 
of simple highly interconnected processing elements 
(artificial neuron) in architecture inspired by the 
structure of cerebral cortex of the brain. They can be 
used to solve complex and nonlinear engineering 
problems by learning from previous experience, 
without looking for complex mathematical 
relationships between inputs and outputs. Once a 
neural network with an appropriate input and output 
signals is trained, it will contain the non-linearity of 
the desired mapping in the neural network, avoiding 
the knowledge of complex non-linear relationships 
(Oonsivilai et al., 2007; Oonsivilai and Oonsivilai, 2007).  

2.2. Recurrent Neural Network (RNN) 

2.3. Feed-Forward Neural Network (FNN) 

 FNN can be classified into a single layer or multilayer 

Neural Networks. In this study, only multilayer FNN 

architecture is used. It consists of n set input-layer (X); h 

set of hidden-layer (H) and o set of output-layer (Y) as 

shown in Fig. 1. The hidden layer unit j receives input i 

through synoptic weights IWij. Unit j computes a function 

of the input signal Xi and the weights IWij and passes its 

output in the next successive layer using (1) and (2) 

(Tsoukalas and Uhrig, 1997; Rajasekaran and Pai, 2004). 

Towards the hidden layer: 

 
n

i

i 1

net (t) = x (t)IW + θ
j ij j

=

∑  

j jy (t) = f(net (t))  (1) 

 

 Away from the hidden layer: 

 
k

k i jk k

j=1

net (t) = y (t)LW + θ∑  

k k
y (t) = f(net (t))  (2) 

 

Where: 

Xi, Hj, Yk = Input, hidden and output neurons 

respectively 

IWij and LW jk = Input-hidden and hidden-output layer 

weights respectively 
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Fig. 1. Multilayer FNN architecture 
 

 
 

Fig. 2. Recurrent neural network structure 
 
N = The number of inputs 

F = The layer output function (of any 

differentiable type) 

θj and θk  = The biases at the respective layers 

2.4. Recurrent Neural Network (RNN) 

 Recurrent network is the connections interval neural 

in feedback shown in Fig. 1 by connecting the output of 

one or more Processing Elements (PE) in the same or 

preceding layers. Figure 2 shows RNN’s structure; Input 

patterns have P1, P2… PR, (R= number of elements in 

input layer). a
1
(k) is output of hidden layer 1and input of 

hidden layer 2, a
2
(k) is output of hidden layer 2 and a

3
(k) 

is final output. Have f
1
, f

2
 and f

3
 are transfer function, 

a
1
(k), a

2
(k) and a

3
(k) can be calculated from the algebraic 

equation as follow Eq. 3-5: 
 

1 1 1 1

1,1 1,1
a (k) = f (IW P + LW a (k -1) + b )  (3) 

 
2 2 1 2 2

2,1 2,11
a (k) = f (LW a (k) + LW a (k -1) + b )  (4) 

 
3 3 2 3

3,2
a (k) = f (LW a (k) + b )  (5) 

Where: 
IW1, 1  =  Weights value connections between 

input layer 1 with hidden layer 1 
LW2,1  =  Weights value connections between 

hidden layer 1 with hidden layer 2 
LW3,2 = Weights value connections between 

hidden layers 2 with output layer 3 
b

1
, b

2
 and b

3
  =  bias values in hidden layers 1 and 2 and 

output layer 3 respectively. 
 
 Training neural network by gradient descent 
algorithm with tan-sigmoid transfer function using neural 
network toolbox of MATLAB software: 
 

-(n+b)

1
f[×] = logsig(n,b) =

1+ e
 

 
Where as: 
N = Summation output 
B = Bias adjust. 

2.5. Experimental Tests 
2.6. Material Under Study 

 Epoxy material without/with three types of fillers 
(CaSiO2, Mica and Mg(OH)2) with various percentages 



Nasrat, L.S. and A.M. Ibrahim / American Journal of Engineering and Applied Sciences 5 (2) (2012) 157-162 

 

160 Science Publications

 
 AJEAS 

are laboratory tested. The chosen Epoxy resin under 
study is the commercially available Araldite resin system 
which consists of an Epoxy resin Araldite CY231 and an 
anhydride hardener. A chemical preparation is laboratory 
carried out to add various filler percentage to the Epoxy 
specimen to obtain good homogeneity of filler in Epoxy 
samples by weight as shown in Table 1. 
 Ten material samples were laboratory prepared and 
tested under four different conditions such as; dry, wet, 
NaCl and Naphtha conditions. The samples are made of 
cylindrical rods having 12 mm diameter and 100 mm 
long. Two copper electrodes have been fixed into the 
samples, one at the top and the other at the bottom.  

2.7. Set up Test 

 The applied voltage under this study is obtained from 
a single phase high voltage transformer (150kV-15 kVA). 
An autotransformer is used to adjust the primary voltage 
of the AC test system smoothly. The applied voltage under 
this study between two copper electrodes is adjusted to be 
20 kV. The applied voltages are measured throughout a 
digital measuring instrument DMI551. The surface 
leakage current (mA) measurements are performed by 
means of a special system, which can register time 
variations of a voltage drop across a shunt resistor, supply 
voltage and phase shift between them. 

3. RESULTS 

3.1. Experimental Results 

 The lifetimes to reach complete breakdown for 

epoxy samples without/with the three types of fillers and 

various percentages under study were experimentally 

measured as given by Table 2. Results show that the 

lifetime of epoxy samples under dry test scenario 

condition are the highest among the samples’ 

corresponding other test scenarios under study. Among 

the different samples of the dry test scenario, the no-filler 

sample has the highest lifetime up to 161 hrs.  

3.2. Prediction of Lifetime by Neural Network 

for Epoxy Insulators 

 Experiments are performed on real time basis 

dataset that consists of ten samples with different filler 

percentages and types. Each of the ten materials is tested 

under four different conditions (dry, wet, NaCl and 

naphtha). In each case, an electric current is applied and 

recorded at different times. Our aim is to predict the 

lifetime epoxy insulators. 

 
Table 1. Epoxy Insulators with various Filler Materials under study 
  Ca SiO2   Mica   Mg(OH)2 

Filler No Filler ----------------------------------------------------- ----------------------------------------------- ------------------------------------------------------ 
Sample code W C1 C2 C3 M1 M2 M3 G1 G2 G3 
Filler Rate (%) 0 25 40 50 25 40 50 20 25 30 
 

Table 2. Experimental Epoxy insulators Lifetime (hrs) with various filler concentrations and test scenarios under study 

  CaSiO3   Mica   Mg(HO)2 

 No filler -------------------------------------------------------- ----------------------------------------------- ----------------------------------------------  
Scenario-I: Dry Test W C1 C2 C3 M1 M2 M3 G1 G2  G3 

Epoxy insulators Lifetime (hrs) 161.00 149.00 130.00 109.00 84.00 106.00 140.00 70.00 62.00 59.00 
Lifetime Portion of the Base Case (p.u.) 1.00 0.88 0.81 0.68 0.52 0.66 0.87 0.43 0.39 0.37 
Scenario-II: Wet Test 103.00 110.00 88.00 65.00 51.00 62.00 91.00 48.00 39.00 37.00 
Lifetime Portion of the Base Case (p.u.) 0.64 0.68 0.55 0.4 0.32 0.39 0.57 0.3 0.24 0.23 
Scenario-III: Naph Test 60.00 78.00 69.00 62.00 33.00 43.00 50.00 30.00 24.00 20.00 
Lifetime Portion of the Base Case (p.u.) 0.37 0.48 0.42 0.39 0.2 0.27 0.31 0.19 0.15 0.12 
Scenario-VI: NaCl Test 49.00 68.00 60.00 53.00 25.00 31.00 37.00 23.00 15.00 12.00 
Lifetime Portion of the Base Case (p.u.) 0.30 0.42 0.37 0.33 0.16 0.19 0.23 0.14 0.09 0.07 

 
Table 3. FNN and RNN accuracy (%) for predicting Epoxy insulators Lifetime with various filler concentrations and test scenarios under 
  CaSiO3   Mica   Mg(HO)2 

 No Filler ------------------------------------------------------ -------------------------------------------------------------- ----------------------------------------------------------- 
ANN W C1 C2 C3 M1 M2 M3 G1 G2  G3 

Scenario-I: Dry Test 
FNN 99.86 98.57 97.67 99.95 95.27 94.46 94.99 90.0 96.95 84.82 
RNN 99.78 98.63 98.82 99.29 98.76 97.69 98.85 98.6 99.31 96.06 
Scenario-II: Wet Test 
FNN 99.73 98.50 96.83 98.95 98.63 98.68 99.51 85.94 95.09 71.97 
RNN 99.46 97.76 97.18 97.94 98.99 99.40 99.67 98.97 95.85 82.63 
Scenario-III: Naph Test 
FNN 83.78 90.40 94.98 94.92 90.94 93.14 86.14 97.97 83.49 68.80 
RNN 94.29 86.38 98.54 98.26 93.42 90.05 98.72 94.21 83.54 76.28 
Scenario-VI: NaCl Test 
FNN 91.95 99.03 87.56 91.83 78.10 90.86 96.34 87.12 80.18 41.67 
RNN 70.09 88.02 87.24 89.48 78.44 90.29 99.33 97.92 81.17 41.67 
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Fig. 3. Prediction of FNN outputs and RNN outputs for Epoxy Insulator without Filler under Wet Test Scenario 

 

 
 

Fig. 4. Prediction of FNN outputs and RNN outputs for Epoxy Insulator with Mg(OH)2 Filler under NaCl Test Scenario 

 
 Both FNN and RNN are applied in order to predict 
the lifetime of epoxy insulators. Each has three layers 
(input, hidden and output). The inputs to the ANN are 
chosen so that they consist of the weather conditions, 
types of filler, concentration rates of fillers and the 
leakage currents at different times. ANN has only one 
output, which predicts the lifetime of epoxy insulators. A 
tan-sigmoid function producing outputs in the range of [-
1, 1] is used as a transfer function for each neuron in the 
hidden layer while linear transfer function is used for the 
output layer.  
 The dataset is split into training and test sets; 90% of 
the training set is kept for training the neural network 
while 10% is used as validation set. Neural networks with 
one hidden layer are used with five hidden neurons. The 
neural network that produces the best accuracy on the 
validation set among the runs is chosen for prediction. 
The learning factor, which controls the rate of 
convergence and stability, is chosen to be 0.05. The 

training process is preceded until the average error 
between the actual output and the desired output reaches 
an acceptable value, which is taken to be 0.001. Table 3 
summarizes the percentage accuracies of different 
contamination conditions and fillers for FNN and RNN. 

 Figure 3 and 4 display how the outputs generated by 

FNN and RNN fit the target outputs. It is noticed that in 

most cases, FNN perform well as shown in Fig. 3. But 

for more complex curves as in Fig. 4, the resulted outputs 

don’t fit the target outputs in some intervals.  

4. DISCUSSION 

 Based on the experimental measurements, it is 

noticeable that, increasing the concentration % of both 

CaSiO3 and Mg(HO)2 fillers, decrease the sample’s 

lifetime. On the contrary, increasing the concentration % 

of Mica filler increases its lifetime. 
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 A comparison between RNN and FNN shows that,  

RNN has higher performance than FNN, in general. RNN 

gives an accuracy (number of correct decisions of testing 

cases/total number of testing cases *100) of 99% in the 

testing phase while using FNN gives 97%. 

5. CONCLUSION 

 In this study, the leakage current of Epoxy material 

is estimated under accelerated aging. Surface aging of 

epoxy samples is investigated under different conditions. 

The effects of adding different fillers to the epoxy resin 

on the electrical performance of epoxy insulators are 

studied. From the experimental work it has been found 

that the suitable percentage of filler added to the epoxy 

specimens is 25% of calcium silicate under the different 

environmental conditions (NaCl and naphtha). 

 FNN is compared with RNN for similar samples to 

predict the lifetime of epoxy insulators in terms of the 

type and percentage concentration of filler. It is applied 

to real world datasets. The FNN showed a good 

performance on most of the datasets. The obtained results 

from RNN showed higher accuracy than those obtained 

using FNN. 
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