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Abstract: Problem statement: Resonance-type microscopies have been widely tsegtaluate the
nanoscaled or microscaled surface elastic progeofienaterials by the resonance-frequency shifts of
an oscillator, which contacts the surface of materby a spherical tipApproach: The tip-specimen
contact is modeled to be a spring support, whdffeedts is given by the traditional Hertzian contac
theory. However, because of the influence of thallasor vibration and the anisotropy in nanoscaled
or microscaled region of materials, the predictesults from the traditional Hertzian contact theory
can not coincide with the experimental observatidnsorder to explain this discrepancy, dynamic
contact stiffness at the contact interface betweengid sphere and a semi-infinite cubic solid is
investigatedResults: An oscillating force being superposed on a biasimge excites the oscillation
of the sphere contacting with the solid surfacejctvicauses the contact radius to vary with the
oscillation. The assumption of sufficiently smaBcdlating force compared with the biasing force
yields an oscillating-contact-pressure distributiohthe constant contact radius and then dynamic
contact stiffness. Because the oscillating-conpaessure distribution cannot promise the uniform
contact deformation, the influence of contact-dispiment conditions is discuss&bnclusion: It is
shown that dynamic contact stiffness depends orosieélating frequency and contact radius of the
sphere and the solid anisotropy.
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INTRODUCTION interface because the contact effect is sensitvéhé
contact deformation at the contact interface. These
The quantitative evaluation of the surface elasticevidences show that the static contact model midgsy fa
properties of materials in nanoscaled or microstéde in deducing the elastic constants of materials fthm
of great importance in material engineering (Kester resonance-frequency shifts of the oscillator in
al., 1999), which can be determined by Atomic Forceresonance-type microscopies, which has been wrifie
Microscopy (AFM) (Yamanaka and Nakano, 1998;by the experiments (Tiagt al., 2004). Therefore, the
Yamanaka et al., 1999; Rabeet al., 1998) and evaluation of dynamic Hertzian contact for anispico
Resonance Ultrasound Microscopy (RUS) (@gal.,  solids is a key issue in resonance-type microssopie
2003; Tianet al., 2004; Tianet al., 2008). In these For the design of dynamic machine foundation in
microscopies, an applied biasing force make artivil engineering, the vibration of a rigid puncbaanst
oscillator touch the surface of materials througtipa a semi-infinite solid has been investigated extexigi
and a piezoelectric transducer or dynamic magnetiby considering the dynamic contact deformation (Hun
filed excites the vibration of the oscillator. Thecal =~ 1953; Barkan, 1962; Bycrot, 1956; Awojobi and
surface elastic properties and degradation of riadéer Grootenhuis, 1965; Luco and Westmann, 1971;
are reflected from resonance-frequency shifts @& th Veletsos and Verbic, 1974), where the contact sadiu
oscillator. The tip-specimen contact was usuallykeeps constant and the uniform dynamic contact
modeled to be a spring support, whose stiffnegivien  deformation at the contact interface equals the
by the traditional Hertzian contact theory (Johnsonindentation of the punch (contact-displacement
1985). The traditional Hertzian contact theory pdeg condition). Two methods have been adopted to solve
the static contact stiffness for the contactingreguic  this problem. The one is that the prescribed centac
materials. But all materials exhibit the anisotrojpy pressure distribution gives the dynamic contact
nanoscaled or microscaled range (Simmons and Wangeformation by the consideration of wave propagatio
1971). Furthermore, the vibration of the oscillatms in the solid (Sung, 1953; Barkan, 1962; Bycrot, @95
great influence on the contact stiffness at thetamin However, the contact displacement condition is
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satisfied only at a certain point of the contateiface.

The other is that the contact-displacement comditio

with the unknown dynamic contact pressure distidyut

yields a dual integral equation (Awojobi and

Grootenhuis, 1965; Luco and Westmann, 1971;

Veletsos and Verbic, 1974). As for Hertzian contact

vibration, the contact radius varies as the ogmleof

the sphere, which can be attributed to be a namline

contact problem. Tiaret al. (2004) studied dynamic

Hertzian contact stiffness at the contact interface

between a spherical tip and an isotropic solid.

Assuming that the oscillating force is much smaller

than the biasing force, they simplified this praoble

into the superimposition of a static problem and a

dynamic contact problem of the constant contact z

radius, which induces the prescribed dynamic cantac

pressure distribution with the unknown disturbance o o _

variables of the contact radius and the maximum ofig. 1: The vibration of a rigid sphere against an

the contact pressure. The contact displacement semi-infinite cubic solid acted by a biasing force

conditions are satisfied at the center and the edge and an oscillating force

the contact interface, which is named as Two Points ) ) S

(TP) model. However, the TP model yields theA Cartesian coordinates (x, y, z) whose origiroisated

negative contact stiffness for high-frequencyat contact point is set to make x-y plane coincid

oscillation, which is unreasonable. contact tangent plane and thexds along the inward
In this study, we introduce a dynamic-contact-normal of the solid.

pressure distribution with the unknown disturbance S )

term of the contact radius to investigate dynamicOscillating-contact-pressure distribution: First, we

contact stiffness of a r|g|d sphere against a SemiCOﬂSlder the static contact of the Sphere and dfid s

infinite cubic solid, considering the influence tfe  subjected to the biasing force F, which yieldsrautar

contact-displacement  conditions.  First, if the contact interface of radius a as (Taral., 2005):

oscillating force is much smaller than the applied

biasing force, the nonlinear dynamic contact proble _?)/SFRI1

is simplified into the superimposition of a static “ | an

contact problem and a constant-contact-radius

dynamic contact problem, which induces the The contact pressure distribution p(x,y) and the

oscillating-contact-pressure  distribution with the indentation ware denoted as, respectively (Tieral.,

unknown disturbance variable of the contact radius2005):

Second, we deduce dynamic contact stiffness by

considering dynamic contact deformation and _4a 2

dynamic contact displacement condition. Third, we p(x,y)—R—Il 1—(x2+y2)/a (2)

discuss the influence of contact-displacement

conditions on the dynamic Hertzian contact stiffnes

Lastly, we further discuss the influence of the W=|§°\3/9F2/T[2R|1 3)

vibrating frequency and contact radius of the rigid

sphere_ and elastic_properties of the cubic solidthe  \yhere:

dynamic contact stiffness.

Semi-infinite pubic solid

)

2n
l, = [G(cosd,sirb) @
MATERIALSAND METHODS o
2n
The vibration of arigid sphere against a semi-infinite l,= J'é(cose ,sirB) cos6 @
cubic solid: A biasing force F presses a rigid sphere of o
radius R to contact frictionlessly with a semi-mit@
cubic solid of mass density which is shown in Fig. 1. A Here, (‘3(51,52) is Fourier transform of Green
harmonic forcedF€“* being superimposed upon the ) ) ) )
biasing force excites the sphere oscillation nolnah  function G(x,.x,) . The static-contact stiffnesssKis
the solid surface, wherao is angular frequency. derived from Eq. 3:
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K_ =dF/dw= 43 3FR® I/ P 4 Response of the semi-infinite cubic solid subjected
2 =dF/ V' ) to the oscillating contact pressure distribution:
_ Next, we consider surface displacements in the semi
Next, the harmonic forc8F“* is superimposed to infinite cubic solid caused by the oscillating mes
the static forceo excite the sphere oscillation, where distribution 5f(x,y)e“*“, where the term '@ will be
the contact radius varies with the oscillation. neglected in the following analysis. Displacement
Introducing the perturbation terda(t) of the contact components \x,y,z), y(x,y,z) and u(x,y,z) satisfy

radius, dynamic contact pressure distribution igtem  the following equations of motion (Nayfeh, 1995):
similarly as:

Cllux,xx + C66u><,yy+ Ceeux,zz
4(a+d +(Cp + Ceu,  + (Cpt+ Cu, +pw U= (
p(x,y,t)= ( - 6( 9)\/1_()(2 + yz)/( a+5f:( ))2 (5) 12 66/ -y, xy 12 66 ,
1 Clluy,yy+ C66uy.xx+ CSGUy,zz (10)
‘ +(C12 + Ces)ux,xy+ (C12+ Ces)uz,yz+ pm2 Uy: t
where, da(t)=dae" and oa is unknown constant Cil 52+ Coelly ot Cocll,
satisfying |3a| <f a. _ .Neglectlng higher-order terms, HCyp + CoolUy o+ (Copt Cooll, ,+pu U= G
Eq. 5 can be simplified into:
and
p(x,y,t)zgj1/1—(><2+ f)/af+6f(x,)) & (6) - .
Txx Cll C12 C12 0 O O
where 3f(x,y)e* represents the oscillating contact- Tyl |G Cu G 000
pressure distribution given by: T |_ |G, G G 0O 0 0
5 (x y)=@ 1 .| |0 0 0 G 0 o0
, RI, T_(Xeryz)/az T, 0 0 0 0 g O
Ty [0 0 0 0 0 G (11)
It is shown from Eq. 6 that the dynamic contact- o/x 0 0
pressure distribution of nonconstant contact radtius 0 od/y © u
Eq. 5 can be expressed to be the superimpositian of 0 0 9/az| *
static contact pressure distribution and a harmonic 0 9/oz o/ay ty
dynamic contact pressure distribution of the camista 9/0z 0 9o Y,
contact radius. Therefore, only the harmonic dymami 3oy 9/ax 0

response will be considered in the following anialys
Introducing the dynamic indentation of the sphere:
The boundary conditions at z = 0 are expressed as:
w(t) =w +dwe @

1, =-8 (x,y), for x*+y’<a
1, =0 (12)
1, =0

the equation of motion can be denoted as:

MV (t) = F + SFe“ — j j p(x, y, t)dxdy (8)
We apply the double Fourier transform to this

where, M is the sphere mass. Substitution of Eané  problem, which is defined as:

7 into Eqg. 8 yields:

-w’Mw = &F - P 9) FE,.8,.2)= j j f(x,y,2) €% dxdy (13)
where 6P=8na26a is the oscillating elastic contact L .

' RI, Application of the double Fourier transform to
force. Eq. 10-12 yields:
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(Cuzi + Csez Zz)U X CesAu

X,22

+8,&8,(Cpp+ Ces)Uy_ €,(C*+ Clu 2z pw’ U =

£8,(Cp+ Ceo)l, + (C,E3+ CE4Ju v
Ceolly .~ € (Cpo+ C U, ~ pwu ~0
—i&(C,+Cee)l, ,— i€ (C,+ C U vz
+Ce (€2 +E2)0,- C.f1, ,, - PP, = 0

T, Ch G C, O 0 0
fyy C, Gy C, O 0 0
i,/ |C, C, C, 0O 0 O
i,/ |0 0 0 G 0 ©
i, 0 0 0 0 G, O
%,] L0 0 0 0 0 G
rig, 0 0]
0 & 0 |
0 0 o0/oz GX
0 ooz & |’
9oz 0 i&, z
Li&, &, 0 |
and
. _ 8masing)
“7 " RIp
1,=0 ,atz=0
t,=0

where,n=a,/§2 +&2 .

(14)

(15)

(16)

The general solutions for Eq. 14 satisfying fatei

condition can be written as:

A 3 .
W, (8,.8,,2)=> Ad™*h , k=123
a=1

(17)

where, ng has positive imaginary part.,nand A} are

determined by:

Cllzi + C%Ezz+ Csenf - p(*)z
sym

§8,(Cpo+ Cg)
Ceem; + Cf3 + CE5- pw?

Al
S =
As

O O o

&M, (Cppt Cop)
&.m (Cpt Cg)
CeeEi + Cebz22+ Cnnﬁ - pwz_

(18)

Coefficients f are given by point-force boundary
conditions as:

Mo

(Afm, +AZE)b, =0

1

Q
Il

(Azm, +AZE,)b, =0 (19)

Mo

1

Q
Il

Co oo Coue o .
(C712A1E1+C712A Ko tAM )b, =
11

11

Me

=1

Q

After solving k from Eq. 19, the surface normal
displacementl, (n,9) is expressed as:

a,(n.9) = _(?TESI W, (n cost)n sing ) Si?]ﬂ ) (20)

Application of the inverse double Fourier
transform to Eq. 20 yields:

)= 4da
C,Rl,

11

u, (7.0 N(¥,0) (21)

where:

0 270

N(?.9)=—jj\7V(r] cos )n sing ) sing )& g @

and
f= (x2+y2)/a2

Integrands in theN(7,8) have poles along the real

axis of n plane corresponding to Rayleigh waves. In
order to avoid this singularity along the integpaith,

we introduce complex elastic constaﬁ‘;ﬁz G @+iQ")
to make the poles deviate from the real axig q@lane
(Cornejo C’ordova, 2002R;* are internal frictions for
elastic constants of the solid. There are usualfgrént
independent internal frictiong;* for different elastic
constants in the solid. Here we assu@jéto be the

same value @ = 0.02 to simplify the analysis.

Dynamic displacement conditions at the contact
interface: In order to obtainda, dw and then yXx,y),
additional condition is required. Hertzian contgetory
(Johnson, 1985) gives the contact-displacement
condition:
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X2 +y? 29 In the studies of the contact vibration for a digi
2R (22) punch, Sung, (1953) presented that the contact-
displacement condition in Eq. 23 is satisfied caflyhe

) ) center of the contact interface, which is called BO
where, uWo(x,y) is the static surface normal model:

displacement. Equation 22 provides that the hareoni
normal displacement,{x,y) at the contact interface is U0, 0) = wb (24)
uniform and equals the harmonic indentatdwn of the

U, (X, Y)+ Uy (X, y)=dW+ w—

The R1 model means that the normal displacement

sphere: at the edge of the contact interface equals the
indentation:

u, (F,0)=dw (23)
Uy(1, 0) =dw (25)

SA model is that the arithmetic mean of
displacements at the center and the edge of theaaton

interface equal the indentation (Barkan, 1962):

The oscillating-contact-pressure distribution i
Eq. 6 can promise the uniform normal displacemént o
the solid at contact interface for the statientact
(w0 = 0). However, .for the dyna}mi.c caseW), the (U,(1,0)+u(1,0))/2 =dw (26)
harmonic normal displacement is impossible to keep
uniform at the contact interface. Figure 2 showat th Bycroft, (1956) gave the WA model, where the
with the increase of the oscillating frequency, theweighted average displacement at the contact auderf
nonuniformity of the harmonic normal displacementequals the indentation:
distribution becomes increasingly evident. Moreover L (r,O)r
Frost, (1974) also investigated a rigid cylinderdla jozf’zdrzéw (27)
sideways on the edge of a viscoelastic solid and 1-r

vibrgted at about 90 kHz while being press_e_d with abynamic contact stiffness: Combination of Eq. 9, 21
static force F onto the test sample and exertitighe- and 24-27 yields the dynamic contact stiffness, K

averaged ultrasonic forcedF. His experimental \yhich s defined as the ratio of the oscillatingsic
observations show that the contact is intermitt@nt .ot forceP to the oscillating indentatidw:

OF < F, which has been attributed to the nonuniformity

of the dynamic contact deformation. Therefore, the 2maC,
. . . " RO model
approximated dynamic contact-displacement condition N(0,0)
must be provided to simplify the following analysis 2maG,
R1 model
N(1,0) (28)
1.0 Kaa = 28
“|__4mG, RA model
N(0,0)+ N(1,0)
~ "% - 2naG, WA  model
q .[ON(r,O)r/xll— P dr
2 06 g .
g i G N, B P e In order to consider dynamic characteristic of the
el I S RO ' dynamic anisotropic Hertzian contact, we introdthe
:z-‘:/ g Dynamic-Contact-Stiffness Factor (DCSK) related
o) seen la=09 ? . . . . .
_ with the static anisotropic contact stiffnesg, [ian et
024 == hie=12 al., 2005) as:
== ka=17 A_=§255 B '
0.0 T T T = T 1 Ki = Kda/ K sa (29)
0.0 02 04 06 08 1.0
ot The DCSF is influenced by the normalized wave

number ka=.wp/C,a and anisotropic factor
Fig. 2: The oscillating contact deformation distition ' /G

at the contact interface caused by the oscillating® =2Css/(Cu~ C) , Poisson ratios =C,,/(C,;+ Cy,) of
contact pressure distribution the cubic solid.
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RESULTSAND DISCUSSION WA and R1 models predict the reasonable results. WA
model includes the influence of the contact
Firstly, Fig. 3 shows the influence of the contact displacements throughout the contact interface goein
displacement-condition models on the DCS&s related with the contact-pressure distribution. f8yc
A= 0.5 andv = 0.25. The DCSF for the TP model is (1956) has verified that the WA model can predne t
also shown in Fig. 3. Figure 3a and b denote thaé re more accurate results than the R1 model. Therefloee,

and imaginary parts of DCSF, which are related with;isz;g;;or the WA model will be shown in the folimg

the contact stiffness and the radiation damping, " Anisotropic factor A of single cubic crystals is
respectively. ~The influence of the contact-  gyally between 0.26 (rubidium iodide) and 8.52
displacement conditions will increase aa kncreases. (lithjum) (Simmons and Wang, 1971). Figure 4
At the higher frequency, the RO, SA, and TP modelshows the dependence of DCSF qa knd A atv =
show the negative contact stiffness and radiatior0.25. The real and imaginary parts of DCSF are
damping, which are unreasonable. The negativeéhown in Fig. 4a and b, respectively. The real part
contact stiffness and radiation damping meanstttat DCSF decreases monotonously with the increase of

vibration of the oscillator will approacinstable. ki@ and the imaginary part of DCSF increases,as k
increases, which means that the vibration of the

sphere will soften the contact stiffness. The it

of dynamic contact stiffness has the Ilimit of
anisotropic static contact stiffnesg, When ka- 0.
| 25
! . |
IL."'I- 1
- O'_ — A mode] "::'\. h“‘!,__
» ~ ' 2.0+
‘T .1« = == ER0model N !f
A {==== R1model \‘% r
-2 o === BA mnodel % /1 =
1==== TP model = i ;46/15-
-3 4 \‘ i
1 \ '
44 A=05 f |
] ot=002 \ i 1.0
5 T L L A 1
0.0 05 10 15 2.0
kla 0.5 T T T 1
@) 00 05 1.0 15 2.0
kla
(a)
5 = J’ '4' 25
s . -
4: ST ! — A=025
3 - 1 - == 4=050
- -1 Taae a=2
21 i 2.0
1 e =~ u ————A=d
3 1 ! ] .
R o3 1 - -
E°] ~ 2 5] v=o2s S
1] — W& model N\ I g ol=002 /’ -7 -
1 = = = R0 model M Fd Il
'2: Y =+ == R1model \L 7 !/ 4."_,-"’
-3+ Q_T:O 02 ——— 54 TI00E] i “ 10 - . ';',—’_‘
] === TP model i - -, LanieT
s b . . i i . :,‘F:,_g.-\..:-.-.n
0.0 05 1.0 15 2.0 0 T T T !
0.0 05 1.0 1.5 2.0
kya foa

(b) (b)

Fig. 3: Influence of contact-displacement condition Fig. 4: Dependence of DCSF on anisotropic factor A
on the dynamic contact stiffness at A = 0.5 and and the normalized wave numbealatv = 0.25
v = 0.25 (a) the real part (b) the imaginary part (a) the real part (b) the imaginary part
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221 v=0.10 PN A =0.25, 0.5 reach the local maximum of 1.85 ariB2
204 - - ov=020 J S at kya = 1.15 and 1.45. Whenak0.6, with the increase
18 eaee yonos I /s of A, the real part of DCSF increases, but its imagy
1g] ====v=030 j .f .. part decreases. The influence of anisotropic faton

1 == w=040 H yoe the real part of DCSF becomes larger gsikcreases,

especially for lower anisotropic factor. When thgid
sphere contacts different orientation surfaces ulficc
grain, which show different anisotropic factor. If
resonance frequency shifts of the oscillator aedus
determine orientation of cubic grains in RUS, thegyér
operating frequency is better. Whenak0.6, the
influence of anisotropic factor A on the dynamic

Relkp

- 04 08 . e 50 contact stiffness become complex.
e Figure 5 shows the influence wfand ka on DCSF
(@) at A = 2. When la<1.25, the real part of DCSF
decreases with the increase wfwhen ka>1.25, the
R TR real part of DCSF increases with the increase. dthe
354 _ . :;O - ;.‘ \;:‘;‘:- imaginary part of DCSF increasesvasicreases.
S e S CONCLUSION
2T e y=040 _f' L
% 2.0 4 ra /J:, Z In order to investigate the anisotropy influende o
= A=2 gy cubic solid on the dynamic Hertzian contact, wespré
e B o P the dynamic contact stiffness of the rigid sphere the
1.0 - sy semi-infinite cubic solid by considering the dynami
0s ] ’_.-" = contact deformation at the contact interface, whose
' D contact radius varies with the oscillation. Assugniihat
0.0 . . T 1 the oscillating force is much less than the biasorge,
0.0 0.3 1:0 15 20 dynamic contact between the rigid sphere and thé&cu
18

solid can be simplified into a dynamic contact é t
constant contact radius. The introduction of the
) ) ) ) different contact-displacement models yields a dyica
Fig. 5: Influence of Poisson ratioand the normalized contact stiffness. The discussions show that the
wave number ja on DCSF at A = 2 (a) the real ywejghted average model for contact-displacement
part (b) the imaginary part conditions can depict the dynamic Hertzian contact
effectively. It is also shown that dynamic contact
In RUS, the exciting frequency of the oscillator is stiffness factor depends on normalized wave number
between 0.25 and 1.5 MHz and the contact radius iga and anisotropic factor and Poisson’s ratio of the
smaller than 30 pm, which is determined by theibgas cubic solid. The vibration stiffness decreases trel
force, sphere radius and elastic constants of did.s vibration damping increases with the increase @f. k
For example, when the oscillating rigid sphere aot#  The real part of DCSF increases with the incredsmo
the soft cubic grains (rubidium bromide and ledl® isotropic factor and the decrease of Poisson rhtibjn
normalized wave number,& could reach 0.2 and reverse for the imaginary part, which will benefie
dynamic contact stiffness is more than 95% of stati quantitative evaluation of the local surface etasti
stiffness, where we must consider the dynamigroperties of solids in resonance-type microscopies
characteristic of contact stiffness for quantitativ
evaluation of elastic modulus in RUS. But for harde ACKNOWLEDGEMENT
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